lemon/fourary_heap.h
changeset 855 65a0521e744e
parent 705 39a5b48bcace
equal deleted inserted replaced
3:39126be526c6 -1:000000000000
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library.
       
     4  *
       
     5  * Copyright (C) 2003-2009
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_FOURARY_HEAP_H
       
    20 #define LEMON_FOURARY_HEAP_H
       
    21 
       
    22 ///\ingroup heaps
       
    23 ///\file
       
    24 ///\brief Fourary heap implementation.
       
    25 
       
    26 #include <vector>
       
    27 #include <utility>
       
    28 #include <functional>
       
    29 
       
    30 namespace lemon {
       
    31 
       
    32   /// \ingroup heaps
       
    33   ///
       
    34   ///\brief Fourary heap data structure.
       
    35   ///
       
    36   /// This class implements the \e fourary \e heap data structure.
       
    37   /// It fully conforms to the \ref concepts::Heap "heap concept".
       
    38   ///
       
    39   /// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap"
       
    40   /// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap",
       
    41   /// but its nodes have at most four children, instead of two.
       
    42   ///
       
    43   /// \tparam PR Type of the priorities of the items.
       
    44   /// \tparam IM A read-writable item map with \c int values, used
       
    45   /// internally to handle the cross references.
       
    46   /// \tparam CMP A functor class for comparing the priorities.
       
    47   /// The default is \c std::less<PR>.
       
    48   ///
       
    49   ///\sa BinHeap
       
    50   ///\sa KaryHeap
       
    51 #ifdef DOXYGEN
       
    52   template <typename PR, typename IM, typename CMP>
       
    53 #else
       
    54   template <typename PR, typename IM, typename CMP = std::less<PR> >
       
    55 #endif
       
    56   class FouraryHeap {
       
    57   public:
       
    58     /// Type of the item-int map.
       
    59     typedef IM ItemIntMap;
       
    60     /// Type of the priorities.
       
    61     typedef PR Prio;
       
    62     /// Type of the items stored in the heap.
       
    63     typedef typename ItemIntMap::Key Item;
       
    64     /// Type of the item-priority pairs.
       
    65     typedef std::pair<Item,Prio> Pair;
       
    66     /// Functor type for comparing the priorities.
       
    67     typedef CMP Compare;
       
    68 
       
    69     /// \brief Type to represent the states of the items.
       
    70     ///
       
    71     /// Each item has a state associated to it. It can be "in heap",
       
    72     /// "pre-heap" or "post-heap". The latter two are indifferent from the
       
    73     /// heap's point of view, but may be useful to the user.
       
    74     ///
       
    75     /// The item-int map must be initialized in such way that it assigns
       
    76     /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
       
    77     enum State {
       
    78       IN_HEAP = 0,    ///< = 0.
       
    79       PRE_HEAP = -1,  ///< = -1.
       
    80       POST_HEAP = -2  ///< = -2.
       
    81     };
       
    82 
       
    83   private:
       
    84     std::vector<Pair> _data;
       
    85     Compare _comp;
       
    86     ItemIntMap &_iim;
       
    87 
       
    88   public:
       
    89     /// \brief Constructor.
       
    90     ///
       
    91     /// Constructor.
       
    92     /// \param map A map that assigns \c int values to the items.
       
    93     /// It is used internally to handle the cross references.
       
    94     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
       
    95     explicit FouraryHeap(ItemIntMap &map) : _iim(map) {}
       
    96 
       
    97     /// \brief Constructor.
       
    98     ///
       
    99     /// Constructor.
       
   100     /// \param map A map that assigns \c int values to the items.
       
   101     /// It is used internally to handle the cross references.
       
   102     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
       
   103     /// \param comp The function object used for comparing the priorities.
       
   104     FouraryHeap(ItemIntMap &map, const Compare &comp)
       
   105       : _iim(map), _comp(comp) {}
       
   106 
       
   107     /// \brief The number of items stored in the heap.
       
   108     ///
       
   109     /// This function returns the number of items stored in the heap.
       
   110     int size() const { return _data.size(); }
       
   111 
       
   112     /// \brief Check if the heap is empty.
       
   113     ///
       
   114     /// This function returns \c true if the heap is empty.
       
   115     bool empty() const { return _data.empty(); }
       
   116 
       
   117     /// \brief Make the heap empty.
       
   118     ///
       
   119     /// This functon makes the heap empty.
       
   120     /// It does not change the cross reference map. If you want to reuse
       
   121     /// a heap that is not surely empty, you should first clear it and
       
   122     /// then you should set the cross reference map to \c PRE_HEAP
       
   123     /// for each item.
       
   124     void clear() { _data.clear(); }
       
   125 
       
   126   private:
       
   127     static int parent(int i) { return (i-1)/4; }
       
   128     static int firstChild(int i) { return 4*i+1; }
       
   129 
       
   130     bool less(const Pair &p1, const Pair &p2) const {
       
   131       return _comp(p1.second, p2.second);
       
   132     }
       
   133 
       
   134     void bubbleUp(int hole, Pair p) {
       
   135       int par = parent(hole);
       
   136       while( hole>0 && less(p,_data[par]) ) {
       
   137         move(_data[par],hole);
       
   138         hole = par;
       
   139         par = parent(hole);
       
   140       }
       
   141       move(p, hole);
       
   142     }
       
   143 
       
   144     void bubbleDown(int hole, Pair p, int length) {
       
   145       if( length>1 ) {
       
   146         int child = firstChild(hole);
       
   147         while( child+3<length ) {
       
   148           int min=child;
       
   149           if( less(_data[++child], _data[min]) ) min=child;
       
   150           if( less(_data[++child], _data[min]) ) min=child;
       
   151           if( less(_data[++child], _data[min]) ) min=child;
       
   152           if( !less(_data[min], p) )
       
   153             goto ok;
       
   154           move(_data[min], hole);
       
   155           hole = min;
       
   156           child = firstChild(hole);
       
   157         }
       
   158         if ( child<length ) {
       
   159           int min = child;
       
   160           if( ++child<length && less(_data[child], _data[min]) ) min=child;
       
   161           if( ++child<length && less(_data[child], _data[min]) ) min=child;
       
   162           if( less(_data[min], p) ) {
       
   163             move(_data[min], hole);
       
   164             hole = min;
       
   165           }
       
   166         }
       
   167       }
       
   168     ok:
       
   169       move(p, hole);
       
   170     }
       
   171 
       
   172     void move(const Pair &p, int i) {
       
   173       _data[i] = p;
       
   174       _iim.set(p.first, i);
       
   175     }
       
   176 
       
   177   public:
       
   178     /// \brief Insert a pair of item and priority into the heap.
       
   179     ///
       
   180     /// This function inserts \c p.first to the heap with priority
       
   181     /// \c p.second.
       
   182     /// \param p The pair to insert.
       
   183     /// \pre \c p.first must not be stored in the heap.
       
   184     void push(const Pair &p) {
       
   185       int n = _data.size();
       
   186       _data.resize(n+1);
       
   187       bubbleUp(n, p);
       
   188     }
       
   189 
       
   190     /// \brief Insert an item into the heap with the given priority.
       
   191     ///
       
   192     /// This function inserts the given item into the heap with the
       
   193     /// given priority.
       
   194     /// \param i The item to insert.
       
   195     /// \param p The priority of the item.
       
   196     /// \pre \e i must not be stored in the heap.
       
   197     void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
       
   198 
       
   199     /// \brief Return the item having minimum priority.
       
   200     ///
       
   201     /// This function returns the item having minimum priority.
       
   202     /// \pre The heap must be non-empty.
       
   203     Item top() const { return _data[0].first; }
       
   204 
       
   205     /// \brief The minimum priority.
       
   206     ///
       
   207     /// This function returns the minimum priority.
       
   208     /// \pre The heap must be non-empty.
       
   209     Prio prio() const { return _data[0].second; }
       
   210 
       
   211     /// \brief Remove the item having minimum priority.
       
   212     ///
       
   213     /// This function removes the item having minimum priority.
       
   214     /// \pre The heap must be non-empty.
       
   215     void pop() {
       
   216       int n = _data.size()-1;
       
   217       _iim.set(_data[0].first, POST_HEAP);
       
   218       if (n>0) bubbleDown(0, _data[n], n);
       
   219       _data.pop_back();
       
   220     }
       
   221 
       
   222     /// \brief Remove the given item from the heap.
       
   223     ///
       
   224     /// This function removes the given item from the heap if it is
       
   225     /// already stored.
       
   226     /// \param i The item to delete.
       
   227     /// \pre \e i must be in the heap.
       
   228     void erase(const Item &i) {
       
   229       int h = _iim[i];
       
   230       int n = _data.size()-1;
       
   231       _iim.set(_data[h].first, POST_HEAP);
       
   232       if( h<n ) {
       
   233         if( less(_data[parent(h)], _data[n]) )
       
   234           bubbleDown(h, _data[n], n);
       
   235         else
       
   236           bubbleUp(h, _data[n]);
       
   237       }
       
   238       _data.pop_back();
       
   239     }
       
   240 
       
   241     /// \brief The priority of the given item.
       
   242     ///
       
   243     /// This function returns the priority of the given item.
       
   244     /// \param i The item.
       
   245     /// \pre \e i must be in the heap.
       
   246     Prio operator[](const Item &i) const {
       
   247       int idx = _iim[i];
       
   248       return _data[idx].second;
       
   249     }
       
   250 
       
   251     /// \brief Set the priority of an item or insert it, if it is
       
   252     /// not stored in the heap.
       
   253     ///
       
   254     /// This method sets the priority of the given item if it is
       
   255     /// already stored in the heap. Otherwise it inserts the given
       
   256     /// item into the heap with the given priority.
       
   257     /// \param i The item.
       
   258     /// \param p The priority.
       
   259     void set(const Item &i, const Prio &p) {
       
   260       int idx = _iim[i];
       
   261       if( idx < 0 )
       
   262         push(i,p);
       
   263       else if( _comp(p, _data[idx].second) )
       
   264         bubbleUp(idx, Pair(i,p));
       
   265       else
       
   266         bubbleDown(idx, Pair(i,p), _data.size());
       
   267     }
       
   268 
       
   269     /// \brief Decrease the priority of an item to the given value.
       
   270     ///
       
   271     /// This function decreases the priority of an item to the given value.
       
   272     /// \param i The item.
       
   273     /// \param p The priority.
       
   274     /// \pre \e i must be stored in the heap with priority at least \e p.
       
   275     void decrease(const Item &i, const Prio &p) {
       
   276       int idx = _iim[i];
       
   277       bubbleUp(idx, Pair(i,p));
       
   278     }
       
   279 
       
   280     /// \brief Increase the priority of an item to the given value.
       
   281     ///
       
   282     /// This function increases the priority of an item to the given value.
       
   283     /// \param i The item.
       
   284     /// \param p The priority.
       
   285     /// \pre \e i must be stored in the heap with priority at most \e p.
       
   286     void increase(const Item &i, const Prio &p) {
       
   287       int idx = _iim[i];
       
   288       bubbleDown(idx, Pair(i,p), _data.size());
       
   289     }
       
   290 
       
   291     /// \brief Return the state of an item.
       
   292     ///
       
   293     /// This method returns \c PRE_HEAP if the given item has never
       
   294     /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
       
   295     /// and \c POST_HEAP otherwise.
       
   296     /// In the latter case it is possible that the item will get back
       
   297     /// to the heap again.
       
   298     /// \param i The item.
       
   299     State state(const Item &i) const {
       
   300       int s = _iim[i];
       
   301       if (s>=0) s=0;
       
   302       return State(s);
       
   303     }
       
   304 
       
   305     /// \brief Set the state of an item in the heap.
       
   306     ///
       
   307     /// This function sets the state of the given item in the heap.
       
   308     /// It can be used to manually clear the heap when it is important
       
   309     /// to achive better time complexity.
       
   310     /// \param i The item.
       
   311     /// \param st The state. It should not be \c IN_HEAP.
       
   312     void state(const Item& i, State st) {
       
   313       switch (st) {
       
   314         case POST_HEAP:
       
   315         case PRE_HEAP:
       
   316           if (state(i) == IN_HEAP) erase(i);
       
   317           _iim[i] = st;
       
   318           break;
       
   319         case IN_HEAP:
       
   320           break;
       
   321       }
       
   322     }
       
   323 
       
   324     /// \brief Replace an item in the heap.
       
   325     ///
       
   326     /// This function replaces item \c i with item \c j.
       
   327     /// Item \c i must be in the heap, while \c j must be out of the heap.
       
   328     /// After calling this method, item \c i will be out of the
       
   329     /// heap and \c j will be in the heap with the same prioriority
       
   330     /// as item \c i had before.
       
   331     void replace(const Item& i, const Item& j) {
       
   332       int idx = _iim[i];
       
   333       _iim.set(i, _iim[j]);
       
   334       _iim.set(j, idx);
       
   335       _data[idx].first = j;
       
   336     }
       
   337 
       
   338   }; // class FouraryHeap
       
   339 
       
   340 } // namespace lemon
       
   341 
       
   342 #endif // LEMON_FOURARY_HEAP_H