|
1 /* -*- C++ -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library |
|
4 * |
|
5 * Copyright (C) 2003-2008 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_DFS_H |
|
20 #define LEMON_DFS_H |
|
21 |
|
22 ///\ingroup search |
|
23 ///\file |
|
24 ///\brief Dfs algorithm. |
|
25 |
|
26 #include <lemon/list_graph.h> |
|
27 #include <lemon/graph_utils.h> |
|
28 #include <lemon/bits/path_dump.h> |
|
29 #include <lemon/bits/invalid.h> |
|
30 #include <lemon/error.h> |
|
31 #include <lemon/maps.h> |
|
32 |
|
33 #include <lemon/concept_check.h> |
|
34 |
|
35 namespace lemon { |
|
36 |
|
37 |
|
38 ///Default traits class of Dfs class. |
|
39 |
|
40 ///Default traits class of Dfs class. |
|
41 ///\param GR Digraph type. |
|
42 template<class GR> |
|
43 struct DfsDefaultTraits |
|
44 { |
|
45 ///The digraph type the algorithm runs on. |
|
46 typedef GR Digraph; |
|
47 ///\brief The type of the map that stores the last |
|
48 ///arcs of the %DFS paths. |
|
49 /// |
|
50 ///The type of the map that stores the last |
|
51 ///arcs of the %DFS paths. |
|
52 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
53 /// |
|
54 typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
|
55 ///Instantiates a PredMap. |
|
56 |
|
57 ///This function instantiates a \ref PredMap. |
|
58 ///\param G is the digraph, to which we would like to define the PredMap. |
|
59 ///\todo The digraph alone may be insufficient to initialize |
|
60 static PredMap *createPredMap(const GR &G) |
|
61 { |
|
62 return new PredMap(G); |
|
63 } |
|
64 |
|
65 ///The type of the map that indicates which nodes are processed. |
|
66 |
|
67 ///The type of the map that indicates which nodes are processed. |
|
68 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
69 ///\todo named parameter to set this type, function to read and write. |
|
70 typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
|
71 ///Instantiates a ProcessedMap. |
|
72 |
|
73 ///This function instantiates a \ref ProcessedMap. |
|
74 ///\param g is the digraph, to which |
|
75 ///we would like to define the \ref ProcessedMap |
|
76 #ifdef DOXYGEN |
|
77 static ProcessedMap *createProcessedMap(const GR &g) |
|
78 #else |
|
79 static ProcessedMap *createProcessedMap(const GR &) |
|
80 #endif |
|
81 { |
|
82 return new ProcessedMap(); |
|
83 } |
|
84 ///The type of the map that indicates which nodes are reached. |
|
85 |
|
86 ///The type of the map that indicates which nodes are reached. |
|
87 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
88 ///\todo named parameter to set this type, function to read and write. |
|
89 typedef typename Digraph::template NodeMap<bool> ReachedMap; |
|
90 ///Instantiates a ReachedMap. |
|
91 |
|
92 ///This function instantiates a \ref ReachedMap. |
|
93 ///\param G is the digraph, to which |
|
94 ///we would like to define the \ref ReachedMap. |
|
95 static ReachedMap *createReachedMap(const GR &G) |
|
96 { |
|
97 return new ReachedMap(G); |
|
98 } |
|
99 ///The type of the map that stores the dists of the nodes. |
|
100 |
|
101 ///The type of the map that stores the dists of the nodes. |
|
102 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
103 /// |
|
104 typedef typename Digraph::template NodeMap<int> DistMap; |
|
105 ///Instantiates a DistMap. |
|
106 |
|
107 ///This function instantiates a \ref DistMap. |
|
108 ///\param G is the digraph, to which we would like to define the \ref DistMap |
|
109 static DistMap *createDistMap(const GR &G) |
|
110 { |
|
111 return new DistMap(G); |
|
112 } |
|
113 }; |
|
114 |
|
115 ///%DFS algorithm class. |
|
116 |
|
117 ///\ingroup search |
|
118 ///This class provides an efficient implementation of the %DFS algorithm. |
|
119 /// |
|
120 ///\param GR The digraph type the algorithm runs on. The default value is |
|
121 ///\ref ListDigraph. The value of GR is not used directly by Dfs, it |
|
122 ///is only passed to \ref DfsDefaultTraits. |
|
123 ///\param TR Traits class to set various data types used by the algorithm. |
|
124 ///The default traits class is |
|
125 ///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
|
126 ///See \ref DfsDefaultTraits for the documentation of |
|
127 ///a Dfs traits class. |
|
128 /// |
|
129 ///\author Jacint Szabo and Alpar Juttner |
|
130 #ifdef DOXYGEN |
|
131 template <typename GR, |
|
132 typename TR> |
|
133 #else |
|
134 template <typename GR=ListDigraph, |
|
135 typename TR=DfsDefaultTraits<GR> > |
|
136 #endif |
|
137 class Dfs { |
|
138 public: |
|
139 /** |
|
140 * \brief \ref Exception for uninitialized parameters. |
|
141 * |
|
142 * This error represents problems in the initialization |
|
143 * of the parameters of the algorithms. |
|
144 */ |
|
145 class UninitializedParameter : public lemon::UninitializedParameter { |
|
146 public: |
|
147 virtual const char* what() const throw() { |
|
148 return "lemon::Dfs::UninitializedParameter"; |
|
149 } |
|
150 }; |
|
151 |
|
152 typedef TR Traits; |
|
153 ///The type of the underlying digraph. |
|
154 typedef typename TR::Digraph Digraph; |
|
155 ///\e |
|
156 typedef typename Digraph::Node Node; |
|
157 ///\e |
|
158 typedef typename Digraph::NodeIt NodeIt; |
|
159 ///\e |
|
160 typedef typename Digraph::Arc Arc; |
|
161 ///\e |
|
162 typedef typename Digraph::OutArcIt OutArcIt; |
|
163 |
|
164 ///\brief The type of the map that stores the last |
|
165 ///arcs of the %DFS paths. |
|
166 typedef typename TR::PredMap PredMap; |
|
167 ///The type of the map indicating which nodes are reached. |
|
168 typedef typename TR::ReachedMap ReachedMap; |
|
169 ///The type of the map indicating which nodes are processed. |
|
170 typedef typename TR::ProcessedMap ProcessedMap; |
|
171 ///The type of the map that stores the dists of the nodes. |
|
172 typedef typename TR::DistMap DistMap; |
|
173 private: |
|
174 /// Pointer to the underlying digraph. |
|
175 const Digraph *G; |
|
176 ///Pointer to the map of predecessors arcs. |
|
177 PredMap *_pred; |
|
178 ///Indicates if \ref _pred is locally allocated (\c true) or not. |
|
179 bool local_pred; |
|
180 ///Pointer to the map of distances. |
|
181 DistMap *_dist; |
|
182 ///Indicates if \ref _dist is locally allocated (\c true) or not. |
|
183 bool local_dist; |
|
184 ///Pointer to the map of reached status of the nodes. |
|
185 ReachedMap *_reached; |
|
186 ///Indicates if \ref _reached is locally allocated (\c true) or not. |
|
187 bool local_reached; |
|
188 ///Pointer to the map of processed status of the nodes. |
|
189 ProcessedMap *_processed; |
|
190 ///Indicates if \ref _processed is locally allocated (\c true) or not. |
|
191 bool local_processed; |
|
192 |
|
193 std::vector<typename Digraph::OutArcIt> _stack; |
|
194 int _stack_head; |
|
195 |
|
196 ///Creates the maps if necessary. |
|
197 |
|
198 ///\todo Better memory allocation (instead of new). |
|
199 void create_maps() |
|
200 { |
|
201 if(!_pred) { |
|
202 local_pred = true; |
|
203 _pred = Traits::createPredMap(*G); |
|
204 } |
|
205 if(!_dist) { |
|
206 local_dist = true; |
|
207 _dist = Traits::createDistMap(*G); |
|
208 } |
|
209 if(!_reached) { |
|
210 local_reached = true; |
|
211 _reached = Traits::createReachedMap(*G); |
|
212 } |
|
213 if(!_processed) { |
|
214 local_processed = true; |
|
215 _processed = Traits::createProcessedMap(*G); |
|
216 } |
|
217 } |
|
218 |
|
219 protected: |
|
220 |
|
221 Dfs() {} |
|
222 |
|
223 public: |
|
224 |
|
225 typedef Dfs Create; |
|
226 |
|
227 ///\name Named template parameters |
|
228 |
|
229 ///@{ |
|
230 |
|
231 template <class T> |
|
232 struct DefPredMapTraits : public Traits { |
|
233 typedef T PredMap; |
|
234 static PredMap *createPredMap(const Digraph &G) |
|
235 { |
|
236 throw UninitializedParameter(); |
|
237 } |
|
238 }; |
|
239 ///\brief \ref named-templ-param "Named parameter" for setting |
|
240 ///PredMap type |
|
241 /// |
|
242 ///\ref named-templ-param "Named parameter" for setting PredMap type |
|
243 /// |
|
244 template <class T> |
|
245 struct DefPredMap : public Dfs<Digraph, DefPredMapTraits<T> > { |
|
246 typedef Dfs<Digraph, DefPredMapTraits<T> > Create; |
|
247 }; |
|
248 |
|
249 |
|
250 template <class T> |
|
251 struct DefDistMapTraits : public Traits { |
|
252 typedef T DistMap; |
|
253 static DistMap *createDistMap(const Digraph &) |
|
254 { |
|
255 throw UninitializedParameter(); |
|
256 } |
|
257 }; |
|
258 ///\brief \ref named-templ-param "Named parameter" for setting |
|
259 ///DistMap type |
|
260 /// |
|
261 ///\ref named-templ-param "Named parameter" for setting DistMap |
|
262 ///type |
|
263 template <class T> |
|
264 struct DefDistMap { |
|
265 typedef Dfs<Digraph, DefDistMapTraits<T> > Create; |
|
266 }; |
|
267 |
|
268 template <class T> |
|
269 struct DefReachedMapTraits : public Traits { |
|
270 typedef T ReachedMap; |
|
271 static ReachedMap *createReachedMap(const Digraph &) |
|
272 { |
|
273 throw UninitializedParameter(); |
|
274 } |
|
275 }; |
|
276 ///\brief \ref named-templ-param "Named parameter" for setting |
|
277 ///ReachedMap type |
|
278 /// |
|
279 ///\ref named-templ-param "Named parameter" for setting ReachedMap type |
|
280 /// |
|
281 template <class T> |
|
282 struct DefReachedMap : public Dfs< Digraph, DefReachedMapTraits<T> > { |
|
283 typedef Dfs< Digraph, DefReachedMapTraits<T> > Create; |
|
284 }; |
|
285 |
|
286 template <class T> |
|
287 struct DefProcessedMapTraits : public Traits { |
|
288 typedef T ProcessedMap; |
|
289 static ProcessedMap *createProcessedMap(const Digraph &) |
|
290 { |
|
291 throw UninitializedParameter(); |
|
292 } |
|
293 }; |
|
294 ///\brief \ref named-templ-param "Named parameter" for setting |
|
295 ///ProcessedMap type |
|
296 /// |
|
297 ///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
|
298 /// |
|
299 template <class T> |
|
300 struct DefProcessedMap : public Dfs< Digraph, DefProcessedMapTraits<T> > { |
|
301 typedef Dfs< Digraph, DefProcessedMapTraits<T> > Create; |
|
302 }; |
|
303 |
|
304 struct DefDigraphProcessedMapTraits : public Traits { |
|
305 typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
306 static ProcessedMap *createProcessedMap(const Digraph &G) |
|
307 { |
|
308 return new ProcessedMap(G); |
|
309 } |
|
310 }; |
|
311 ///\brief \ref named-templ-param "Named parameter" |
|
312 ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
|
313 /// |
|
314 ///\ref named-templ-param "Named parameter" |
|
315 ///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
|
316 ///If you don't set it explicitely, it will be automatically allocated. |
|
317 template <class T> |
|
318 class DefProcessedMapToBeDefaultMap : |
|
319 public Dfs< Digraph, DefDigraphProcessedMapTraits> { |
|
320 typedef Dfs< Digraph, DefDigraphProcessedMapTraits> Create; |
|
321 }; |
|
322 |
|
323 ///@} |
|
324 |
|
325 public: |
|
326 |
|
327 ///Constructor. |
|
328 |
|
329 ///\param _G the digraph the algorithm will run on. |
|
330 /// |
|
331 Dfs(const Digraph& _G) : |
|
332 G(&_G), |
|
333 _pred(NULL), local_pred(false), |
|
334 _dist(NULL), local_dist(false), |
|
335 _reached(NULL), local_reached(false), |
|
336 _processed(NULL), local_processed(false) |
|
337 { } |
|
338 |
|
339 ///Destructor. |
|
340 ~Dfs() |
|
341 { |
|
342 if(local_pred) delete _pred; |
|
343 if(local_dist) delete _dist; |
|
344 if(local_reached) delete _reached; |
|
345 if(local_processed) delete _processed; |
|
346 } |
|
347 |
|
348 ///Sets the map storing the predecessor arcs. |
|
349 |
|
350 ///Sets the map storing the predecessor arcs. |
|
351 ///If you don't use this function before calling \ref run(), |
|
352 ///it will allocate one. The destuctor deallocates this |
|
353 ///automatically allocated map, of course. |
|
354 ///\return <tt> (*this) </tt> |
|
355 Dfs &predMap(PredMap &m) |
|
356 { |
|
357 if(local_pred) { |
|
358 delete _pred; |
|
359 local_pred=false; |
|
360 } |
|
361 _pred = &m; |
|
362 return *this; |
|
363 } |
|
364 |
|
365 ///Sets the map storing the distances calculated by the algorithm. |
|
366 |
|
367 ///Sets the map storing the distances calculated by the algorithm. |
|
368 ///If you don't use this function before calling \ref run(), |
|
369 ///it will allocate one. The destuctor deallocates this |
|
370 ///automatically allocated map, of course. |
|
371 ///\return <tt> (*this) </tt> |
|
372 Dfs &distMap(DistMap &m) |
|
373 { |
|
374 if(local_dist) { |
|
375 delete _dist; |
|
376 local_dist=false; |
|
377 } |
|
378 _dist = &m; |
|
379 return *this; |
|
380 } |
|
381 |
|
382 ///Sets the map indicating if a node is reached. |
|
383 |
|
384 ///Sets the map indicating if a node is reached. |
|
385 ///If you don't use this function before calling \ref run(), |
|
386 ///it will allocate one. The destuctor deallocates this |
|
387 ///automatically allocated map, of course. |
|
388 ///\return <tt> (*this) </tt> |
|
389 Dfs &reachedMap(ReachedMap &m) |
|
390 { |
|
391 if(local_reached) { |
|
392 delete _reached; |
|
393 local_reached=false; |
|
394 } |
|
395 _reached = &m; |
|
396 return *this; |
|
397 } |
|
398 |
|
399 ///Sets the map indicating if a node is processed. |
|
400 |
|
401 ///Sets the map indicating if a node is processed. |
|
402 ///If you don't use this function before calling \ref run(), |
|
403 ///it will allocate one. The destuctor deallocates this |
|
404 ///automatically allocated map, of course. |
|
405 ///\return <tt> (*this) </tt> |
|
406 Dfs &processedMap(ProcessedMap &m) |
|
407 { |
|
408 if(local_processed) { |
|
409 delete _processed; |
|
410 local_processed=false; |
|
411 } |
|
412 _processed = &m; |
|
413 return *this; |
|
414 } |
|
415 |
|
416 public: |
|
417 ///\name Execution control |
|
418 ///The simplest way to execute the algorithm is to use |
|
419 ///one of the member functions called \c run(...). |
|
420 ///\n |
|
421 ///If you need more control on the execution, |
|
422 ///first you must call \ref init(), then you can add a source node |
|
423 ///with \ref addSource(). |
|
424 ///Finally \ref start() will perform the actual path |
|
425 ///computation. |
|
426 |
|
427 ///@{ |
|
428 |
|
429 ///Initializes the internal data structures. |
|
430 |
|
431 ///Initializes the internal data structures. |
|
432 /// |
|
433 void init() |
|
434 { |
|
435 create_maps(); |
|
436 _stack.resize(countNodes(*G)); |
|
437 _stack_head=-1; |
|
438 for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
|
439 _pred->set(u,INVALID); |
|
440 // _predNode->set(u,INVALID); |
|
441 _reached->set(u,false); |
|
442 _processed->set(u,false); |
|
443 } |
|
444 } |
|
445 |
|
446 ///Adds a new source node. |
|
447 |
|
448 ///Adds a new source node to the set of nodes to be processed. |
|
449 /// |
|
450 ///\warning dists are wrong (or at least strange) |
|
451 ///in case of multiple sources. |
|
452 void addSource(Node s) |
|
453 { |
|
454 if(!(*_reached)[s]) |
|
455 { |
|
456 _reached->set(s,true); |
|
457 _pred->set(s,INVALID); |
|
458 OutArcIt e(*G,s); |
|
459 if(e!=INVALID) { |
|
460 _stack[++_stack_head]=e; |
|
461 _dist->set(s,_stack_head); |
|
462 } |
|
463 else { |
|
464 _processed->set(s,true); |
|
465 _dist->set(s,0); |
|
466 } |
|
467 } |
|
468 } |
|
469 |
|
470 ///Processes the next arc. |
|
471 |
|
472 ///Processes the next arc. |
|
473 /// |
|
474 ///\return The processed arc. |
|
475 /// |
|
476 ///\pre The stack must not be empty! |
|
477 Arc processNextArc() |
|
478 { |
|
479 Node m; |
|
480 Arc e=_stack[_stack_head]; |
|
481 if(!(*_reached)[m=G->target(e)]) { |
|
482 _pred->set(m,e); |
|
483 _reached->set(m,true); |
|
484 ++_stack_head; |
|
485 _stack[_stack_head] = OutArcIt(*G, m); |
|
486 _dist->set(m,_stack_head); |
|
487 } |
|
488 else { |
|
489 m=G->source(e); |
|
490 ++_stack[_stack_head]; |
|
491 } |
|
492 while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
|
493 _processed->set(m,true); |
|
494 --_stack_head; |
|
495 if(_stack_head>=0) { |
|
496 m=G->source(_stack[_stack_head]); |
|
497 ++_stack[_stack_head]; |
|
498 } |
|
499 } |
|
500 return e; |
|
501 } |
|
502 ///Next arc to be processed. |
|
503 |
|
504 ///Next arc to be processed. |
|
505 /// |
|
506 ///\return The next arc to be processed or INVALID if the stack is |
|
507 /// empty. |
|
508 OutArcIt nextArc() |
|
509 { |
|
510 return _stack_head>=0?_stack[_stack_head]:INVALID; |
|
511 } |
|
512 |
|
513 ///\brief Returns \c false if there are nodes |
|
514 ///to be processed in the queue |
|
515 /// |
|
516 ///Returns \c false if there are nodes |
|
517 ///to be processed in the queue |
|
518 bool emptyQueue() { return _stack_head<0; } |
|
519 ///Returns the number of the nodes to be processed. |
|
520 |
|
521 ///Returns the number of the nodes to be processed in the queue. |
|
522 int queueSize() { return _stack_head+1; } |
|
523 |
|
524 ///Executes the algorithm. |
|
525 |
|
526 ///Executes the algorithm. |
|
527 /// |
|
528 ///\pre init() must be called and at least one node should be added |
|
529 ///with addSource() before using this function. |
|
530 /// |
|
531 ///This method runs the %DFS algorithm from the root node(s) |
|
532 ///in order to |
|
533 ///compute the |
|
534 ///%DFS path to each node. The algorithm computes |
|
535 ///- The %DFS tree. |
|
536 ///- The distance of each node from the root(s) in the %DFS tree. |
|
537 /// |
|
538 void start() |
|
539 { |
|
540 while ( !emptyQueue() ) processNextArc(); |
|
541 } |
|
542 |
|
543 ///Executes the algorithm until \c dest is reached. |
|
544 |
|
545 ///Executes the algorithm until \c dest is reached. |
|
546 /// |
|
547 ///\pre init() must be called and at least one node should be added |
|
548 ///with addSource() before using this function. |
|
549 /// |
|
550 ///This method runs the %DFS algorithm from the root node(s) |
|
551 ///in order to |
|
552 ///compute the |
|
553 ///%DFS path to \c dest. The algorithm computes |
|
554 ///- The %DFS path to \c dest. |
|
555 ///- The distance of \c dest from the root(s) in the %DFS tree. |
|
556 /// |
|
557 void start(Node dest) |
|
558 { |
|
559 while ( !emptyQueue() && G->target(_stack[_stack_head])!=dest ) |
|
560 processNextArc(); |
|
561 } |
|
562 |
|
563 ///Executes the algorithm until a condition is met. |
|
564 |
|
565 ///Executes the algorithm until a condition is met. |
|
566 /// |
|
567 ///\pre init() must be called and at least one node should be added |
|
568 ///with addSource() before using this function. |
|
569 /// |
|
570 ///\param em must be a bool (or convertible) arc map. The algorithm |
|
571 ///will stop when it reaches an arc \c e with <tt>em[e]</tt> true. |
|
572 /// |
|
573 ///\return The reached arc \c e with <tt>em[e]</tt> true or |
|
574 ///\c INVALID if no such arc was found. |
|
575 /// |
|
576 ///\warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an arc map, |
|
577 ///not a node map. |
|
578 template<class EM> |
|
579 Arc start(const EM &em) |
|
580 { |
|
581 while ( !emptyQueue() && !em[_stack[_stack_head]] ) |
|
582 processNextArc(); |
|
583 return emptyQueue() ? INVALID : _stack[_stack_head]; |
|
584 } |
|
585 |
|
586 ///Runs %DFS algorithm to visit all nodes in the digraph. |
|
587 |
|
588 ///This method runs the %DFS algorithm in order to |
|
589 ///compute the |
|
590 ///%DFS path to each node. The algorithm computes |
|
591 ///- The %DFS tree. |
|
592 ///- The distance of each node from the root in the %DFS tree. |
|
593 /// |
|
594 ///\note d.run() is just a shortcut of the following code. |
|
595 ///\code |
|
596 /// d.init(); |
|
597 /// for (NodeIt it(digraph); it != INVALID; ++it) { |
|
598 /// if (!d.reached(it)) { |
|
599 /// d.addSource(it); |
|
600 /// d.start(); |
|
601 /// } |
|
602 /// } |
|
603 ///\endcode |
|
604 void run() { |
|
605 init(); |
|
606 for (NodeIt it(*G); it != INVALID; ++it) { |
|
607 if (!reached(it)) { |
|
608 addSource(it); |
|
609 start(); |
|
610 } |
|
611 } |
|
612 } |
|
613 |
|
614 ///Runs %DFS algorithm from node \c s. |
|
615 |
|
616 ///This method runs the %DFS algorithm from a root node \c s |
|
617 ///in order to |
|
618 ///compute the |
|
619 ///%DFS path to each node. The algorithm computes |
|
620 ///- The %DFS tree. |
|
621 ///- The distance of each node from the root in the %DFS tree. |
|
622 /// |
|
623 ///\note d.run(s) is just a shortcut of the following code. |
|
624 ///\code |
|
625 /// d.init(); |
|
626 /// d.addSource(s); |
|
627 /// d.start(); |
|
628 ///\endcode |
|
629 void run(Node s) { |
|
630 init(); |
|
631 addSource(s); |
|
632 start(); |
|
633 } |
|
634 |
|
635 ///Finds the %DFS path between \c s and \c t. |
|
636 |
|
637 ///Finds the %DFS path between \c s and \c t. |
|
638 /// |
|
639 ///\return The length of the %DFS s---t path if there exists one, |
|
640 ///0 otherwise. |
|
641 ///\note Apart from the return value, d.run(s,t) is |
|
642 ///just a shortcut of the following code. |
|
643 ///\code |
|
644 /// d.init(); |
|
645 /// d.addSource(s); |
|
646 /// d.start(t); |
|
647 ///\endcode |
|
648 int run(Node s,Node t) { |
|
649 init(); |
|
650 addSource(s); |
|
651 start(t); |
|
652 return reached(t)?_stack_head+1:0; |
|
653 } |
|
654 |
|
655 ///@} |
|
656 |
|
657 ///\name Query Functions |
|
658 ///The result of the %DFS algorithm can be obtained using these |
|
659 ///functions.\n |
|
660 ///Before the use of these functions, |
|
661 ///either run() or start() must be called. |
|
662 |
|
663 ///@{ |
|
664 |
|
665 typedef PredMapPath<Digraph, PredMap> Path; |
|
666 |
|
667 ///Gives back the shortest path. |
|
668 |
|
669 ///Gives back the shortest path. |
|
670 ///\pre The \c t should be reachable from the source. |
|
671 Path path(Node t) |
|
672 { |
|
673 return Path(*G, *_pred, t); |
|
674 } |
|
675 |
|
676 ///The distance of a node from the root(s). |
|
677 |
|
678 ///Returns the distance of a node from the root(s). |
|
679 ///\pre \ref run() must be called before using this function. |
|
680 ///\warning If node \c v is unreachable from the root(s) then the return |
|
681 ///value of this funcion is undefined. |
|
682 int dist(Node v) const { return (*_dist)[v]; } |
|
683 |
|
684 ///Returns the 'previous arc' of the %DFS tree. |
|
685 |
|
686 ///For a node \c v it returns the 'previous arc' |
|
687 ///of the %DFS path, |
|
688 ///i.e. it returns the last arc of a %DFS path from the root(s) to \c |
|
689 ///v. It is \ref INVALID |
|
690 ///if \c v is unreachable from the root(s) or \c v is a root. The |
|
691 ///%DFS tree used here is equal to the %DFS tree used in |
|
692 ///\ref predNode(). |
|
693 ///\pre Either \ref run() or \ref start() must be called before using |
|
694 ///this function. |
|
695 Arc predArc(Node v) const { return (*_pred)[v];} |
|
696 |
|
697 ///Returns the 'previous node' of the %DFS tree. |
|
698 |
|
699 ///For a node \c v it returns the 'previous node' |
|
700 ///of the %DFS tree, |
|
701 ///i.e. it returns the last but one node from a %DFS path from the |
|
702 ///root(s) to \c v. |
|
703 ///It is INVALID if \c v is unreachable from the root(s) or |
|
704 ///if \c v itself a root. |
|
705 ///The %DFS tree used here is equal to the %DFS |
|
706 ///tree used in \ref predArc(). |
|
707 ///\pre Either \ref run() or \ref start() must be called before |
|
708 ///using this function. |
|
709 Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
|
710 G->source((*_pred)[v]); } |
|
711 |
|
712 ///Returns a reference to the NodeMap of distances. |
|
713 |
|
714 ///Returns a reference to the NodeMap of distances. |
|
715 ///\pre Either \ref run() or \ref init() must |
|
716 ///be called before using this function. |
|
717 const DistMap &distMap() const { return *_dist;} |
|
718 |
|
719 ///Returns a reference to the %DFS arc-tree map. |
|
720 |
|
721 ///Returns a reference to the NodeMap of the arcs of the |
|
722 ///%DFS tree. |
|
723 ///\pre Either \ref run() or \ref init() |
|
724 ///must be called before using this function. |
|
725 const PredMap &predMap() const { return *_pred;} |
|
726 |
|
727 ///Checks if a node is reachable from the root. |
|
728 |
|
729 ///Returns \c true if \c v is reachable from the root(s). |
|
730 ///\warning The source nodes are inditated as unreachable. |
|
731 ///\pre Either \ref run() or \ref start() |
|
732 ///must be called before using this function. |
|
733 /// |
|
734 bool reached(Node v) { return (*_reached)[v]; } |
|
735 |
|
736 ///@} |
|
737 }; |
|
738 |
|
739 ///Default traits class of Dfs function. |
|
740 |
|
741 ///Default traits class of Dfs function. |
|
742 ///\param GR Digraph type. |
|
743 template<class GR> |
|
744 struct DfsWizardDefaultTraits |
|
745 { |
|
746 ///The digraph type the algorithm runs on. |
|
747 typedef GR Digraph; |
|
748 ///\brief The type of the map that stores the last |
|
749 ///arcs of the %DFS paths. |
|
750 /// |
|
751 ///The type of the map that stores the last |
|
752 ///arcs of the %DFS paths. |
|
753 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
754 /// |
|
755 typedef NullMap<typename Digraph::Node,typename GR::Arc> PredMap; |
|
756 ///Instantiates a PredMap. |
|
757 |
|
758 ///This function instantiates a \ref PredMap. |
|
759 ///\param g is the digraph, to which we would like to define the PredMap. |
|
760 ///\todo The digraph alone may be insufficient to initialize |
|
761 #ifdef DOXYGEN |
|
762 static PredMap *createPredMap(const GR &g) |
|
763 #else |
|
764 static PredMap *createPredMap(const GR &) |
|
765 #endif |
|
766 { |
|
767 return new PredMap(); |
|
768 } |
|
769 |
|
770 ///The type of the map that indicates which nodes are processed. |
|
771 |
|
772 ///The type of the map that indicates which nodes are processed. |
|
773 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
774 ///\todo named parameter to set this type, function to read and write. |
|
775 typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
|
776 ///Instantiates a ProcessedMap. |
|
777 |
|
778 ///This function instantiates a \ref ProcessedMap. |
|
779 ///\param g is the digraph, to which |
|
780 ///we would like to define the \ref ProcessedMap |
|
781 #ifdef DOXYGEN |
|
782 static ProcessedMap *createProcessedMap(const GR &g) |
|
783 #else |
|
784 static ProcessedMap *createProcessedMap(const GR &) |
|
785 #endif |
|
786 { |
|
787 return new ProcessedMap(); |
|
788 } |
|
789 ///The type of the map that indicates which nodes are reached. |
|
790 |
|
791 ///The type of the map that indicates which nodes are reached. |
|
792 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
793 ///\todo named parameter to set this type, function to read and write. |
|
794 typedef typename Digraph::template NodeMap<bool> ReachedMap; |
|
795 ///Instantiates a ReachedMap. |
|
796 |
|
797 ///This function instantiates a \ref ReachedMap. |
|
798 ///\param G is the digraph, to which |
|
799 ///we would like to define the \ref ReachedMap. |
|
800 static ReachedMap *createReachedMap(const GR &G) |
|
801 { |
|
802 return new ReachedMap(G); |
|
803 } |
|
804 ///The type of the map that stores the dists of the nodes. |
|
805 |
|
806 ///The type of the map that stores the dists of the nodes. |
|
807 ///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
808 /// |
|
809 typedef NullMap<typename Digraph::Node,int> DistMap; |
|
810 ///Instantiates a DistMap. |
|
811 |
|
812 ///This function instantiates a \ref DistMap. |
|
813 ///\param g is the digraph, to which we would like to define the \ref DistMap |
|
814 #ifdef DOXYGEN |
|
815 static DistMap *createDistMap(const GR &g) |
|
816 #else |
|
817 static DistMap *createDistMap(const GR &) |
|
818 #endif |
|
819 { |
|
820 return new DistMap(); |
|
821 } |
|
822 }; |
|
823 |
|
824 /// Default traits used by \ref DfsWizard |
|
825 |
|
826 /// To make it easier to use Dfs algorithm |
|
827 ///we have created a wizard class. |
|
828 /// This \ref DfsWizard class needs default traits, |
|
829 ///as well as the \ref Dfs class. |
|
830 /// The \ref DfsWizardBase is a class to be the default traits of the |
|
831 /// \ref DfsWizard class. |
|
832 template<class GR> |
|
833 class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
|
834 { |
|
835 |
|
836 typedef DfsWizardDefaultTraits<GR> Base; |
|
837 protected: |
|
838 /// Type of the nodes in the digraph. |
|
839 typedef typename Base::Digraph::Node Node; |
|
840 |
|
841 /// Pointer to the underlying digraph. |
|
842 void *_g; |
|
843 ///Pointer to the map of reached nodes. |
|
844 void *_reached; |
|
845 ///Pointer to the map of processed nodes. |
|
846 void *_processed; |
|
847 ///Pointer to the map of predecessors arcs. |
|
848 void *_pred; |
|
849 ///Pointer to the map of distances. |
|
850 void *_dist; |
|
851 ///Pointer to the source node. |
|
852 Node _source; |
|
853 |
|
854 public: |
|
855 /// Constructor. |
|
856 |
|
857 /// This constructor does not require parameters, therefore it initiates |
|
858 /// all of the attributes to default values (0, INVALID). |
|
859 DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
|
860 _dist(0), _source(INVALID) {} |
|
861 |
|
862 /// Constructor. |
|
863 |
|
864 /// This constructor requires some parameters, |
|
865 /// listed in the parameters list. |
|
866 /// Others are initiated to 0. |
|
867 /// \param g is the initial value of \ref _g |
|
868 /// \param s is the initial value of \ref _source |
|
869 DfsWizardBase(const GR &g, Node s=INVALID) : |
|
870 _g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
|
871 _reached(0), _processed(0), _pred(0), _dist(0), _source(s) {} |
|
872 |
|
873 }; |
|
874 |
|
875 /// A class to make the usage of the Dfs algorithm easier |
|
876 |
|
877 /// This class is created to make it easier to use the Dfs algorithm. |
|
878 /// It uses the functions and features of the plain \ref Dfs, |
|
879 /// but it is much simpler to use it. |
|
880 /// |
|
881 /// Simplicity means that the way to change the types defined |
|
882 /// in the traits class is based on functions that returns the new class |
|
883 /// and not on templatable built-in classes. |
|
884 /// When using the plain \ref Dfs |
|
885 /// the new class with the modified type comes from |
|
886 /// the original class by using the :: |
|
887 /// operator. In the case of \ref DfsWizard only |
|
888 /// a function have to be called and it will |
|
889 /// return the needed class. |
|
890 /// |
|
891 /// It does not have own \ref run method. When its \ref run method is called |
|
892 /// it initiates a plain \ref Dfs object, and calls the \ref Dfs::run |
|
893 /// method of it. |
|
894 template<class TR> |
|
895 class DfsWizard : public TR |
|
896 { |
|
897 typedef TR Base; |
|
898 |
|
899 ///The type of the underlying digraph. |
|
900 typedef typename TR::Digraph Digraph; |
|
901 //\e |
|
902 typedef typename Digraph::Node Node; |
|
903 //\e |
|
904 typedef typename Digraph::NodeIt NodeIt; |
|
905 //\e |
|
906 typedef typename Digraph::Arc Arc; |
|
907 //\e |
|
908 typedef typename Digraph::OutArcIt OutArcIt; |
|
909 |
|
910 ///\brief The type of the map that stores |
|
911 ///the reached nodes |
|
912 typedef typename TR::ReachedMap ReachedMap; |
|
913 ///\brief The type of the map that stores |
|
914 ///the processed nodes |
|
915 typedef typename TR::ProcessedMap ProcessedMap; |
|
916 ///\brief The type of the map that stores the last |
|
917 ///arcs of the %DFS paths. |
|
918 typedef typename TR::PredMap PredMap; |
|
919 ///The type of the map that stores the distances of the nodes. |
|
920 typedef typename TR::DistMap DistMap; |
|
921 |
|
922 public: |
|
923 /// Constructor. |
|
924 DfsWizard() : TR() {} |
|
925 |
|
926 /// Constructor that requires parameters. |
|
927 |
|
928 /// Constructor that requires parameters. |
|
929 /// These parameters will be the default values for the traits class. |
|
930 DfsWizard(const Digraph &g, Node s=INVALID) : |
|
931 TR(g,s) {} |
|
932 |
|
933 ///Copy constructor |
|
934 DfsWizard(const TR &b) : TR(b) {} |
|
935 |
|
936 ~DfsWizard() {} |
|
937 |
|
938 ///Runs Dfs algorithm from a given node. |
|
939 |
|
940 ///Runs Dfs algorithm from a given node. |
|
941 ///The node can be given by the \ref source function. |
|
942 void run() |
|
943 { |
|
944 if(Base::_source==INVALID) throw UninitializedParameter(); |
|
945 Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
|
946 if(Base::_reached) |
|
947 alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
|
948 if(Base::_processed) |
|
949 alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
|
950 if(Base::_pred) |
|
951 alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
952 if(Base::_dist) |
|
953 alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
954 alg.run(Base::_source); |
|
955 } |
|
956 |
|
957 ///Runs Dfs algorithm from the given node. |
|
958 |
|
959 ///Runs Dfs algorithm from the given node. |
|
960 ///\param s is the given source. |
|
961 void run(Node s) |
|
962 { |
|
963 Base::_source=s; |
|
964 run(); |
|
965 } |
|
966 |
|
967 template<class T> |
|
968 struct DefPredMapBase : public Base { |
|
969 typedef T PredMap; |
|
970 static PredMap *createPredMap(const Digraph &) { return 0; }; |
|
971 DefPredMapBase(const TR &b) : TR(b) {} |
|
972 }; |
|
973 |
|
974 ///\brief \ref named-templ-param "Named parameter" |
|
975 ///function for setting PredMap type |
|
976 /// |
|
977 /// \ref named-templ-param "Named parameter" |
|
978 ///function for setting PredMap type |
|
979 /// |
|
980 template<class T> |
|
981 DfsWizard<DefPredMapBase<T> > predMap(const T &t) |
|
982 { |
|
983 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
984 return DfsWizard<DefPredMapBase<T> >(*this); |
|
985 } |
|
986 |
|
987 |
|
988 template<class T> |
|
989 struct DefReachedMapBase : public Base { |
|
990 typedef T ReachedMap; |
|
991 static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
|
992 DefReachedMapBase(const TR &b) : TR(b) {} |
|
993 }; |
|
994 |
|
995 ///\brief \ref named-templ-param "Named parameter" |
|
996 ///function for setting ReachedMap |
|
997 /// |
|
998 /// \ref named-templ-param "Named parameter" |
|
999 ///function for setting ReachedMap |
|
1000 /// |
|
1001 template<class T> |
|
1002 DfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) |
|
1003 { |
|
1004 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1005 return DfsWizard<DefReachedMapBase<T> >(*this); |
|
1006 } |
|
1007 |
|
1008 |
|
1009 template<class T> |
|
1010 struct DefProcessedMapBase : public Base { |
|
1011 typedef T ProcessedMap; |
|
1012 static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
|
1013 DefProcessedMapBase(const TR &b) : TR(b) {} |
|
1014 }; |
|
1015 |
|
1016 ///\brief \ref named-templ-param "Named parameter" |
|
1017 ///function for setting ProcessedMap |
|
1018 /// |
|
1019 /// \ref named-templ-param "Named parameter" |
|
1020 ///function for setting ProcessedMap |
|
1021 /// |
|
1022 template<class T> |
|
1023 DfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) |
|
1024 { |
|
1025 Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1026 return DfsWizard<DefProcessedMapBase<T> >(*this); |
|
1027 } |
|
1028 |
|
1029 template<class T> |
|
1030 struct DefDistMapBase : public Base { |
|
1031 typedef T DistMap; |
|
1032 static DistMap *createDistMap(const Digraph &) { return 0; }; |
|
1033 DefDistMapBase(const TR &b) : TR(b) {} |
|
1034 }; |
|
1035 |
|
1036 ///\brief \ref named-templ-param "Named parameter" |
|
1037 ///function for setting DistMap type |
|
1038 /// |
|
1039 /// \ref named-templ-param "Named parameter" |
|
1040 ///function for setting DistMap type |
|
1041 /// |
|
1042 template<class T> |
|
1043 DfsWizard<DefDistMapBase<T> > distMap(const T &t) |
|
1044 { |
|
1045 Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1046 return DfsWizard<DefDistMapBase<T> >(*this); |
|
1047 } |
|
1048 |
|
1049 /// Sets the source node, from which the Dfs algorithm runs. |
|
1050 |
|
1051 /// Sets the source node, from which the Dfs algorithm runs. |
|
1052 /// \param s is the source node. |
|
1053 DfsWizard<TR> &source(Node s) |
|
1054 { |
|
1055 Base::_source=s; |
|
1056 return *this; |
|
1057 } |
|
1058 |
|
1059 }; |
|
1060 |
|
1061 ///Function type interface for Dfs algorithm. |
|
1062 |
|
1063 ///\ingroup search |
|
1064 ///Function type interface for Dfs algorithm. |
|
1065 /// |
|
1066 ///This function also has several |
|
1067 ///\ref named-templ-func-param "named parameters", |
|
1068 ///they are declared as the members of class \ref DfsWizard. |
|
1069 ///The following |
|
1070 ///example shows how to use these parameters. |
|
1071 ///\code |
|
1072 /// dfs(g,source).predMap(preds).run(); |
|
1073 ///\endcode |
|
1074 ///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
|
1075 ///to the end of the parameter list. |
|
1076 ///\sa DfsWizard |
|
1077 ///\sa Dfs |
|
1078 template<class GR> |
|
1079 DfsWizard<DfsWizardBase<GR> > |
|
1080 dfs(const GR &g,typename GR::Node s=INVALID) |
|
1081 { |
|
1082 return DfsWizard<DfsWizardBase<GR> >(g,s); |
|
1083 } |
|
1084 |
|
1085 #ifdef DOXYGEN |
|
1086 /// \brief Visitor class for dfs. |
|
1087 /// |
|
1088 /// It gives a simple interface for a functional interface for dfs |
|
1089 /// traversal. The traversal on a linear data structure. |
|
1090 template <typename _Digraph> |
|
1091 struct DfsVisitor { |
|
1092 typedef _Digraph Digraph; |
|
1093 typedef typename Digraph::Arc Arc; |
|
1094 typedef typename Digraph::Node Node; |
|
1095 /// \brief Called when the arc reach a node. |
|
1096 /// |
|
1097 /// It is called when the dfs find an arc which target is not |
|
1098 /// reached yet. |
|
1099 void discover(const Arc& arc) {} |
|
1100 /// \brief Called when the node reached first time. |
|
1101 /// |
|
1102 /// It is Called when the node reached first time. |
|
1103 void reach(const Node& node) {} |
|
1104 /// \brief Called when we step back on an arc. |
|
1105 /// |
|
1106 /// It is called when the dfs should step back on the arc. |
|
1107 void backtrack(const Arc& arc) {} |
|
1108 /// \brief Called when we step back from the node. |
|
1109 /// |
|
1110 /// It is called when we step back from the node. |
|
1111 void leave(const Node& node) {} |
|
1112 /// \brief Called when the arc examined but target of the arc |
|
1113 /// already discovered. |
|
1114 /// |
|
1115 /// It called when the arc examined but the target of the arc |
|
1116 /// already discovered. |
|
1117 void examine(const Arc& arc) {} |
|
1118 /// \brief Called for the source node of the dfs. |
|
1119 /// |
|
1120 /// It is called for the source node of the dfs. |
|
1121 void start(const Node& node) {} |
|
1122 /// \brief Called when we leave the source node of the dfs. |
|
1123 /// |
|
1124 /// It is called when we leave the source node of the dfs. |
|
1125 void stop(const Node& node) {} |
|
1126 |
|
1127 }; |
|
1128 #else |
|
1129 template <typename _Digraph> |
|
1130 struct DfsVisitor { |
|
1131 typedef _Digraph Digraph; |
|
1132 typedef typename Digraph::Arc Arc; |
|
1133 typedef typename Digraph::Node Node; |
|
1134 void discover(const Arc&) {} |
|
1135 void reach(const Node&) {} |
|
1136 void backtrack(const Arc&) {} |
|
1137 void leave(const Node&) {} |
|
1138 void examine(const Arc&) {} |
|
1139 void start(const Node&) {} |
|
1140 void stop(const Node&) {} |
|
1141 |
|
1142 template <typename _Visitor> |
|
1143 struct Constraints { |
|
1144 void constraints() { |
|
1145 Arc arc; |
|
1146 Node node; |
|
1147 visitor.discover(arc); |
|
1148 visitor.reach(node); |
|
1149 visitor.backtrack(arc); |
|
1150 visitor.leave(node); |
|
1151 visitor.examine(arc); |
|
1152 visitor.start(node); |
|
1153 visitor.stop(arc); |
|
1154 } |
|
1155 _Visitor& visitor; |
|
1156 }; |
|
1157 }; |
|
1158 #endif |
|
1159 |
|
1160 /// \brief Default traits class of DfsVisit class. |
|
1161 /// |
|
1162 /// Default traits class of DfsVisit class. |
|
1163 /// \param _Digraph Digraph type. |
|
1164 template<class _Digraph> |
|
1165 struct DfsVisitDefaultTraits { |
|
1166 |
|
1167 /// \brief The digraph type the algorithm runs on. |
|
1168 typedef _Digraph Digraph; |
|
1169 |
|
1170 /// \brief The type of the map that indicates which nodes are reached. |
|
1171 /// |
|
1172 /// The type of the map that indicates which nodes are reached. |
|
1173 /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
1174 /// \todo named parameter to set this type, function to read and write. |
|
1175 typedef typename Digraph::template NodeMap<bool> ReachedMap; |
|
1176 |
|
1177 /// \brief Instantiates a ReachedMap. |
|
1178 /// |
|
1179 /// This function instantiates a \ref ReachedMap. |
|
1180 /// \param digraph is the digraph, to which |
|
1181 /// we would like to define the \ref ReachedMap. |
|
1182 static ReachedMap *createReachedMap(const Digraph &digraph) { |
|
1183 return new ReachedMap(digraph); |
|
1184 } |
|
1185 |
|
1186 }; |
|
1187 |
|
1188 /// %DFS Visit algorithm class. |
|
1189 |
|
1190 /// \ingroup search |
|
1191 /// This class provides an efficient implementation of the %DFS algorithm |
|
1192 /// with visitor interface. |
|
1193 /// |
|
1194 /// The %DfsVisit class provides an alternative interface to the Dfs |
|
1195 /// class. It works with callback mechanism, the DfsVisit object calls |
|
1196 /// on every dfs event the \c Visitor class member functions. |
|
1197 /// |
|
1198 /// \param _Digraph The digraph type the algorithm runs on. The default value is |
|
1199 /// \ref ListDigraph. The value of _Digraph is not used directly by Dfs, it |
|
1200 /// is only passed to \ref DfsDefaultTraits. |
|
1201 /// \param _Visitor The Visitor object for the algorithm. The |
|
1202 /// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty Visitor which |
|
1203 /// does not observe the Dfs events. If you want to observe the dfs |
|
1204 /// events you should implement your own Visitor class. |
|
1205 /// \param _Traits Traits class to set various data types used by the |
|
1206 /// algorithm. The default traits class is |
|
1207 /// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
|
1208 /// See \ref DfsVisitDefaultTraits for the documentation of |
|
1209 /// a Dfs visit traits class. |
|
1210 /// |
|
1211 /// \author Jacint Szabo, Alpar Juttner and Balazs Dezso |
|
1212 #ifdef DOXYGEN |
|
1213 template <typename _Digraph, typename _Visitor, typename _Traits> |
|
1214 #else |
|
1215 template <typename _Digraph = ListDigraph, |
|
1216 typename _Visitor = DfsVisitor<_Digraph>, |
|
1217 typename _Traits = DfsDefaultTraits<_Digraph> > |
|
1218 #endif |
|
1219 class DfsVisit { |
|
1220 public: |
|
1221 |
|
1222 /// \brief \ref Exception for uninitialized parameters. |
|
1223 /// |
|
1224 /// This error represents problems in the initialization |
|
1225 /// of the parameters of the algorithms. |
|
1226 class UninitializedParameter : public lemon::UninitializedParameter { |
|
1227 public: |
|
1228 virtual const char* what() const throw() |
|
1229 { |
|
1230 return "lemon::DfsVisit::UninitializedParameter"; |
|
1231 } |
|
1232 }; |
|
1233 |
|
1234 typedef _Traits Traits; |
|
1235 |
|
1236 typedef typename Traits::Digraph Digraph; |
|
1237 |
|
1238 typedef _Visitor Visitor; |
|
1239 |
|
1240 ///The type of the map indicating which nodes are reached. |
|
1241 typedef typename Traits::ReachedMap ReachedMap; |
|
1242 |
|
1243 private: |
|
1244 |
|
1245 typedef typename Digraph::Node Node; |
|
1246 typedef typename Digraph::NodeIt NodeIt; |
|
1247 typedef typename Digraph::Arc Arc; |
|
1248 typedef typename Digraph::OutArcIt OutArcIt; |
|
1249 |
|
1250 /// Pointer to the underlying digraph. |
|
1251 const Digraph *_digraph; |
|
1252 /// Pointer to the visitor object. |
|
1253 Visitor *_visitor; |
|
1254 ///Pointer to the map of reached status of the nodes. |
|
1255 ReachedMap *_reached; |
|
1256 ///Indicates if \ref _reached is locally allocated (\c true) or not. |
|
1257 bool local_reached; |
|
1258 |
|
1259 std::vector<typename Digraph::Arc> _stack; |
|
1260 int _stack_head; |
|
1261 |
|
1262 /// \brief Creates the maps if necessary. |
|
1263 /// |
|
1264 /// Creates the maps if necessary. |
|
1265 void create_maps() { |
|
1266 if(!_reached) { |
|
1267 local_reached = true; |
|
1268 _reached = Traits::createReachedMap(*_digraph); |
|
1269 } |
|
1270 } |
|
1271 |
|
1272 protected: |
|
1273 |
|
1274 DfsVisit() {} |
|
1275 |
|
1276 public: |
|
1277 |
|
1278 typedef DfsVisit Create; |
|
1279 |
|
1280 /// \name Named template parameters |
|
1281 |
|
1282 ///@{ |
|
1283 template <class T> |
|
1284 struct DefReachedMapTraits : public Traits { |
|
1285 typedef T ReachedMap; |
|
1286 static ReachedMap *createReachedMap(const Digraph &digraph) { |
|
1287 throw UninitializedParameter(); |
|
1288 } |
|
1289 }; |
|
1290 /// \brief \ref named-templ-param "Named parameter" for setting |
|
1291 /// ReachedMap type |
|
1292 /// |
|
1293 /// \ref named-templ-param "Named parameter" for setting ReachedMap type |
|
1294 template <class T> |
|
1295 struct DefReachedMap : public DfsVisit< Digraph, Visitor, |
|
1296 DefReachedMapTraits<T> > { |
|
1297 typedef DfsVisit< Digraph, Visitor, DefReachedMapTraits<T> > Create; |
|
1298 }; |
|
1299 ///@} |
|
1300 |
|
1301 public: |
|
1302 |
|
1303 /// \brief Constructor. |
|
1304 /// |
|
1305 /// Constructor. |
|
1306 /// |
|
1307 /// \param digraph the digraph the algorithm will run on. |
|
1308 /// \param visitor The visitor of the algorithm. |
|
1309 /// |
|
1310 DfsVisit(const Digraph& digraph, Visitor& visitor) |
|
1311 : _digraph(&digraph), _visitor(&visitor), |
|
1312 _reached(0), local_reached(false) {} |
|
1313 |
|
1314 /// \brief Destructor. |
|
1315 /// |
|
1316 /// Destructor. |
|
1317 ~DfsVisit() { |
|
1318 if(local_reached) delete _reached; |
|
1319 } |
|
1320 |
|
1321 /// \brief Sets the map indicating if a node is reached. |
|
1322 /// |
|
1323 /// Sets the map indicating if a node is reached. |
|
1324 /// If you don't use this function before calling \ref run(), |
|
1325 /// it will allocate one. The destuctor deallocates this |
|
1326 /// automatically allocated map, of course. |
|
1327 /// \return <tt> (*this) </tt> |
|
1328 DfsVisit &reachedMap(ReachedMap &m) { |
|
1329 if(local_reached) { |
|
1330 delete _reached; |
|
1331 local_reached=false; |
|
1332 } |
|
1333 _reached = &m; |
|
1334 return *this; |
|
1335 } |
|
1336 |
|
1337 public: |
|
1338 /// \name Execution control |
|
1339 /// The simplest way to execute the algorithm is to use |
|
1340 /// one of the member functions called \c run(...). |
|
1341 /// \n |
|
1342 /// If you need more control on the execution, |
|
1343 /// first you must call \ref init(), then you can adda source node |
|
1344 /// with \ref addSource(). |
|
1345 /// Finally \ref start() will perform the actual path |
|
1346 /// computation. |
|
1347 |
|
1348 /// @{ |
|
1349 /// \brief Initializes the internal data structures. |
|
1350 /// |
|
1351 /// Initializes the internal data structures. |
|
1352 /// |
|
1353 void init() { |
|
1354 create_maps(); |
|
1355 _stack.resize(countNodes(*_digraph)); |
|
1356 _stack_head = -1; |
|
1357 for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
|
1358 _reached->set(u, false); |
|
1359 } |
|
1360 } |
|
1361 |
|
1362 /// \brief Adds a new source node. |
|
1363 /// |
|
1364 /// Adds a new source node to the set of nodes to be processed. |
|
1365 void addSource(Node s) { |
|
1366 if(!(*_reached)[s]) { |
|
1367 _reached->set(s,true); |
|
1368 _visitor->start(s); |
|
1369 _visitor->reach(s); |
|
1370 Arc e; |
|
1371 _digraph->firstOut(e, s); |
|
1372 if (e != INVALID) { |
|
1373 _stack[++_stack_head] = e; |
|
1374 } else { |
|
1375 _visitor->leave(s); |
|
1376 } |
|
1377 } |
|
1378 } |
|
1379 |
|
1380 /// \brief Processes the next arc. |
|
1381 /// |
|
1382 /// Processes the next arc. |
|
1383 /// |
|
1384 /// \return The processed arc. |
|
1385 /// |
|
1386 /// \pre The stack must not be empty! |
|
1387 Arc processNextArc() { |
|
1388 Arc e = _stack[_stack_head]; |
|
1389 Node m = _digraph->target(e); |
|
1390 if(!(*_reached)[m]) { |
|
1391 _visitor->discover(e); |
|
1392 _visitor->reach(m); |
|
1393 _reached->set(m, true); |
|
1394 _digraph->firstOut(_stack[++_stack_head], m); |
|
1395 } else { |
|
1396 _visitor->examine(e); |
|
1397 m = _digraph->source(e); |
|
1398 _digraph->nextOut(_stack[_stack_head]); |
|
1399 } |
|
1400 while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
|
1401 _visitor->leave(m); |
|
1402 --_stack_head; |
|
1403 if (_stack_head >= 0) { |
|
1404 _visitor->backtrack(_stack[_stack_head]); |
|
1405 m = _digraph->source(_stack[_stack_head]); |
|
1406 _digraph->nextOut(_stack[_stack_head]); |
|
1407 } else { |
|
1408 _visitor->stop(m); |
|
1409 } |
|
1410 } |
|
1411 return e; |
|
1412 } |
|
1413 |
|
1414 /// \brief Next arc to be processed. |
|
1415 /// |
|
1416 /// Next arc to be processed. |
|
1417 /// |
|
1418 /// \return The next arc to be processed or INVALID if the stack is |
|
1419 /// empty. |
|
1420 Arc nextArc() { |
|
1421 return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
|
1422 } |
|
1423 |
|
1424 /// \brief Returns \c false if there are nodes |
|
1425 /// to be processed in the queue |
|
1426 /// |
|
1427 /// Returns \c false if there are nodes |
|
1428 /// to be processed in the queue |
|
1429 bool emptyQueue() { return _stack_head < 0; } |
|
1430 |
|
1431 /// \brief Returns the number of the nodes to be processed. |
|
1432 /// |
|
1433 /// Returns the number of the nodes to be processed in the queue. |
|
1434 int queueSize() { return _stack_head + 1; } |
|
1435 |
|
1436 /// \brief Executes the algorithm. |
|
1437 /// |
|
1438 /// Executes the algorithm. |
|
1439 /// |
|
1440 /// \pre init() must be called and at least one node should be added |
|
1441 /// with addSource() before using this function. |
|
1442 void start() { |
|
1443 while ( !emptyQueue() ) processNextArc(); |
|
1444 } |
|
1445 |
|
1446 /// \brief Executes the algorithm until \c dest is reached. |
|
1447 /// |
|
1448 /// Executes the algorithm until \c dest is reached. |
|
1449 /// |
|
1450 /// \pre init() must be called and at least one node should be added |
|
1451 /// with addSource() before using this function. |
|
1452 void start(Node dest) { |
|
1453 while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != dest ) |
|
1454 processNextArc(); |
|
1455 } |
|
1456 |
|
1457 /// \brief Executes the algorithm until a condition is met. |
|
1458 /// |
|
1459 /// Executes the algorithm until a condition is met. |
|
1460 /// |
|
1461 /// \pre init() must be called and at least one node should be added |
|
1462 /// with addSource() before using this function. |
|
1463 /// |
|
1464 /// \param em must be a bool (or convertible) arc map. The algorithm |
|
1465 /// will stop when it reaches an arc \c e with <tt>em[e]</tt> true. |
|
1466 /// |
|
1467 ///\return The reached arc \c e with <tt>em[e]</tt> true or |
|
1468 ///\c INVALID if no such arc was found. |
|
1469 /// |
|
1470 /// \warning Contrary to \ref Bfs and \ref Dijkstra, \c em is an arc map, |
|
1471 /// not a node map. |
|
1472 template <typename EM> |
|
1473 Arc start(const EM &em) { |
|
1474 while ( !emptyQueue() && !em[_stack[_stack_head]] ) |
|
1475 processNextArc(); |
|
1476 return emptyQueue() ? INVALID : _stack[_stack_head]; |
|
1477 } |
|
1478 |
|
1479 /// \brief Runs %DFSVisit algorithm from node \c s. |
|
1480 /// |
|
1481 /// This method runs the %DFS algorithm from a root node \c s. |
|
1482 /// \note d.run(s) is just a shortcut of the following code. |
|
1483 ///\code |
|
1484 /// d.init(); |
|
1485 /// d.addSource(s); |
|
1486 /// d.start(); |
|
1487 ///\endcode |
|
1488 void run(Node s) { |
|
1489 init(); |
|
1490 addSource(s); |
|
1491 start(); |
|
1492 } |
|
1493 |
|
1494 /// \brief Runs %DFSVisit algorithm to visit all nodes in the digraph. |
|
1495 |
|
1496 /// This method runs the %DFS algorithm in order to |
|
1497 /// compute the %DFS path to each node. The algorithm computes |
|
1498 /// - The %DFS tree. |
|
1499 /// - The distance of each node from the root in the %DFS tree. |
|
1500 /// |
|
1501 ///\note d.run() is just a shortcut of the following code. |
|
1502 ///\code |
|
1503 /// d.init(); |
|
1504 /// for (NodeIt it(digraph); it != INVALID; ++it) { |
|
1505 /// if (!d.reached(it)) { |
|
1506 /// d.addSource(it); |
|
1507 /// d.start(); |
|
1508 /// } |
|
1509 /// } |
|
1510 ///\endcode |
|
1511 void run() { |
|
1512 init(); |
|
1513 for (NodeIt it(*_digraph); it != INVALID; ++it) { |
|
1514 if (!reached(it)) { |
|
1515 addSource(it); |
|
1516 start(); |
|
1517 } |
|
1518 } |
|
1519 } |
|
1520 ///@} |
|
1521 |
|
1522 /// \name Query Functions |
|
1523 /// The result of the %DFS algorithm can be obtained using these |
|
1524 /// functions.\n |
|
1525 /// Before the use of these functions, |
|
1526 /// either run() or start() must be called. |
|
1527 ///@{ |
|
1528 /// \brief Checks if a node is reachable from the root. |
|
1529 /// |
|
1530 /// Returns \c true if \c v is reachable from the root(s). |
|
1531 /// \warning The source nodes are inditated as unreachable. |
|
1532 /// \pre Either \ref run() or \ref start() |
|
1533 /// must be called before using this function. |
|
1534 /// |
|
1535 bool reached(Node v) { return (*_reached)[v]; } |
|
1536 ///@} |
|
1537 }; |
|
1538 |
|
1539 |
|
1540 } //END OF NAMESPACE LEMON |
|
1541 |
|
1542 #endif |
|
1543 |