| 
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-  | 
         | 
     2  *  | 
         | 
     3  * This file is a part of LEMON, a generic C++ optimization library.  | 
         | 
     4  *  | 
         | 
     5  * Copyright (C) 2003-2009  | 
         | 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport  | 
         | 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).  | 
         | 
     8  *  | 
         | 
     9  * Permission to use, modify and distribute this software is granted  | 
         | 
    10  * provided that this copyright notice appears in all copies. For  | 
         | 
    11  * precise terms see the accompanying LICENSE file.  | 
         | 
    12  *  | 
         | 
    13  * This software is provided "AS IS" with no warranty of any kind,  | 
         | 
    14  * express or implied, and with no claim as to its suitability for any  | 
         | 
    15  * purpose.  | 
         | 
    16  *  | 
         | 
    17  */  | 
         | 
    18   | 
         | 
    19 #include <lemon/connectivity.h>  | 
         | 
    20 #include <lemon/list_graph.h>  | 
         | 
    21 #include <lemon/adaptors.h>  | 
         | 
    22   | 
         | 
    23 #include "test_tools.h"  | 
         | 
    24   | 
         | 
    25 using namespace lemon;  | 
         | 
    26   | 
         | 
    27   | 
         | 
    28 int main()  | 
         | 
    29 { | 
         | 
    30   typedef ListDigraph Digraph;  | 
         | 
    31   typedef Undirector<Digraph> Graph;  | 
         | 
    32     | 
         | 
    33   { | 
         | 
    34     Digraph d;  | 
         | 
    35     Digraph::NodeMap<int> order(d);  | 
         | 
    36     Graph g(d);  | 
         | 
    37       | 
         | 
    38     check(stronglyConnected(d), "The empty digraph is strongly connected");  | 
         | 
    39     check(countStronglyConnectedComponents(d) == 0,  | 
         | 
    40           "The empty digraph has 0 strongly connected component");  | 
         | 
    41     check(connected(g), "The empty graph is connected");  | 
         | 
    42     check(countConnectedComponents(g) == 0,  | 
         | 
    43           "The empty graph has 0 connected component");  | 
         | 
    44   | 
         | 
    45     check(biNodeConnected(g), "The empty graph is bi-node-connected");  | 
         | 
    46     check(countBiNodeConnectedComponents(g) == 0,  | 
         | 
    47           "The empty graph has 0 bi-node-connected component");  | 
         | 
    48     check(biEdgeConnected(g), "The empty graph is bi-edge-connected");  | 
         | 
    49     check(countBiEdgeConnectedComponents(g) == 0,  | 
         | 
    50           "The empty graph has 0 bi-edge-connected component");  | 
         | 
    51             | 
         | 
    52     check(dag(d), "The empty digraph is DAG.");  | 
         | 
    53     check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");  | 
         | 
    54     check(loopFree(d), "The empty digraph is loop-free.");  | 
         | 
    55     check(parallelFree(d), "The empty digraph is parallel-free.");  | 
         | 
    56     check(simpleGraph(d), "The empty digraph is simple.");  | 
         | 
    57   | 
         | 
    58     check(acyclic(g), "The empty graph is acyclic.");  | 
         | 
    59     check(tree(g), "The empty graph is tree.");  | 
         | 
    60     check(bipartite(g), "The empty graph is bipartite.");  | 
         | 
    61     check(loopFree(g), "The empty graph is loop-free.");  | 
         | 
    62     check(parallelFree(g), "The empty graph is parallel-free.");  | 
         | 
    63     check(simpleGraph(g), "The empty graph is simple.");  | 
         | 
    64   }  | 
         | 
    65   | 
         | 
    66   { | 
         | 
    67     Digraph d;  | 
         | 
    68     Digraph::NodeMap<int> order(d);  | 
         | 
    69     Graph g(d);  | 
         | 
    70     Digraph::Node n = d.addNode();  | 
         | 
    71   | 
         | 
    72     check(stronglyConnected(d), "This digraph is strongly connected");  | 
         | 
    73     check(countStronglyConnectedComponents(d) == 1,  | 
         | 
    74           "This digraph has 1 strongly connected component");  | 
         | 
    75     check(connected(g), "This graph is connected");  | 
         | 
    76     check(countConnectedComponents(g) == 1,  | 
         | 
    77           "This graph has 1 connected component");  | 
         | 
    78   | 
         | 
    79     check(biNodeConnected(g), "This graph is bi-node-connected");  | 
         | 
    80     check(countBiNodeConnectedComponents(g) == 0,  | 
         | 
    81           "This graph has 0 bi-node-connected component");  | 
         | 
    82     check(biEdgeConnected(g), "This graph is bi-edge-connected");  | 
         | 
    83     check(countBiEdgeConnectedComponents(g) == 1,  | 
         | 
    84           "This graph has 1 bi-edge-connected component");  | 
         | 
    85             | 
         | 
    86     check(dag(d), "This digraph is DAG.");  | 
         | 
    87     check(checkedTopologicalSort(d, order), "This digraph is DAG.");  | 
         | 
    88     check(loopFree(d), "This digraph is loop-free.");  | 
         | 
    89     check(parallelFree(d), "This digraph is parallel-free.");  | 
         | 
    90     check(simpleGraph(d), "This digraph is simple.");  | 
         | 
    91   | 
         | 
    92     check(acyclic(g), "This graph is acyclic.");  | 
         | 
    93     check(tree(g), "This graph is tree.");  | 
         | 
    94     check(bipartite(g), "This graph is bipartite.");  | 
         | 
    95     check(loopFree(g), "This graph is loop-free.");  | 
         | 
    96     check(parallelFree(g), "This graph is parallel-free.");  | 
         | 
    97     check(simpleGraph(g), "This graph is simple.");  | 
         | 
    98   }  | 
         | 
    99   | 
         | 
   100   { | 
         | 
   101     Digraph d;  | 
         | 
   102     Digraph::NodeMap<int> order(d);  | 
         | 
   103     Graph g(d);  | 
         | 
   104       | 
         | 
   105     Digraph::Node n1 = d.addNode();  | 
         | 
   106     Digraph::Node n2 = d.addNode();  | 
         | 
   107     Digraph::Node n3 = d.addNode();  | 
         | 
   108     Digraph::Node n4 = d.addNode();  | 
         | 
   109     Digraph::Node n5 = d.addNode();  | 
         | 
   110     Digraph::Node n6 = d.addNode();  | 
         | 
   111       | 
         | 
   112     d.addArc(n1, n3);  | 
         | 
   113     d.addArc(n3, n2);  | 
         | 
   114     d.addArc(n2, n1);  | 
         | 
   115     d.addArc(n4, n2);  | 
         | 
   116     d.addArc(n4, n3);  | 
         | 
   117     d.addArc(n5, n6);  | 
         | 
   118     d.addArc(n6, n5);  | 
         | 
   119   | 
         | 
   120     check(!stronglyConnected(d), "This digraph is not strongly connected");  | 
         | 
   121     check(countStronglyConnectedComponents(d) == 3,  | 
         | 
   122           "This digraph has 3 strongly connected components");  | 
         | 
   123     check(!connected(g), "This graph is not connected");  | 
         | 
   124     check(countConnectedComponents(g) == 2,  | 
         | 
   125           "This graph has 2 connected components");  | 
         | 
   126   | 
         | 
   127     check(!dag(d), "This digraph is not DAG.");  | 
         | 
   128     check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");  | 
         | 
   129     check(loopFree(d), "This digraph is loop-free.");  | 
         | 
   130     check(parallelFree(d), "This digraph is parallel-free.");  | 
         | 
   131     check(simpleGraph(d), "This digraph is simple.");  | 
         | 
   132   | 
         | 
   133     check(!acyclic(g), "This graph is not acyclic.");  | 
         | 
   134     check(!tree(g), "This graph is not tree.");  | 
         | 
   135     check(!bipartite(g), "This graph is not bipartite.");  | 
         | 
   136     check(loopFree(g), "This graph is loop-free.");  | 
         | 
   137     check(!parallelFree(g), "This graph is not parallel-free.");  | 
         | 
   138     check(!simpleGraph(g), "This graph is not simple.");  | 
         | 
   139       | 
         | 
   140     d.addArc(n3, n3);  | 
         | 
   141       | 
         | 
   142     check(!loopFree(d), "This digraph is not loop-free.");  | 
         | 
   143     check(!loopFree(g), "This graph is not loop-free.");  | 
         | 
   144     check(!simpleGraph(d), "This digraph is not simple.");  | 
         | 
   145       | 
         | 
   146     d.addArc(n3, n2);  | 
         | 
   147       | 
         | 
   148     check(!parallelFree(d), "This digraph is not parallel-free.");  | 
         | 
   149   }  | 
         | 
   150     | 
         | 
   151   { | 
         | 
   152     Digraph d;  | 
         | 
   153     Digraph::ArcMap<bool> cutarcs(d, false);  | 
         | 
   154     Graph g(d);  | 
         | 
   155       | 
         | 
   156     Digraph::Node n1 = d.addNode();  | 
         | 
   157     Digraph::Node n2 = d.addNode();  | 
         | 
   158     Digraph::Node n3 = d.addNode();  | 
         | 
   159     Digraph::Node n4 = d.addNode();  | 
         | 
   160     Digraph::Node n5 = d.addNode();  | 
         | 
   161     Digraph::Node n6 = d.addNode();  | 
         | 
   162     Digraph::Node n7 = d.addNode();  | 
         | 
   163     Digraph::Node n8 = d.addNode();  | 
         | 
   164   | 
         | 
   165     d.addArc(n1, n2);  | 
         | 
   166     d.addArc(n5, n1);  | 
         | 
   167     d.addArc(n2, n8);  | 
         | 
   168     d.addArc(n8, n5);  | 
         | 
   169     d.addArc(n6, n4);  | 
         | 
   170     d.addArc(n4, n6);  | 
         | 
   171     d.addArc(n2, n5);  | 
         | 
   172     d.addArc(n1, n8);  | 
         | 
   173     d.addArc(n6, n7);  | 
         | 
   174     d.addArc(n7, n6);  | 
         | 
   175      | 
         | 
   176     check(!stronglyConnected(d), "This digraph is not strongly connected");  | 
         | 
   177     check(countStronglyConnectedComponents(d) == 3,  | 
         | 
   178           "This digraph has 3 strongly connected components");  | 
         | 
   179     Digraph::NodeMap<int> scomp1(d);  | 
         | 
   180     check(stronglyConnectedComponents(d, scomp1) == 3,  | 
         | 
   181           "This digraph has 3 strongly connected components");  | 
         | 
   182     check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&  | 
         | 
   183           scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");  | 
         | 
   184     check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&  | 
         | 
   185           scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");  | 
         | 
   186     check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],  | 
         | 
   187           "Wrong stronglyConnectedComponents()");  | 
         | 
   188     Digraph::ArcMap<bool> scut1(d, false);  | 
         | 
   189     check(stronglyConnectedCutArcs(d, scut1) == 0,  | 
         | 
   190           "This digraph has 0 strongly connected cut arc.");  | 
         | 
   191     for (Digraph::ArcIt a(d); a != INVALID; ++a) { | 
         | 
   192       check(!scut1[a], "Wrong stronglyConnectedCutArcs()");  | 
         | 
   193     }  | 
         | 
   194   | 
         | 
   195     check(!connected(g), "This graph is not connected");  | 
         | 
   196     check(countConnectedComponents(g) == 3,  | 
         | 
   197           "This graph has 3 connected components");  | 
         | 
   198     Graph::NodeMap<int> comp(g);  | 
         | 
   199     check(connectedComponents(g, comp) == 3,  | 
         | 
   200           "This graph has 3 connected components");  | 
         | 
   201     check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&  | 
         | 
   202           comp[n3] != comp[n4], "Wrong connectedComponents()");  | 
         | 
   203     check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&  | 
         | 
   204           comp[n1] == comp[n8], "Wrong connectedComponents()");  | 
         | 
   205     check(comp[n4] == comp[n6] && comp[n4] == comp[n7],  | 
         | 
   206           "Wrong connectedComponents()");  | 
         | 
   207   | 
         | 
   208     cutarcs[d.addArc(n3, n1)] = true;  | 
         | 
   209     cutarcs[d.addArc(n3, n5)] = true;  | 
         | 
   210     cutarcs[d.addArc(n3, n8)] = true;  | 
         | 
   211     cutarcs[d.addArc(n8, n6)] = true;  | 
         | 
   212     cutarcs[d.addArc(n8, n7)] = true;  | 
         | 
   213   | 
         | 
   214     check(!stronglyConnected(d), "This digraph is not strongly connected");  | 
         | 
   215     check(countStronglyConnectedComponents(d) == 3,  | 
         | 
   216           "This digraph has 3 strongly connected components");  | 
         | 
   217     Digraph::NodeMap<int> scomp2(d);  | 
         | 
   218     check(stronglyConnectedComponents(d, scomp2) == 3,  | 
         | 
   219           "This digraph has 3 strongly connected components");  | 
         | 
   220     check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");  | 
         | 
   221     check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&  | 
         | 
   222           scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");  | 
         | 
   223     check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,  | 
         | 
   224           "Wrong stronglyConnectedComponents()");  | 
         | 
   225     Digraph::ArcMap<bool> scut2(d, false);  | 
         | 
   226     check(stronglyConnectedCutArcs(d, scut2) == 5,  | 
         | 
   227           "This digraph has 5 strongly connected cut arcs.");  | 
         | 
   228     for (Digraph::ArcIt a(d); a != INVALID; ++a) { | 
         | 
   229       check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");  | 
         | 
   230     }  | 
         | 
   231   }  | 
         | 
   232   | 
         | 
   233   { | 
         | 
   234     // DAG example for topological sort from the book New Algorithms  | 
         | 
   235     // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)  | 
         | 
   236     Digraph d;  | 
         | 
   237     Digraph::NodeMap<int> order(d);  | 
         | 
   238       | 
         | 
   239     Digraph::Node belt = d.addNode();  | 
         | 
   240     Digraph::Node trousers = d.addNode();  | 
         | 
   241     Digraph::Node necktie = d.addNode();  | 
         | 
   242     Digraph::Node coat = d.addNode();  | 
         | 
   243     Digraph::Node socks = d.addNode();  | 
         | 
   244     Digraph::Node shirt = d.addNode();  | 
         | 
   245     Digraph::Node shoe = d.addNode();  | 
         | 
   246     Digraph::Node watch = d.addNode();  | 
         | 
   247     Digraph::Node pants = d.addNode();  | 
         | 
   248   | 
         | 
   249     d.addArc(socks, shoe);  | 
         | 
   250     d.addArc(pants, shoe);  | 
         | 
   251     d.addArc(pants, trousers);  | 
         | 
   252     d.addArc(trousers, shoe);  | 
         | 
   253     d.addArc(trousers, belt);  | 
         | 
   254     d.addArc(belt, coat);  | 
         | 
   255     d.addArc(shirt, belt);  | 
         | 
   256     d.addArc(shirt, necktie);  | 
         | 
   257     d.addArc(necktie, coat);  | 
         | 
   258       | 
         | 
   259     check(dag(d), "This digraph is DAG.");  | 
         | 
   260     topologicalSort(d, order);  | 
         | 
   261     for (Digraph::ArcIt a(d); a != INVALID; ++a) { | 
         | 
   262       check(order[d.source(a)] < order[d.target(a)],  | 
         | 
   263             "Wrong topologicalSort()");  | 
         | 
   264     }  | 
         | 
   265   }  | 
         | 
   266   | 
         | 
   267   { | 
         | 
   268     ListGraph g;  | 
         | 
   269     ListGraph::NodeMap<bool> map(g);  | 
         | 
   270       | 
         | 
   271     ListGraph::Node n1 = g.addNode();  | 
         | 
   272     ListGraph::Node n2 = g.addNode();  | 
         | 
   273     ListGraph::Node n3 = g.addNode();  | 
         | 
   274     ListGraph::Node n4 = g.addNode();  | 
         | 
   275     ListGraph::Node n5 = g.addNode();  | 
         | 
   276     ListGraph::Node n6 = g.addNode();  | 
         | 
   277     ListGraph::Node n7 = g.addNode();  | 
         | 
   278   | 
         | 
   279     g.addEdge(n1, n3);  | 
         | 
   280     g.addEdge(n1, n4);  | 
         | 
   281     g.addEdge(n2, n5);  | 
         | 
   282     g.addEdge(n3, n6);  | 
         | 
   283     g.addEdge(n4, n6);  | 
         | 
   284     g.addEdge(n4, n7);  | 
         | 
   285     g.addEdge(n5, n7);  | 
         | 
   286      | 
         | 
   287     check(bipartite(g), "This graph is bipartite");  | 
         | 
   288     check(bipartitePartitions(g, map), "This graph is bipartite");  | 
         | 
   289       | 
         | 
   290     check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],  | 
         | 
   291           "Wrong bipartitePartitions()");  | 
         | 
   292     check(map[n3] == map[n4] && map[n3] == map[n5],  | 
         | 
   293           "Wrong bipartitePartitions()");  | 
         | 
   294   }  | 
         | 
   295   | 
         | 
   296   return 0;  | 
         | 
   297 }  |