lemon/network_simplex.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 03 Apr 2009 13:46:16 +0200
changeset 607 9ad8d2122b50
parent 606 c7d160f73d52
child 608 6ac5d9ae1d3d
permissions -rw-r--r--
Separate types for flow and cost values in NetworkSimplex (#234)
kpeter@601
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@601
     2
 *
kpeter@601
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@601
     4
 *
kpeter@601
     5
 * Copyright (C) 2003-2009
kpeter@601
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@601
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@601
     8
 *
kpeter@601
     9
 * Permission to use, modify and distribute this software is granted
kpeter@601
    10
 * provided that this copyright notice appears in all copies. For
kpeter@601
    11
 * precise terms see the accompanying LICENSE file.
kpeter@601
    12
 *
kpeter@601
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@601
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@601
    15
 * purpose.
kpeter@601
    16
 *
kpeter@601
    17
 */
kpeter@601
    18
kpeter@601
    19
#ifndef LEMON_NETWORK_SIMPLEX_H
kpeter@601
    20
#define LEMON_NETWORK_SIMPLEX_H
kpeter@601
    21
kpeter@601
    22
/// \ingroup min_cost_flow
kpeter@601
    23
///
kpeter@601
    24
/// \file
kpeter@605
    25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
kpeter@601
    26
kpeter@601
    27
#include <vector>
kpeter@601
    28
#include <limits>
kpeter@601
    29
#include <algorithm>
kpeter@601
    30
kpeter@603
    31
#include <lemon/core.h>
kpeter@601
    32
#include <lemon/math.h>
kpeter@601
    33
kpeter@601
    34
namespace lemon {
kpeter@601
    35
kpeter@601
    36
  /// \addtogroup min_cost_flow
kpeter@601
    37
  /// @{
kpeter@601
    38
kpeter@605
    39
  /// \brief Implementation of the primal Network Simplex algorithm
kpeter@601
    40
  /// for finding a \ref min_cost_flow "minimum cost flow".
kpeter@601
    41
  ///
kpeter@605
    42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
kpeter@601
    43
  /// for finding a \ref min_cost_flow "minimum cost flow".
kpeter@606
    44
  /// This algorithm is a specialized version of the linear programming
kpeter@606
    45
  /// simplex method directly for the minimum cost flow problem.
kpeter@606
    46
  /// It is one of the most efficient solution methods.
kpeter@606
    47
  ///
kpeter@606
    48
  /// In general this class is the fastest implementation available
kpeter@606
    49
  /// in LEMON for the minimum cost flow problem.
kpeter@601
    50
  ///
kpeter@605
    51
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@607
    52
  /// \tparam F The value type used for flow amounts, capacity bounds
kpeter@607
    53
  /// and supply values in the algorithm. By default it is \c int.
kpeter@607
    54
  /// \tparam C The value type used for costs and potentials in the
kpeter@607
    55
  /// algorithm. By default it is the same as \c F.
kpeter@601
    56
  ///
kpeter@607
    57
  /// \warning Both value types must be signed integer types.
kpeter@601
    58
  ///
kpeter@605
    59
  /// \note %NetworkSimplex provides five different pivot rule
kpeter@605
    60
  /// implementations. For more information see \ref PivotRule.
kpeter@607
    61
  template <typename GR, typename F = int, typename C = F>
kpeter@601
    62
  class NetworkSimplex
kpeter@601
    63
  {
kpeter@605
    64
  public:
kpeter@601
    65
kpeter@607
    66
    /// The flow type of the algorithm
kpeter@607
    67
    typedef F Flow;
kpeter@607
    68
    /// The cost type of the algorithm
kpeter@607
    69
    typedef C Cost;
kpeter@605
    70
    /// The type of the flow map
kpeter@607
    71
    typedef typename GR::template ArcMap<Flow> FlowMap;
kpeter@605
    72
    /// The type of the potential map
kpeter@607
    73
    typedef typename GR::template NodeMap<Cost> PotentialMap;
kpeter@605
    74
kpeter@605
    75
  public:
kpeter@605
    76
kpeter@605
    77
    /// \brief Enum type for selecting the pivot rule.
kpeter@605
    78
    ///
kpeter@605
    79
    /// Enum type for selecting the pivot rule for the \ref run()
kpeter@605
    80
    /// function.
kpeter@605
    81
    ///
kpeter@605
    82
    /// \ref NetworkSimplex provides five different pivot rule
kpeter@605
    83
    /// implementations that significantly affect the running time
kpeter@605
    84
    /// of the algorithm.
kpeter@605
    85
    /// By default \ref BLOCK_SEARCH "Block Search" is used, which
kpeter@605
    86
    /// proved to be the most efficient and the most robust on various
kpeter@605
    87
    /// test inputs according to our benchmark tests.
kpeter@605
    88
    /// However another pivot rule can be selected using the \ref run()
kpeter@605
    89
    /// function with the proper parameter.
kpeter@605
    90
    enum PivotRule {
kpeter@605
    91
kpeter@605
    92
      /// The First Eligible pivot rule.
kpeter@605
    93
      /// The next eligible arc is selected in a wraparound fashion
kpeter@605
    94
      /// in every iteration.
kpeter@605
    95
      FIRST_ELIGIBLE,
kpeter@605
    96
kpeter@605
    97
      /// The Best Eligible pivot rule.
kpeter@605
    98
      /// The best eligible arc is selected in every iteration.
kpeter@605
    99
      BEST_ELIGIBLE,
kpeter@605
   100
kpeter@605
   101
      /// The Block Search pivot rule.
kpeter@605
   102
      /// A specified number of arcs are examined in every iteration
kpeter@605
   103
      /// in a wraparound fashion and the best eligible arc is selected
kpeter@605
   104
      /// from this block.
kpeter@605
   105
      BLOCK_SEARCH,
kpeter@605
   106
kpeter@605
   107
      /// The Candidate List pivot rule.
kpeter@605
   108
      /// In a major iteration a candidate list is built from eligible arcs
kpeter@605
   109
      /// in a wraparound fashion and in the following minor iterations
kpeter@605
   110
      /// the best eligible arc is selected from this list.
kpeter@605
   111
      CANDIDATE_LIST,
kpeter@605
   112
kpeter@605
   113
      /// The Altering Candidate List pivot rule.
kpeter@605
   114
      /// It is a modified version of the Candidate List method.
kpeter@605
   115
      /// It keeps only the several best eligible arcs from the former
kpeter@605
   116
      /// candidate list and extends this list in every iteration.
kpeter@605
   117
      ALTERING_LIST
kpeter@605
   118
    };
kpeter@605
   119
kpeter@605
   120
  private:
kpeter@605
   121
kpeter@605
   122
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@605
   123
kpeter@607
   124
    typedef typename GR::template ArcMap<Flow> FlowArcMap;
kpeter@607
   125
    typedef typename GR::template ArcMap<Cost> CostArcMap;
kpeter@607
   126
    typedef typename GR::template NodeMap<Flow> FlowNodeMap;
kpeter@601
   127
kpeter@601
   128
    typedef std::vector<Arc> ArcVector;
kpeter@601
   129
    typedef std::vector<Node> NodeVector;
kpeter@601
   130
    typedef std::vector<int> IntVector;
kpeter@601
   131
    typedef std::vector<bool> BoolVector;
kpeter@607
   132
    typedef std::vector<Flow> FlowVector;
kpeter@607
   133
    typedef std::vector<Cost> CostVector;
kpeter@601
   134
kpeter@601
   135
    // State constants for arcs
kpeter@601
   136
    enum ArcStateEnum {
kpeter@601
   137
      STATE_UPPER = -1,
kpeter@601
   138
      STATE_TREE  =  0,
kpeter@601
   139
      STATE_LOWER =  1
kpeter@601
   140
    };
kpeter@601
   141
kpeter@601
   142
  private:
kpeter@601
   143
kpeter@605
   144
    // Data related to the underlying digraph
kpeter@605
   145
    const GR &_graph;
kpeter@605
   146
    int _node_num;
kpeter@605
   147
    int _arc_num;
kpeter@605
   148
kpeter@605
   149
    // Parameters of the problem
kpeter@607
   150
    FlowArcMap *_plower;
kpeter@607
   151
    FlowArcMap *_pupper;
kpeter@607
   152
    CostArcMap *_pcost;
kpeter@607
   153
    FlowNodeMap *_psupply;
kpeter@605
   154
    bool _pstsup;
kpeter@605
   155
    Node _psource, _ptarget;
kpeter@607
   156
    Flow _pstflow;
kpeter@601
   157
kpeter@601
   158
    // Result maps
kpeter@603
   159
    FlowMap *_flow_map;
kpeter@603
   160
    PotentialMap *_potential_map;
kpeter@601
   161
    bool _local_flow;
kpeter@601
   162
    bool _local_potential;
kpeter@601
   163
kpeter@605
   164
    // Data structures for storing the digraph
kpeter@603
   165
    IntNodeMap _node_id;
kpeter@603
   166
    ArcVector _arc_ref;
kpeter@603
   167
    IntVector _source;
kpeter@603
   168
    IntVector _target;
kpeter@603
   169
kpeter@605
   170
    // Node and arc data
kpeter@607
   171
    FlowVector _cap;
kpeter@607
   172
    CostVector _cost;
kpeter@607
   173
    FlowVector _supply;
kpeter@607
   174
    FlowVector _flow;
kpeter@607
   175
    CostVector _pi;
kpeter@601
   176
kpeter@603
   177
    // Data for storing the spanning tree structure
kpeter@601
   178
    IntVector _parent;
kpeter@601
   179
    IntVector _pred;
kpeter@601
   180
    IntVector _thread;
kpeter@604
   181
    IntVector _rev_thread;
kpeter@604
   182
    IntVector _succ_num;
kpeter@604
   183
    IntVector _last_succ;
kpeter@604
   184
    IntVector _dirty_revs;
kpeter@601
   185
    BoolVector _forward;
kpeter@601
   186
    IntVector _state;
kpeter@601
   187
    int _root;
kpeter@601
   188
kpeter@601
   189
    // Temporary data used in the current pivot iteration
kpeter@603
   190
    int in_arc, join, u_in, v_in, u_out, v_out;
kpeter@603
   191
    int first, second, right, last;
kpeter@601
   192
    int stem, par_stem, new_stem;
kpeter@607
   193
    Flow delta;
kpeter@601
   194
kpeter@601
   195
  private:
kpeter@601
   196
kpeter@605
   197
    // Implementation of the First Eligible pivot rule
kpeter@601
   198
    class FirstEligiblePivotRule
kpeter@601
   199
    {
kpeter@601
   200
    private:
kpeter@601
   201
kpeter@601
   202
      // References to the NetworkSimplex class
kpeter@601
   203
      const IntVector  &_source;
kpeter@601
   204
      const IntVector  &_target;
kpeter@607
   205
      const CostVector &_cost;
kpeter@601
   206
      const IntVector  &_state;
kpeter@607
   207
      const CostVector &_pi;
kpeter@601
   208
      int &_in_arc;
kpeter@601
   209
      int _arc_num;
kpeter@601
   210
kpeter@601
   211
      // Pivot rule data
kpeter@601
   212
      int _next_arc;
kpeter@601
   213
kpeter@601
   214
    public:
kpeter@601
   215
kpeter@605
   216
      // Constructor
kpeter@601
   217
      FirstEligiblePivotRule(NetworkSimplex &ns) :
kpeter@603
   218
        _source(ns._source), _target(ns._target),
kpeter@601
   219
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@603
   220
        _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
kpeter@601
   221
      {}
kpeter@601
   222
kpeter@605
   223
      // Find next entering arc
kpeter@601
   224
      bool findEnteringArc() {
kpeter@607
   225
        Cost c;
kpeter@601
   226
        for (int e = _next_arc; e < _arc_num; ++e) {
kpeter@601
   227
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   228
          if (c < 0) {
kpeter@601
   229
            _in_arc = e;
kpeter@601
   230
            _next_arc = e + 1;
kpeter@601
   231
            return true;
kpeter@601
   232
          }
kpeter@601
   233
        }
kpeter@601
   234
        for (int e = 0; e < _next_arc; ++e) {
kpeter@601
   235
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   236
          if (c < 0) {
kpeter@601
   237
            _in_arc = e;
kpeter@601
   238
            _next_arc = e + 1;
kpeter@601
   239
            return true;
kpeter@601
   240
          }
kpeter@601
   241
        }
kpeter@601
   242
        return false;
kpeter@601
   243
      }
kpeter@601
   244
kpeter@601
   245
    }; //class FirstEligiblePivotRule
kpeter@601
   246
kpeter@601
   247
kpeter@605
   248
    // Implementation of the Best Eligible pivot rule
kpeter@601
   249
    class BestEligiblePivotRule
kpeter@601
   250
    {
kpeter@601
   251
    private:
kpeter@601
   252
kpeter@601
   253
      // References to the NetworkSimplex class
kpeter@601
   254
      const IntVector  &_source;
kpeter@601
   255
      const IntVector  &_target;
kpeter@607
   256
      const CostVector &_cost;
kpeter@601
   257
      const IntVector  &_state;
kpeter@607
   258
      const CostVector &_pi;
kpeter@601
   259
      int &_in_arc;
kpeter@601
   260
      int _arc_num;
kpeter@601
   261
kpeter@601
   262
    public:
kpeter@601
   263
kpeter@605
   264
      // Constructor
kpeter@601
   265
      BestEligiblePivotRule(NetworkSimplex &ns) :
kpeter@603
   266
        _source(ns._source), _target(ns._target),
kpeter@601
   267
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@603
   268
        _in_arc(ns.in_arc), _arc_num(ns._arc_num)
kpeter@601
   269
      {}
kpeter@601
   270
kpeter@605
   271
      // Find next entering arc
kpeter@601
   272
      bool findEnteringArc() {
kpeter@607
   273
        Cost c, min = 0;
kpeter@601
   274
        for (int e = 0; e < _arc_num; ++e) {
kpeter@601
   275
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   276
          if (c < min) {
kpeter@601
   277
            min = c;
kpeter@601
   278
            _in_arc = e;
kpeter@601
   279
          }
kpeter@601
   280
        }
kpeter@601
   281
        return min < 0;
kpeter@601
   282
      }
kpeter@601
   283
kpeter@601
   284
    }; //class BestEligiblePivotRule
kpeter@601
   285
kpeter@601
   286
kpeter@605
   287
    // Implementation of the Block Search pivot rule
kpeter@601
   288
    class BlockSearchPivotRule
kpeter@601
   289
    {
kpeter@601
   290
    private:
kpeter@601
   291
kpeter@601
   292
      // References to the NetworkSimplex class
kpeter@601
   293
      const IntVector  &_source;
kpeter@601
   294
      const IntVector  &_target;
kpeter@607
   295
      const CostVector &_cost;
kpeter@601
   296
      const IntVector  &_state;
kpeter@607
   297
      const CostVector &_pi;
kpeter@601
   298
      int &_in_arc;
kpeter@601
   299
      int _arc_num;
kpeter@601
   300
kpeter@601
   301
      // Pivot rule data
kpeter@601
   302
      int _block_size;
kpeter@601
   303
      int _next_arc;
kpeter@601
   304
kpeter@601
   305
    public:
kpeter@601
   306
kpeter@605
   307
      // Constructor
kpeter@601
   308
      BlockSearchPivotRule(NetworkSimplex &ns) :
kpeter@603
   309
        _source(ns._source), _target(ns._target),
kpeter@601
   310
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@603
   311
        _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
kpeter@601
   312
      {
kpeter@601
   313
        // The main parameters of the pivot rule
kpeter@601
   314
        const double BLOCK_SIZE_FACTOR = 2.0;
kpeter@601
   315
        const int MIN_BLOCK_SIZE = 10;
kpeter@601
   316
kpeter@601
   317
        _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
kpeter@601
   318
                                MIN_BLOCK_SIZE );
kpeter@601
   319
      }
kpeter@601
   320
kpeter@605
   321
      // Find next entering arc
kpeter@601
   322
      bool findEnteringArc() {
kpeter@607
   323
        Cost c, min = 0;
kpeter@601
   324
        int cnt = _block_size;
kpeter@601
   325
        int e, min_arc = _next_arc;
kpeter@601
   326
        for (e = _next_arc; e < _arc_num; ++e) {
kpeter@601
   327
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   328
          if (c < min) {
kpeter@601
   329
            min = c;
kpeter@601
   330
            min_arc = e;
kpeter@601
   331
          }
kpeter@601
   332
          if (--cnt == 0) {
kpeter@601
   333
            if (min < 0) break;
kpeter@601
   334
            cnt = _block_size;
kpeter@601
   335
          }
kpeter@601
   336
        }
kpeter@601
   337
        if (min == 0 || cnt > 0) {
kpeter@601
   338
          for (e = 0; e < _next_arc; ++e) {
kpeter@601
   339
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   340
            if (c < min) {
kpeter@601
   341
              min = c;
kpeter@601
   342
              min_arc = e;
kpeter@601
   343
            }
kpeter@601
   344
            if (--cnt == 0) {
kpeter@601
   345
              if (min < 0) break;
kpeter@601
   346
              cnt = _block_size;
kpeter@601
   347
            }
kpeter@601
   348
          }
kpeter@601
   349
        }
kpeter@601
   350
        if (min >= 0) return false;
kpeter@601
   351
        _in_arc = min_arc;
kpeter@601
   352
        _next_arc = e;
kpeter@601
   353
        return true;
kpeter@601
   354
      }
kpeter@601
   355
kpeter@601
   356
    }; //class BlockSearchPivotRule
kpeter@601
   357
kpeter@601
   358
kpeter@605
   359
    // Implementation of the Candidate List pivot rule
kpeter@601
   360
    class CandidateListPivotRule
kpeter@601
   361
    {
kpeter@601
   362
    private:
kpeter@601
   363
kpeter@601
   364
      // References to the NetworkSimplex class
kpeter@601
   365
      const IntVector  &_source;
kpeter@601
   366
      const IntVector  &_target;
kpeter@607
   367
      const CostVector &_cost;
kpeter@601
   368
      const IntVector  &_state;
kpeter@607
   369
      const CostVector &_pi;
kpeter@601
   370
      int &_in_arc;
kpeter@601
   371
      int _arc_num;
kpeter@601
   372
kpeter@601
   373
      // Pivot rule data
kpeter@601
   374
      IntVector _candidates;
kpeter@601
   375
      int _list_length, _minor_limit;
kpeter@601
   376
      int _curr_length, _minor_count;
kpeter@601
   377
      int _next_arc;
kpeter@601
   378
kpeter@601
   379
    public:
kpeter@601
   380
kpeter@601
   381
      /// Constructor
kpeter@601
   382
      CandidateListPivotRule(NetworkSimplex &ns) :
kpeter@603
   383
        _source(ns._source), _target(ns._target),
kpeter@601
   384
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@603
   385
        _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
kpeter@601
   386
      {
kpeter@601
   387
        // The main parameters of the pivot rule
kpeter@601
   388
        const double LIST_LENGTH_FACTOR = 1.0;
kpeter@601
   389
        const int MIN_LIST_LENGTH = 10;
kpeter@601
   390
        const double MINOR_LIMIT_FACTOR = 0.1;
kpeter@601
   391
        const int MIN_MINOR_LIMIT = 3;
kpeter@601
   392
kpeter@601
   393
        _list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)),
kpeter@601
   394
                                 MIN_LIST_LENGTH );
kpeter@601
   395
        _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
kpeter@601
   396
                                 MIN_MINOR_LIMIT );
kpeter@601
   397
        _curr_length = _minor_count = 0;
kpeter@601
   398
        _candidates.resize(_list_length);
kpeter@601
   399
      }
kpeter@601
   400
kpeter@601
   401
      /// Find next entering arc
kpeter@601
   402
      bool findEnteringArc() {
kpeter@607
   403
        Cost min, c;
kpeter@601
   404
        int e, min_arc = _next_arc;
kpeter@601
   405
        if (_curr_length > 0 && _minor_count < _minor_limit) {
kpeter@601
   406
          // Minor iteration: select the best eligible arc from the
kpeter@601
   407
          // current candidate list
kpeter@601
   408
          ++_minor_count;
kpeter@601
   409
          min = 0;
kpeter@601
   410
          for (int i = 0; i < _curr_length; ++i) {
kpeter@601
   411
            e = _candidates[i];
kpeter@601
   412
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   413
            if (c < min) {
kpeter@601
   414
              min = c;
kpeter@601
   415
              min_arc = e;
kpeter@601
   416
            }
kpeter@601
   417
            if (c >= 0) {
kpeter@601
   418
              _candidates[i--] = _candidates[--_curr_length];
kpeter@601
   419
            }
kpeter@601
   420
          }
kpeter@601
   421
          if (min < 0) {
kpeter@601
   422
            _in_arc = min_arc;
kpeter@601
   423
            return true;
kpeter@601
   424
          }
kpeter@601
   425
        }
kpeter@601
   426
kpeter@601
   427
        // Major iteration: build a new candidate list
kpeter@601
   428
        min = 0;
kpeter@601
   429
        _curr_length = 0;
kpeter@601
   430
        for (e = _next_arc; e < _arc_num; ++e) {
kpeter@601
   431
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   432
          if (c < 0) {
kpeter@601
   433
            _candidates[_curr_length++] = e;
kpeter@601
   434
            if (c < min) {
kpeter@601
   435
              min = c;
kpeter@601
   436
              min_arc = e;
kpeter@601
   437
            }
kpeter@601
   438
            if (_curr_length == _list_length) break;
kpeter@601
   439
          }
kpeter@601
   440
        }
kpeter@601
   441
        if (_curr_length < _list_length) {
kpeter@601
   442
          for (e = 0; e < _next_arc; ++e) {
kpeter@601
   443
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   444
            if (c < 0) {
kpeter@601
   445
              _candidates[_curr_length++] = e;
kpeter@601
   446
              if (c < min) {
kpeter@601
   447
                min = c;
kpeter@601
   448
                min_arc = e;
kpeter@601
   449
              }
kpeter@601
   450
              if (_curr_length == _list_length) break;
kpeter@601
   451
            }
kpeter@601
   452
          }
kpeter@601
   453
        }
kpeter@601
   454
        if (_curr_length == 0) return false;
kpeter@601
   455
        _minor_count = 1;
kpeter@601
   456
        _in_arc = min_arc;
kpeter@601
   457
        _next_arc = e;
kpeter@601
   458
        return true;
kpeter@601
   459
      }
kpeter@601
   460
kpeter@601
   461
    }; //class CandidateListPivotRule
kpeter@601
   462
kpeter@601
   463
kpeter@605
   464
    // Implementation of the Altering Candidate List pivot rule
kpeter@601
   465
    class AlteringListPivotRule
kpeter@601
   466
    {
kpeter@601
   467
    private:
kpeter@601
   468
kpeter@601
   469
      // References to the NetworkSimplex class
kpeter@601
   470
      const IntVector  &_source;
kpeter@601
   471
      const IntVector  &_target;
kpeter@607
   472
      const CostVector &_cost;
kpeter@601
   473
      const IntVector  &_state;
kpeter@607
   474
      const CostVector &_pi;
kpeter@601
   475
      int &_in_arc;
kpeter@601
   476
      int _arc_num;
kpeter@601
   477
kpeter@601
   478
      // Pivot rule data
kpeter@601
   479
      int _block_size, _head_length, _curr_length;
kpeter@601
   480
      int _next_arc;
kpeter@601
   481
      IntVector _candidates;
kpeter@607
   482
      CostVector _cand_cost;
kpeter@601
   483
kpeter@601
   484
      // Functor class to compare arcs during sort of the candidate list
kpeter@601
   485
      class SortFunc
kpeter@601
   486
      {
kpeter@601
   487
      private:
kpeter@607
   488
        const CostVector &_map;
kpeter@601
   489
      public:
kpeter@607
   490
        SortFunc(const CostVector &map) : _map(map) {}
kpeter@601
   491
        bool operator()(int left, int right) {
kpeter@601
   492
          return _map[left] > _map[right];
kpeter@601
   493
        }
kpeter@601
   494
      };
kpeter@601
   495
kpeter@601
   496
      SortFunc _sort_func;
kpeter@601
   497
kpeter@601
   498
    public:
kpeter@601
   499
kpeter@605
   500
      // Constructor
kpeter@601
   501
      AlteringListPivotRule(NetworkSimplex &ns) :
kpeter@603
   502
        _source(ns._source), _target(ns._target),
kpeter@601
   503
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
kpeter@603
   504
        _in_arc(ns.in_arc), _arc_num(ns._arc_num),
kpeter@601
   505
        _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
kpeter@601
   506
      {
kpeter@601
   507
        // The main parameters of the pivot rule
kpeter@601
   508
        const double BLOCK_SIZE_FACTOR = 1.5;
kpeter@601
   509
        const int MIN_BLOCK_SIZE = 10;
kpeter@601
   510
        const double HEAD_LENGTH_FACTOR = 0.1;
kpeter@601
   511
        const int MIN_HEAD_LENGTH = 3;
kpeter@601
   512
kpeter@601
   513
        _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
kpeter@601
   514
                                MIN_BLOCK_SIZE );
kpeter@601
   515
        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
kpeter@601
   516
                                 MIN_HEAD_LENGTH );
kpeter@601
   517
        _candidates.resize(_head_length + _block_size);
kpeter@601
   518
        _curr_length = 0;
kpeter@601
   519
      }
kpeter@601
   520
kpeter@605
   521
      // Find next entering arc
kpeter@601
   522
      bool findEnteringArc() {
kpeter@601
   523
        // Check the current candidate list
kpeter@601
   524
        int e;
kpeter@601
   525
        for (int i = 0; i < _curr_length; ++i) {
kpeter@601
   526
          e = _candidates[i];
kpeter@601
   527
          _cand_cost[e] = _state[e] *
kpeter@601
   528
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   529
          if (_cand_cost[e] >= 0) {
kpeter@601
   530
            _candidates[i--] = _candidates[--_curr_length];
kpeter@601
   531
          }
kpeter@601
   532
        }
kpeter@601
   533
kpeter@601
   534
        // Extend the list
kpeter@601
   535
        int cnt = _block_size;
kpeter@603
   536
        int last_arc = 0;
kpeter@601
   537
        int limit = _head_length;
kpeter@601
   538
kpeter@601
   539
        for (int e = _next_arc; e < _arc_num; ++e) {
kpeter@601
   540
          _cand_cost[e] = _state[e] *
kpeter@601
   541
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   542
          if (_cand_cost[e] < 0) {
kpeter@601
   543
            _candidates[_curr_length++] = e;
kpeter@603
   544
            last_arc = e;
kpeter@601
   545
          }
kpeter@601
   546
          if (--cnt == 0) {
kpeter@601
   547
            if (_curr_length > limit) break;
kpeter@601
   548
            limit = 0;
kpeter@601
   549
            cnt = _block_size;
kpeter@601
   550
          }
kpeter@601
   551
        }
kpeter@601
   552
        if (_curr_length <= limit) {
kpeter@601
   553
          for (int e = 0; e < _next_arc; ++e) {
kpeter@601
   554
            _cand_cost[e] = _state[e] *
kpeter@601
   555
              (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
kpeter@601
   556
            if (_cand_cost[e] < 0) {
kpeter@601
   557
              _candidates[_curr_length++] = e;
kpeter@603
   558
              last_arc = e;
kpeter@601
   559
            }
kpeter@601
   560
            if (--cnt == 0) {
kpeter@601
   561
              if (_curr_length > limit) break;
kpeter@601
   562
              limit = 0;
kpeter@601
   563
              cnt = _block_size;
kpeter@601
   564
            }
kpeter@601
   565
          }
kpeter@601
   566
        }
kpeter@601
   567
        if (_curr_length == 0) return false;
kpeter@603
   568
        _next_arc = last_arc + 1;
kpeter@601
   569
kpeter@601
   570
        // Make heap of the candidate list (approximating a partial sort)
kpeter@601
   571
        make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
kpeter@601
   572
                   _sort_func );
kpeter@601
   573
kpeter@601
   574
        // Pop the first element of the heap
kpeter@601
   575
        _in_arc = _candidates[0];
kpeter@601
   576
        pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
kpeter@601
   577
                  _sort_func );
kpeter@601
   578
        _curr_length = std::min(_head_length, _curr_length - 1);
kpeter@601
   579
        return true;
kpeter@601
   580
      }
kpeter@601
   581
kpeter@601
   582
    }; //class AlteringListPivotRule
kpeter@601
   583
kpeter@601
   584
  public:
kpeter@601
   585
kpeter@605
   586
    /// \brief Constructor.
kpeter@601
   587
    ///
kpeter@605
   588
    /// Constructor.
kpeter@601
   589
    ///
kpeter@603
   590
    /// \param graph The digraph the algorithm runs on.
kpeter@605
   591
    NetworkSimplex(const GR& graph) :
kpeter@605
   592
      _graph(graph),
kpeter@605
   593
      _plower(NULL), _pupper(NULL), _pcost(NULL),
kpeter@605
   594
      _psupply(NULL), _pstsup(false),
kpeter@603
   595
      _flow_map(NULL), _potential_map(NULL),
kpeter@601
   596
      _local_flow(false), _local_potential(false),
kpeter@603
   597
      _node_id(graph)
kpeter@605
   598
    {
kpeter@607
   599
      LEMON_ASSERT(std::numeric_limits<Flow>::is_integer &&
kpeter@607
   600
                   std::numeric_limits<Flow>::is_signed,
kpeter@607
   601
        "The flow type of NetworkSimplex must be signed integer");
kpeter@607
   602
      LEMON_ASSERT(std::numeric_limits<Cost>::is_integer &&
kpeter@607
   603
                   std::numeric_limits<Cost>::is_signed,
kpeter@607
   604
        "The cost type of NetworkSimplex must be signed integer");
kpeter@605
   605
    }
kpeter@601
   606
kpeter@601
   607
    /// Destructor.
kpeter@601
   608
    ~NetworkSimplex() {
kpeter@603
   609
      if (_local_flow) delete _flow_map;
kpeter@603
   610
      if (_local_potential) delete _potential_map;
kpeter@601
   611
    }
kpeter@601
   612
kpeter@605
   613
    /// \brief Set the lower bounds on the arcs.
kpeter@605
   614
    ///
kpeter@605
   615
    /// This function sets the lower bounds on the arcs.
kpeter@605
   616
    /// If neither this function nor \ref boundMaps() is used before
kpeter@605
   617
    /// calling \ref run(), the lower bounds will be set to zero
kpeter@605
   618
    /// on all arcs.
kpeter@605
   619
    ///
kpeter@605
   620
    /// \param map An arc map storing the lower bounds.
kpeter@607
   621
    /// Its \c Value type must be convertible to the \c Flow type
kpeter@605
   622
    /// of the algorithm.
kpeter@605
   623
    ///
kpeter@605
   624
    /// \return <tt>(*this)</tt>
kpeter@605
   625
    template <typename LOWER>
kpeter@605
   626
    NetworkSimplex& lowerMap(const LOWER& map) {
kpeter@605
   627
      delete _plower;
kpeter@607
   628
      _plower = new FlowArcMap(_graph);
kpeter@605
   629
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@605
   630
        (*_plower)[a] = map[a];
kpeter@605
   631
      }
kpeter@605
   632
      return *this;
kpeter@605
   633
    }
kpeter@605
   634
kpeter@605
   635
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@605
   636
    ///
kpeter@605
   637
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@605
   638
    /// If none of the functions \ref upperMap(), \ref capacityMap()
kpeter@605
   639
    /// and \ref boundMaps() is used before calling \ref run(),
kpeter@605
   640
    /// the upper bounds (capacities) will be set to
kpeter@607
   641
    /// \c std::numeric_limits<Flow>::max() on all arcs.
kpeter@605
   642
    ///
kpeter@605
   643
    /// \param map An arc map storing the upper bounds.
kpeter@607
   644
    /// Its \c Value type must be convertible to the \c Flow type
kpeter@605
   645
    /// of the algorithm.
kpeter@605
   646
    ///
kpeter@605
   647
    /// \return <tt>(*this)</tt>
kpeter@605
   648
    template<typename UPPER>
kpeter@605
   649
    NetworkSimplex& upperMap(const UPPER& map) {
kpeter@605
   650
      delete _pupper;
kpeter@607
   651
      _pupper = new FlowArcMap(_graph);
kpeter@605
   652
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@605
   653
        (*_pupper)[a] = map[a];
kpeter@605
   654
      }
kpeter@605
   655
      return *this;
kpeter@605
   656
    }
kpeter@605
   657
kpeter@605
   658
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@605
   659
    ///
kpeter@605
   660
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@605
   661
    /// It is just an alias for \ref upperMap().
kpeter@605
   662
    ///
kpeter@605
   663
    /// \return <tt>(*this)</tt>
kpeter@605
   664
    template<typename CAP>
kpeter@605
   665
    NetworkSimplex& capacityMap(const CAP& map) {
kpeter@605
   666
      return upperMap(map);
kpeter@605
   667
    }
kpeter@605
   668
kpeter@605
   669
    /// \brief Set the lower and upper bounds on the arcs.
kpeter@605
   670
    ///
kpeter@605
   671
    /// This function sets the lower and upper bounds on the arcs.
kpeter@605
   672
    /// If neither this function nor \ref lowerMap() is used before
kpeter@605
   673
    /// calling \ref run(), the lower bounds will be set to zero
kpeter@605
   674
    /// on all arcs.
kpeter@605
   675
    /// If none of the functions \ref upperMap(), \ref capacityMap()
kpeter@605
   676
    /// and \ref boundMaps() is used before calling \ref run(),
kpeter@605
   677
    /// the upper bounds (capacities) will be set to
kpeter@607
   678
    /// \c std::numeric_limits<Flow>::max() on all arcs.
kpeter@605
   679
    ///
kpeter@605
   680
    /// \param lower An arc map storing the lower bounds.
kpeter@605
   681
    /// \param upper An arc map storing the upper bounds.
kpeter@605
   682
    ///
kpeter@605
   683
    /// The \c Value type of the maps must be convertible to the
kpeter@607
   684
    /// \c Flow type of the algorithm.
kpeter@605
   685
    ///
kpeter@605
   686
    /// \note This function is just a shortcut of calling \ref lowerMap()
kpeter@605
   687
    /// and \ref upperMap() separately.
kpeter@605
   688
    ///
kpeter@605
   689
    /// \return <tt>(*this)</tt>
kpeter@605
   690
    template <typename LOWER, typename UPPER>
kpeter@605
   691
    NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
kpeter@605
   692
      return lowerMap(lower).upperMap(upper);
kpeter@605
   693
    }
kpeter@605
   694
kpeter@605
   695
    /// \brief Set the costs of the arcs.
kpeter@605
   696
    ///
kpeter@605
   697
    /// This function sets the costs of the arcs.
kpeter@605
   698
    /// If it is not used before calling \ref run(), the costs
kpeter@605
   699
    /// will be set to \c 1 on all arcs.
kpeter@605
   700
    ///
kpeter@605
   701
    /// \param map An arc map storing the costs.
kpeter@607
   702
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@605
   703
    /// of the algorithm.
kpeter@605
   704
    ///
kpeter@605
   705
    /// \return <tt>(*this)</tt>
kpeter@605
   706
    template<typename COST>
kpeter@605
   707
    NetworkSimplex& costMap(const COST& map) {
kpeter@605
   708
      delete _pcost;
kpeter@607
   709
      _pcost = new CostArcMap(_graph);
kpeter@605
   710
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@605
   711
        (*_pcost)[a] = map[a];
kpeter@605
   712
      }
kpeter@605
   713
      return *this;
kpeter@605
   714
    }
kpeter@605
   715
kpeter@605
   716
    /// \brief Set the supply values of the nodes.
kpeter@605
   717
    ///
kpeter@605
   718
    /// This function sets the supply values of the nodes.
kpeter@605
   719
    /// If neither this function nor \ref stSupply() is used before
kpeter@605
   720
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@605
   721
    /// (It makes sense only if non-zero lower bounds are given.)
kpeter@605
   722
    ///
kpeter@605
   723
    /// \param map A node map storing the supply values.
kpeter@607
   724
    /// Its \c Value type must be convertible to the \c Flow type
kpeter@605
   725
    /// of the algorithm.
kpeter@605
   726
    ///
kpeter@605
   727
    /// \return <tt>(*this)</tt>
kpeter@605
   728
    template<typename SUP>
kpeter@605
   729
    NetworkSimplex& supplyMap(const SUP& map) {
kpeter@605
   730
      delete _psupply;
kpeter@605
   731
      _pstsup = false;
kpeter@607
   732
      _psupply = new FlowNodeMap(_graph);
kpeter@605
   733
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@605
   734
        (*_psupply)[n] = map[n];
kpeter@605
   735
      }
kpeter@605
   736
      return *this;
kpeter@605
   737
    }
kpeter@605
   738
kpeter@605
   739
    /// \brief Set single source and target nodes and a supply value.
kpeter@605
   740
    ///
kpeter@605
   741
    /// This function sets a single source node and a single target node
kpeter@605
   742
    /// and the required flow value.
kpeter@605
   743
    /// If neither this function nor \ref supplyMap() is used before
kpeter@605
   744
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@605
   745
    /// (It makes sense only if non-zero lower bounds are given.)
kpeter@605
   746
    ///
kpeter@605
   747
    /// \param s The source node.
kpeter@605
   748
    /// \param t The target node.
kpeter@605
   749
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@605
   750
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@605
   751
    ///
kpeter@605
   752
    /// \return <tt>(*this)</tt>
kpeter@607
   753
    NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
kpeter@605
   754
      delete _psupply;
kpeter@605
   755
      _psupply = NULL;
kpeter@605
   756
      _pstsup = true;
kpeter@605
   757
      _psource = s;
kpeter@605
   758
      _ptarget = t;
kpeter@605
   759
      _pstflow = k;
kpeter@605
   760
      return *this;
kpeter@605
   761
    }
kpeter@605
   762
kpeter@601
   763
    /// \brief Set the flow map.
kpeter@601
   764
    ///
kpeter@601
   765
    /// This function sets the flow map.
kpeter@605
   766
    /// If it is not used before calling \ref run(), an instance will
kpeter@605
   767
    /// be allocated automatically. The destructor deallocates this
kpeter@605
   768
    /// automatically allocated map, of course.
kpeter@601
   769
    ///
kpeter@601
   770
    /// \return <tt>(*this)</tt>
kpeter@605
   771
    NetworkSimplex& flowMap(FlowMap& map) {
kpeter@601
   772
      if (_local_flow) {
kpeter@603
   773
        delete _flow_map;
kpeter@601
   774
        _local_flow = false;
kpeter@601
   775
      }
kpeter@603
   776
      _flow_map = &map;
kpeter@601
   777
      return *this;
kpeter@601
   778
    }
kpeter@601
   779
kpeter@601
   780
    /// \brief Set the potential map.
kpeter@601
   781
    ///
kpeter@605
   782
    /// This function sets the potential map, which is used for storing
kpeter@605
   783
    /// the dual solution.
kpeter@605
   784
    /// If it is not used before calling \ref run(), an instance will
kpeter@605
   785
    /// be allocated automatically. The destructor deallocates this
kpeter@605
   786
    /// automatically allocated map, of course.
kpeter@601
   787
    ///
kpeter@601
   788
    /// \return <tt>(*this)</tt>
kpeter@605
   789
    NetworkSimplex& potentialMap(PotentialMap& map) {
kpeter@601
   790
      if (_local_potential) {
kpeter@603
   791
        delete _potential_map;
kpeter@601
   792
        _local_potential = false;
kpeter@601
   793
      }
kpeter@603
   794
      _potential_map = &map;
kpeter@601
   795
      return *this;
kpeter@601
   796
    }
kpeter@601
   797
kpeter@605
   798
    /// \name Execution Control
kpeter@605
   799
    /// The algorithm can be executed using \ref run().
kpeter@605
   800
kpeter@601
   801
    /// @{
kpeter@601
   802
kpeter@601
   803
    /// \brief Run the algorithm.
kpeter@601
   804
    ///
kpeter@601
   805
    /// This function runs the algorithm.
kpeter@605
   806
    /// The paramters can be specified using \ref lowerMap(),
kpeter@606
   807
    /// \ref upperMap(), \ref capacityMap(), \ref boundMaps(),
kpeter@605
   808
    /// \ref costMap(), \ref supplyMap() and \ref stSupply()
kpeter@605
   809
    /// functions. For example,
kpeter@605
   810
    /// \code
kpeter@605
   811
    ///   NetworkSimplex<ListDigraph> ns(graph);
kpeter@605
   812
    ///   ns.boundMaps(lower, upper).costMap(cost)
kpeter@605
   813
    ///     .supplyMap(sup).run();
kpeter@605
   814
    /// \endcode
kpeter@601
   815
    ///
kpeter@606
   816
    /// This function can be called more than once. All the parameters
kpeter@606
   817
    /// that have been given are kept for the next call, unless
kpeter@606
   818
    /// \ref reset() is called, thus only the modified parameters
kpeter@606
   819
    /// have to be set again. See \ref reset() for examples.
kpeter@606
   820
    ///
kpeter@605
   821
    /// \param pivot_rule The pivot rule that will be used during the
kpeter@605
   822
    /// algorithm. For more information see \ref PivotRule.
kpeter@601
   823
    ///
kpeter@601
   824
    /// \return \c true if a feasible flow can be found.
kpeter@605
   825
    bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
kpeter@601
   826
      return init() && start(pivot_rule);
kpeter@601
   827
    }
kpeter@601
   828
kpeter@606
   829
    /// \brief Reset all the parameters that have been given before.
kpeter@606
   830
    ///
kpeter@606
   831
    /// This function resets all the paramaters that have been given
kpeter@606
   832
    /// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(),
kpeter@606
   833
    /// \ref boundMaps(), \ref costMap(), \ref supplyMap() and
kpeter@606
   834
    /// \ref stSupply() functions before.
kpeter@606
   835
    ///
kpeter@606
   836
    /// It is useful for multiple run() calls. If this function is not
kpeter@606
   837
    /// used, all the parameters given before are kept for the next
kpeter@606
   838
    /// \ref run() call.
kpeter@606
   839
    ///
kpeter@606
   840
    /// For example,
kpeter@606
   841
    /// \code
kpeter@606
   842
    ///   NetworkSimplex<ListDigraph> ns(graph);
kpeter@606
   843
    ///
kpeter@606
   844
    ///   // First run
kpeter@606
   845
    ///   ns.lowerMap(lower).capacityMap(cap).costMap(cost)
kpeter@606
   846
    ///     .supplyMap(sup).run();
kpeter@606
   847
    ///
kpeter@606
   848
    ///   // Run again with modified cost map (reset() is not called,
kpeter@606
   849
    ///   // so only the cost map have to be set again)
kpeter@606
   850
    ///   cost[e] += 100;
kpeter@606
   851
    ///   ns.costMap(cost).run();
kpeter@606
   852
    ///
kpeter@606
   853
    ///   // Run again from scratch using reset()
kpeter@606
   854
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@606
   855
    ///   ns.reset();
kpeter@606
   856
    ///   ns.capacityMap(cap).costMap(cost)
kpeter@606
   857
    ///     .supplyMap(sup).run();
kpeter@606
   858
    /// \endcode
kpeter@606
   859
    ///
kpeter@606
   860
    /// \return <tt>(*this)</tt>
kpeter@606
   861
    NetworkSimplex& reset() {
kpeter@606
   862
      delete _plower;
kpeter@606
   863
      delete _pupper;
kpeter@606
   864
      delete _pcost;
kpeter@606
   865
      delete _psupply;
kpeter@606
   866
      _plower = NULL;
kpeter@606
   867
      _pupper = NULL;
kpeter@606
   868
      _pcost = NULL;
kpeter@606
   869
      _psupply = NULL;
kpeter@606
   870
      _pstsup = false;
kpeter@606
   871
      return *this;
kpeter@606
   872
    }
kpeter@606
   873
kpeter@601
   874
    /// @}
kpeter@601
   875
kpeter@601
   876
    /// \name Query Functions
kpeter@601
   877
    /// The results of the algorithm can be obtained using these
kpeter@601
   878
    /// functions.\n
kpeter@605
   879
    /// The \ref run() function must be called before using them.
kpeter@605
   880
kpeter@601
   881
    /// @{
kpeter@601
   882
kpeter@605
   883
    /// \brief Return the total cost of the found flow.
kpeter@605
   884
    ///
kpeter@605
   885
    /// This function returns the total cost of the found flow.
kpeter@607
   886
    /// The complexity of the function is O(e).
kpeter@605
   887
    ///
kpeter@605
   888
    /// \note The return type of the function can be specified as a
kpeter@605
   889
    /// template parameter. For example,
kpeter@605
   890
    /// \code
kpeter@605
   891
    ///   ns.totalCost<double>();
kpeter@605
   892
    /// \endcode
kpeter@607
   893
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@605
   894
    /// type of the algorithm, which is the default return type of the
kpeter@605
   895
    /// function.
kpeter@605
   896
    ///
kpeter@605
   897
    /// \pre \ref run() must be called before using this function.
kpeter@605
   898
    template <typename Num>
kpeter@605
   899
    Num totalCost() const {
kpeter@605
   900
      Num c = 0;
kpeter@605
   901
      if (_pcost) {
kpeter@605
   902
        for (ArcIt e(_graph); e != INVALID; ++e)
kpeter@605
   903
          c += (*_flow_map)[e] * (*_pcost)[e];
kpeter@605
   904
      } else {
kpeter@605
   905
        for (ArcIt e(_graph); e != INVALID; ++e)
kpeter@605
   906
          c += (*_flow_map)[e];
kpeter@605
   907
      }
kpeter@605
   908
      return c;
kpeter@605
   909
    }
kpeter@605
   910
kpeter@605
   911
#ifndef DOXYGEN
kpeter@607
   912
    Cost totalCost() const {
kpeter@607
   913
      return totalCost<Cost>();
kpeter@605
   914
    }
kpeter@605
   915
#endif
kpeter@605
   916
kpeter@605
   917
    /// \brief Return the flow on the given arc.
kpeter@605
   918
    ///
kpeter@605
   919
    /// This function returns the flow on the given arc.
kpeter@605
   920
    ///
kpeter@605
   921
    /// \pre \ref run() must be called before using this function.
kpeter@607
   922
    Flow flow(const Arc& a) const {
kpeter@605
   923
      return (*_flow_map)[a];
kpeter@605
   924
    }
kpeter@605
   925
kpeter@601
   926
    /// \brief Return a const reference to the flow map.
kpeter@601
   927
    ///
kpeter@601
   928
    /// This function returns a const reference to an arc map storing
kpeter@601
   929
    /// the found flow.
kpeter@601
   930
    ///
kpeter@601
   931
    /// \pre \ref run() must be called before using this function.
kpeter@601
   932
    const FlowMap& flowMap() const {
kpeter@603
   933
      return *_flow_map;
kpeter@601
   934
    }
kpeter@601
   935
kpeter@605
   936
    /// \brief Return the potential (dual value) of the given node.
kpeter@605
   937
    ///
kpeter@605
   938
    /// This function returns the potential (dual value) of the
kpeter@605
   939
    /// given node.
kpeter@605
   940
    ///
kpeter@605
   941
    /// \pre \ref run() must be called before using this function.
kpeter@607
   942
    Cost potential(const Node& n) const {
kpeter@605
   943
      return (*_potential_map)[n];
kpeter@605
   944
    }
kpeter@605
   945
kpeter@601
   946
    /// \brief Return a const reference to the potential map
kpeter@601
   947
    /// (the dual solution).
kpeter@601
   948
    ///
kpeter@601
   949
    /// This function returns a const reference to a node map storing
kpeter@605
   950
    /// the found potentials, which form the dual solution of the
kpeter@605
   951
    /// \ref min_cost_flow "minimum cost flow" problem.
kpeter@601
   952
    ///
kpeter@601
   953
    /// \pre \ref run() must be called before using this function.
kpeter@601
   954
    const PotentialMap& potentialMap() const {
kpeter@603
   955
      return *_potential_map;
kpeter@601
   956
    }
kpeter@601
   957
kpeter@601
   958
    /// @}
kpeter@601
   959
kpeter@601
   960
  private:
kpeter@601
   961
kpeter@601
   962
    // Initialize internal data structures
kpeter@601
   963
    bool init() {
kpeter@601
   964
      // Initialize result maps
kpeter@603
   965
      if (!_flow_map) {
kpeter@603
   966
        _flow_map = new FlowMap(_graph);
kpeter@601
   967
        _local_flow = true;
kpeter@601
   968
      }
kpeter@603
   969
      if (!_potential_map) {
kpeter@603
   970
        _potential_map = new PotentialMap(_graph);
kpeter@601
   971
        _local_potential = true;
kpeter@601
   972
      }
kpeter@601
   973
kpeter@601
   974
      // Initialize vectors
kpeter@603
   975
      _node_num = countNodes(_graph);
kpeter@603
   976
      _arc_num = countArcs(_graph);
kpeter@601
   977
      int all_node_num = _node_num + 1;
kpeter@603
   978
      int all_arc_num = _arc_num + _node_num;
kpeter@605
   979
      if (_node_num == 0) return false;
kpeter@601
   980
kpeter@603
   981
      _arc_ref.resize(_arc_num);
kpeter@603
   982
      _source.resize(all_arc_num);
kpeter@603
   983
      _target.resize(all_arc_num);
kpeter@601
   984
kpeter@603
   985
      _cap.resize(all_arc_num);
kpeter@603
   986
      _cost.resize(all_arc_num);
kpeter@601
   987
      _supply.resize(all_node_num);
kpeter@606
   988
      _flow.resize(all_arc_num);
kpeter@606
   989
      _pi.resize(all_node_num);
kpeter@601
   990
kpeter@601
   991
      _parent.resize(all_node_num);
kpeter@601
   992
      _pred.resize(all_node_num);
kpeter@603
   993
      _forward.resize(all_node_num);
kpeter@601
   994
      _thread.resize(all_node_num);
kpeter@604
   995
      _rev_thread.resize(all_node_num);
kpeter@604
   996
      _succ_num.resize(all_node_num);
kpeter@604
   997
      _last_succ.resize(all_node_num);
kpeter@606
   998
      _state.resize(all_arc_num);
kpeter@601
   999
kpeter@601
  1000
      // Initialize node related data
kpeter@601
  1001
      bool valid_supply = true;
kpeter@605
  1002
      if (!_pstsup && !_psupply) {
kpeter@605
  1003
        _pstsup = true;
kpeter@605
  1004
        _psource = _ptarget = NodeIt(_graph);
kpeter@605
  1005
        _pstflow = 0;
kpeter@605
  1006
      }
kpeter@605
  1007
      if (_psupply) {
kpeter@607
  1008
        Flow sum = 0;
kpeter@601
  1009
        int i = 0;
kpeter@603
  1010
        for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@601
  1011
          _node_id[n] = i;
kpeter@605
  1012
          _supply[i] = (*_psupply)[n];
kpeter@601
  1013
          sum += _supply[i];
kpeter@601
  1014
        }
kpeter@601
  1015
        valid_supply = (sum == 0);
kpeter@601
  1016
      } else {
kpeter@601
  1017
        int i = 0;
kpeter@603
  1018
        for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@601
  1019
          _node_id[n] = i;
kpeter@601
  1020
          _supply[i] = 0;
kpeter@601
  1021
        }
kpeter@605
  1022
        _supply[_node_id[_psource]] =  _pstflow;
kpeter@605
  1023
        _supply[_node_id[_ptarget]]   = -_pstflow;
kpeter@601
  1024
      }
kpeter@601
  1025
      if (!valid_supply) return false;
kpeter@601
  1026
kpeter@601
  1027
      // Set data for the artificial root node
kpeter@601
  1028
      _root = _node_num;
kpeter@601
  1029
      _parent[_root] = -1;
kpeter@601
  1030
      _pred[_root] = -1;
kpeter@601
  1031
      _thread[_root] = 0;
kpeter@604
  1032
      _rev_thread[0] = _root;
kpeter@604
  1033
      _succ_num[_root] = all_node_num;
kpeter@604
  1034
      _last_succ[_root] = _root - 1;
kpeter@601
  1035
      _supply[_root] = 0;
kpeter@601
  1036
      _pi[_root] = 0;
kpeter@601
  1037
kpeter@601
  1038
      // Store the arcs in a mixed order
kpeter@601
  1039
      int k = std::max(int(sqrt(_arc_num)), 10);
kpeter@601
  1040
      int i = 0;
kpeter@603
  1041
      for (ArcIt e(_graph); e != INVALID; ++e) {
kpeter@603
  1042
        _arc_ref[i] = e;
kpeter@601
  1043
        if ((i += k) >= _arc_num) i = (i % k) + 1;
kpeter@601
  1044
      }
kpeter@601
  1045
kpeter@601
  1046
      // Initialize arc maps
kpeter@607
  1047
      Flow max_cap = std::numeric_limits<Flow>::max();
kpeter@607
  1048
      Cost max_cost = std::numeric_limits<Cost>::max() / 4;
kpeter@605
  1049
      if (_pupper && _pcost) {
kpeter@605
  1050
        for (int i = 0; i != _arc_num; ++i) {
kpeter@605
  1051
          Arc e = _arc_ref[i];
kpeter@605
  1052
          _source[i] = _node_id[_graph.source(e)];
kpeter@605
  1053
          _target[i] = _node_id[_graph.target(e)];
kpeter@605
  1054
          _cap[i] = (*_pupper)[e];
kpeter@605
  1055
          _cost[i] = (*_pcost)[e];
kpeter@606
  1056
          _flow[i] = 0;
kpeter@606
  1057
          _state[i] = STATE_LOWER;
kpeter@605
  1058
        }
kpeter@605
  1059
      } else {
kpeter@605
  1060
        for (int i = 0; i != _arc_num; ++i) {
kpeter@605
  1061
          Arc e = _arc_ref[i];
kpeter@605
  1062
          _source[i] = _node_id[_graph.source(e)];
kpeter@605
  1063
          _target[i] = _node_id[_graph.target(e)];
kpeter@606
  1064
          _flow[i] = 0;
kpeter@606
  1065
          _state[i] = STATE_LOWER;
kpeter@605
  1066
        }
kpeter@605
  1067
        if (_pupper) {
kpeter@605
  1068
          for (int i = 0; i != _arc_num; ++i)
kpeter@605
  1069
            _cap[i] = (*_pupper)[_arc_ref[i]];
kpeter@605
  1070
        } else {
kpeter@605
  1071
          for (int i = 0; i != _arc_num; ++i)
kpeter@607
  1072
            _cap[i] = max_cap;
kpeter@605
  1073
        }
kpeter@605
  1074
        if (_pcost) {
kpeter@605
  1075
          for (int i = 0; i != _arc_num; ++i)
kpeter@605
  1076
            _cost[i] = (*_pcost)[_arc_ref[i]];
kpeter@605
  1077
        } else {
kpeter@605
  1078
          for (int i = 0; i != _arc_num; ++i)
kpeter@605
  1079
            _cost[i] = 1;
kpeter@605
  1080
        }
kpeter@601
  1081
      }
kpeter@601
  1082
kpeter@601
  1083
      // Remove non-zero lower bounds
kpeter@605
  1084
      if (_plower) {
kpeter@601
  1085
        for (int i = 0; i != _arc_num; ++i) {
kpeter@607
  1086
          Flow c = (*_plower)[_arc_ref[i]];
kpeter@601
  1087
          if (c != 0) {
kpeter@601
  1088
            _cap[i] -= c;
kpeter@601
  1089
            _supply[_source[i]] -= c;
kpeter@601
  1090
            _supply[_target[i]] += c;
kpeter@601
  1091
          }
kpeter@601
  1092
        }
kpeter@601
  1093
      }
kpeter@601
  1094
kpeter@601
  1095
      // Add artificial arcs and initialize the spanning tree data structure
kpeter@601
  1096
      for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
kpeter@601
  1097
        _thread[u] = u + 1;
kpeter@604
  1098
        _rev_thread[u + 1] = u;
kpeter@604
  1099
        _succ_num[u] = 1;
kpeter@604
  1100
        _last_succ[u] = u;
kpeter@601
  1101
        _parent[u] = _root;
kpeter@601
  1102
        _pred[u] = e;
kpeter@606
  1103
        _cost[e] = max_cost;
kpeter@606
  1104
        _cap[e] = max_cap;
kpeter@606
  1105
        _state[e] = STATE_TREE;
kpeter@601
  1106
        if (_supply[u] >= 0) {
kpeter@601
  1107
          _flow[e] = _supply[u];
kpeter@601
  1108
          _forward[u] = true;
kpeter@601
  1109
          _pi[u] = -max_cost;
kpeter@601
  1110
        } else {
kpeter@601
  1111
          _flow[e] = -_supply[u];
kpeter@601
  1112
          _forward[u] = false;
kpeter@601
  1113
          _pi[u] = max_cost;
kpeter@601
  1114
        }
kpeter@601
  1115
      }
kpeter@601
  1116
kpeter@601
  1117
      return true;
kpeter@601
  1118
    }
kpeter@601
  1119
kpeter@601
  1120
    // Find the join node
kpeter@601
  1121
    void findJoinNode() {
kpeter@603
  1122
      int u = _source[in_arc];
kpeter@603
  1123
      int v = _target[in_arc];
kpeter@601
  1124
      while (u != v) {
kpeter@604
  1125
        if (_succ_num[u] < _succ_num[v]) {
kpeter@604
  1126
          u = _parent[u];
kpeter@604
  1127
        } else {
kpeter@604
  1128
          v = _parent[v];
kpeter@604
  1129
        }
kpeter@601
  1130
      }
kpeter@601
  1131
      join = u;
kpeter@601
  1132
    }
kpeter@601
  1133
kpeter@601
  1134
    // Find the leaving arc of the cycle and returns true if the
kpeter@601
  1135
    // leaving arc is not the same as the entering arc
kpeter@601
  1136
    bool findLeavingArc() {
kpeter@601
  1137
      // Initialize first and second nodes according to the direction
kpeter@601
  1138
      // of the cycle
kpeter@603
  1139
      if (_state[in_arc] == STATE_LOWER) {
kpeter@603
  1140
        first  = _source[in_arc];
kpeter@603
  1141
        second = _target[in_arc];
kpeter@601
  1142
      } else {
kpeter@603
  1143
        first  = _target[in_arc];
kpeter@603
  1144
        second = _source[in_arc];
kpeter@601
  1145
      }
kpeter@603
  1146
      delta = _cap[in_arc];
kpeter@601
  1147
      int result = 0;
kpeter@607
  1148
      Flow d;
kpeter@601
  1149
      int e;
kpeter@601
  1150
kpeter@601
  1151
      // Search the cycle along the path form the first node to the root
kpeter@601
  1152
      for (int u = first; u != join; u = _parent[u]) {
kpeter@601
  1153
        e = _pred[u];
kpeter@601
  1154
        d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
kpeter@601
  1155
        if (d < delta) {
kpeter@601
  1156
          delta = d;
kpeter@601
  1157
          u_out = u;
kpeter@601
  1158
          result = 1;
kpeter@601
  1159
        }
kpeter@601
  1160
      }
kpeter@601
  1161
      // Search the cycle along the path form the second node to the root
kpeter@601
  1162
      for (int u = second; u != join; u = _parent[u]) {
kpeter@601
  1163
        e = _pred[u];
kpeter@601
  1164
        d = _forward[u] ? _cap[e] - _flow[e] : _flow[e];
kpeter@601
  1165
        if (d <= delta) {
kpeter@601
  1166
          delta = d;
kpeter@601
  1167
          u_out = u;
kpeter@601
  1168
          result = 2;
kpeter@601
  1169
        }
kpeter@601
  1170
      }
kpeter@601
  1171
kpeter@601
  1172
      if (result == 1) {
kpeter@601
  1173
        u_in = first;
kpeter@601
  1174
        v_in = second;
kpeter@601
  1175
      } else {
kpeter@601
  1176
        u_in = second;
kpeter@601
  1177
        v_in = first;
kpeter@601
  1178
      }
kpeter@601
  1179
      return result != 0;
kpeter@601
  1180
    }
kpeter@601
  1181
kpeter@601
  1182
    // Change _flow and _state vectors
kpeter@601
  1183
    void changeFlow(bool change) {
kpeter@601
  1184
      // Augment along the cycle
kpeter@601
  1185
      if (delta > 0) {
kpeter@607
  1186
        Flow val = _state[in_arc] * delta;
kpeter@603
  1187
        _flow[in_arc] += val;
kpeter@603
  1188
        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
kpeter@601
  1189
          _flow[_pred[u]] += _forward[u] ? -val : val;
kpeter@601
  1190
        }
kpeter@603
  1191
        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
kpeter@601
  1192
          _flow[_pred[u]] += _forward[u] ? val : -val;
kpeter@601
  1193
        }
kpeter@601
  1194
      }
kpeter@601
  1195
      // Update the state of the entering and leaving arcs
kpeter@601
  1196
      if (change) {
kpeter@603
  1197
        _state[in_arc] = STATE_TREE;
kpeter@601
  1198
        _state[_pred[u_out]] =
kpeter@601
  1199
          (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
kpeter@601
  1200
      } else {
kpeter@603
  1201
        _state[in_arc] = -_state[in_arc];
kpeter@601
  1202
      }
kpeter@601
  1203
    }
kpeter@601
  1204
kpeter@604
  1205
    // Update the tree structure
kpeter@604
  1206
    void updateTreeStructure() {
kpeter@604
  1207
      int u, w;
kpeter@604
  1208
      int old_rev_thread = _rev_thread[u_out];
kpeter@604
  1209
      int old_succ_num = _succ_num[u_out];
kpeter@604
  1210
      int old_last_succ = _last_succ[u_out];
kpeter@601
  1211
      v_out = _parent[u_out];
kpeter@601
  1212
kpeter@604
  1213
      u = _last_succ[u_in];  // the last successor of u_in
kpeter@604
  1214
      right = _thread[u];    // the node after it
kpeter@604
  1215
kpeter@604
  1216
      // Handle the case when old_rev_thread equals to v_in
kpeter@604
  1217
      // (it also means that join and v_out coincide)
kpeter@604
  1218
      if (old_rev_thread == v_in) {
kpeter@604
  1219
        last = _thread[_last_succ[u_out]];
kpeter@604
  1220
      } else {
kpeter@604
  1221
        last = _thread[v_in];
kpeter@601
  1222
      }
kpeter@601
  1223
kpeter@604
  1224
      // Update _thread and _parent along the stem nodes (i.e. the nodes
kpeter@604
  1225
      // between u_in and u_out, whose parent have to be changed)
kpeter@601
  1226
      _thread[v_in] = stem = u_in;
kpeter@604
  1227
      _dirty_revs.clear();
kpeter@604
  1228
      _dirty_revs.push_back(v_in);
kpeter@601
  1229
      par_stem = v_in;
kpeter@601
  1230
      while (stem != u_out) {
kpeter@604
  1231
        // Insert the next stem node into the thread list
kpeter@604
  1232
        new_stem = _parent[stem];
kpeter@604
  1233
        _thread[u] = new_stem;
kpeter@604
  1234
        _dirty_revs.push_back(u);
kpeter@601
  1235
kpeter@604
  1236
        // Remove the subtree of stem from the thread list
kpeter@604
  1237
        w = _rev_thread[stem];
kpeter@604
  1238
        _thread[w] = right;
kpeter@604
  1239
        _rev_thread[right] = w;
kpeter@601
  1240
kpeter@604
  1241
        // Change the parent node and shift stem nodes
kpeter@601
  1242
        _parent[stem] = par_stem;
kpeter@601
  1243
        par_stem = stem;
kpeter@601
  1244
        stem = new_stem;
kpeter@601
  1245
kpeter@604
  1246
        // Update u and right
kpeter@604
  1247
        u = _last_succ[stem] == _last_succ[par_stem] ?
kpeter@604
  1248
          _rev_thread[par_stem] : _last_succ[stem];
kpeter@601
  1249
        right = _thread[u];
kpeter@601
  1250
      }
kpeter@601
  1251
      _parent[u_out] = par_stem;
kpeter@601
  1252
      _thread[u] = last;
kpeter@604
  1253
      _rev_thread[last] = u;
kpeter@604
  1254
      _last_succ[u_out] = u;
kpeter@601
  1255
kpeter@604
  1256
      // Remove the subtree of u_out from the thread list except for
kpeter@604
  1257
      // the case when old_rev_thread equals to v_in
kpeter@604
  1258
      // (it also means that join and v_out coincide)
kpeter@604
  1259
      if (old_rev_thread != v_in) {
kpeter@604
  1260
        _thread[old_rev_thread] = right;
kpeter@604
  1261
        _rev_thread[right] = old_rev_thread;
kpeter@604
  1262
      }
kpeter@604
  1263
kpeter@604
  1264
      // Update _rev_thread using the new _thread values
kpeter@604
  1265
      for (int i = 0; i < int(_dirty_revs.size()); ++i) {
kpeter@604
  1266
        u = _dirty_revs[i];
kpeter@604
  1267
        _rev_thread[_thread[u]] = u;
kpeter@604
  1268
      }
kpeter@604
  1269
kpeter@604
  1270
      // Update _pred, _forward, _last_succ and _succ_num for the
kpeter@604
  1271
      // stem nodes from u_out to u_in
kpeter@604
  1272
      int tmp_sc = 0, tmp_ls = _last_succ[u_out];
kpeter@604
  1273
      u = u_out;
kpeter@604
  1274
      while (u != u_in) {
kpeter@604
  1275
        w = _parent[u];
kpeter@604
  1276
        _pred[u] = _pred[w];
kpeter@604
  1277
        _forward[u] = !_forward[w];
kpeter@604
  1278
        tmp_sc += _succ_num[u] - _succ_num[w];
kpeter@604
  1279
        _succ_num[u] = tmp_sc;
kpeter@604
  1280
        _last_succ[w] = tmp_ls;
kpeter@604
  1281
        u = w;
kpeter@604
  1282
      }
kpeter@604
  1283
      _pred[u_in] = in_arc;
kpeter@604
  1284
      _forward[u_in] = (u_in == _source[in_arc]);
kpeter@604
  1285
      _succ_num[u_in] = old_succ_num;
kpeter@604
  1286
kpeter@604
  1287
      // Set limits for updating _last_succ form v_in and v_out
kpeter@604
  1288
      // towards the root
kpeter@604
  1289
      int up_limit_in = -1;
kpeter@604
  1290
      int up_limit_out = -1;
kpeter@604
  1291
      if (_last_succ[join] == v_in) {
kpeter@604
  1292
        up_limit_out = join;
kpeter@601
  1293
      } else {
kpeter@604
  1294
        up_limit_in = join;
kpeter@604
  1295
      }
kpeter@604
  1296
kpeter@604
  1297
      // Update _last_succ from v_in towards the root
kpeter@604
  1298
      for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
kpeter@604
  1299
           u = _parent[u]) {
kpeter@604
  1300
        _last_succ[u] = _last_succ[u_out];
kpeter@604
  1301
      }
kpeter@604
  1302
      // Update _last_succ from v_out towards the root
kpeter@604
  1303
      if (join != old_rev_thread && v_in != old_rev_thread) {
kpeter@604
  1304
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
kpeter@604
  1305
             u = _parent[u]) {
kpeter@604
  1306
          _last_succ[u] = old_rev_thread;
kpeter@604
  1307
        }
kpeter@604
  1308
      } else {
kpeter@604
  1309
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
kpeter@604
  1310
             u = _parent[u]) {
kpeter@604
  1311
          _last_succ[u] = _last_succ[u_out];
kpeter@604
  1312
        }
kpeter@604
  1313
      }
kpeter@604
  1314
kpeter@604
  1315
      // Update _succ_num from v_in to join
kpeter@604
  1316
      for (u = v_in; u != join; u = _parent[u]) {
kpeter@604
  1317
        _succ_num[u] += old_succ_num;
kpeter@604
  1318
      }
kpeter@604
  1319
      // Update _succ_num from v_out to join
kpeter@604
  1320
      for (u = v_out; u != join; u = _parent[u]) {
kpeter@604
  1321
        _succ_num[u] -= old_succ_num;
kpeter@601
  1322
      }
kpeter@601
  1323
    }
kpeter@601
  1324
kpeter@604
  1325
    // Update potentials
kpeter@604
  1326
    void updatePotential() {
kpeter@607
  1327
      Cost sigma = _forward[u_in] ?
kpeter@601
  1328
        _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
kpeter@601
  1329
        _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
kpeter@604
  1330
      if (_succ_num[u_in] > _node_num / 2) {
kpeter@604
  1331
        // Update in the upper subtree (which contains the root)
kpeter@604
  1332
        int before = _rev_thread[u_in];
kpeter@604
  1333
        int after = _thread[_last_succ[u_in]];
kpeter@604
  1334
        _thread[before] = after;
kpeter@604
  1335
        _pi[_root] -= sigma;
kpeter@604
  1336
        for (int u = _thread[_root]; u != _root; u = _thread[u]) {
kpeter@604
  1337
          _pi[u] -= sigma;
kpeter@604
  1338
        }
kpeter@604
  1339
        _thread[before] = u_in;
kpeter@604
  1340
      } else {
kpeter@604
  1341
        // Update in the lower subtree (which has been moved)
kpeter@604
  1342
        int end = _thread[_last_succ[u_in]];
kpeter@604
  1343
        for (int u = u_in; u != end; u = _thread[u]) {
kpeter@604
  1344
          _pi[u] += sigma;
kpeter@604
  1345
        }
kpeter@601
  1346
      }
kpeter@601
  1347
    }
kpeter@601
  1348
kpeter@601
  1349
    // Execute the algorithm
kpeter@605
  1350
    bool start(PivotRule pivot_rule) {
kpeter@601
  1351
      // Select the pivot rule implementation
kpeter@601
  1352
      switch (pivot_rule) {
kpeter@605
  1353
        case FIRST_ELIGIBLE:
kpeter@601
  1354
          return start<FirstEligiblePivotRule>();
kpeter@605
  1355
        case BEST_ELIGIBLE:
kpeter@601
  1356
          return start<BestEligiblePivotRule>();
kpeter@605
  1357
        case BLOCK_SEARCH:
kpeter@601
  1358
          return start<BlockSearchPivotRule>();
kpeter@605
  1359
        case CANDIDATE_LIST:
kpeter@601
  1360
          return start<CandidateListPivotRule>();
kpeter@605
  1361
        case ALTERING_LIST:
kpeter@601
  1362
          return start<AlteringListPivotRule>();
kpeter@601
  1363
      }
kpeter@601
  1364
      return false;
kpeter@601
  1365
    }
kpeter@601
  1366
kpeter@605
  1367
    template <typename PivotRuleImpl>
kpeter@601
  1368
    bool start() {
kpeter@605
  1369
      PivotRuleImpl pivot(*this);
kpeter@601
  1370
kpeter@605
  1371
      // Execute the Network Simplex algorithm
kpeter@601
  1372
      while (pivot.findEnteringArc()) {
kpeter@601
  1373
        findJoinNode();
kpeter@601
  1374
        bool change = findLeavingArc();
kpeter@601
  1375
        changeFlow(change);
kpeter@601
  1376
        if (change) {
kpeter@604
  1377
          updateTreeStructure();
kpeter@604
  1378
          updatePotential();
kpeter@601
  1379
        }
kpeter@601
  1380
      }
kpeter@601
  1381
kpeter@601
  1382
      // Check if the flow amount equals zero on all the artificial arcs
kpeter@601
  1383
      for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
kpeter@601
  1384
        if (_flow[e] > 0) return false;
kpeter@601
  1385
      }
kpeter@601
  1386
kpeter@603
  1387
      // Copy flow values to _flow_map
kpeter@605
  1388
      if (_plower) {
kpeter@601
  1389
        for (int i = 0; i != _arc_num; ++i) {
kpeter@603
  1390
          Arc e = _arc_ref[i];
kpeter@605
  1391
          _flow_map->set(e, (*_plower)[e] + _flow[i]);
kpeter@601
  1392
        }
kpeter@601
  1393
      } else {
kpeter@601
  1394
        for (int i = 0; i != _arc_num; ++i) {
kpeter@603
  1395
          _flow_map->set(_arc_ref[i], _flow[i]);
kpeter@601
  1396
        }
kpeter@601
  1397
      }
kpeter@603
  1398
      // Copy potential values to _potential_map
kpeter@603
  1399
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@603
  1400
        _potential_map->set(n, _pi[_node_id[n]]);
kpeter@601
  1401
      }
kpeter@601
  1402
kpeter@601
  1403
      return true;
kpeter@601
  1404
    }
kpeter@601
  1405
kpeter@601
  1406
  }; //class NetworkSimplex
kpeter@601
  1407
kpeter@601
  1408
  ///@}
kpeter@601
  1409
kpeter@601
  1410
} //namespace lemon
kpeter@601
  1411
kpeter@601
  1412
#endif //LEMON_NETWORK_SIMPLEX_H