lemon/hartmann_orlin.h
changeset 766 97744b6dabf8
child 767 11c946fa8d13
equal deleted inserted replaced
-1:000000000000 0:f5d47495897c
       
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2008
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_HARTMANN_ORLIN_H
       
    20 #define LEMON_HARTMANN_ORLIN_H
       
    21 
       
    22 /// \ingroup shortest_path
       
    23 ///
       
    24 /// \file
       
    25 /// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
       
    26 
       
    27 #include <vector>
       
    28 #include <limits>
       
    29 #include <lemon/core.h>
       
    30 #include <lemon/path.h>
       
    31 #include <lemon/tolerance.h>
       
    32 #include <lemon/connectivity.h>
       
    33 
       
    34 namespace lemon {
       
    35 
       
    36   /// \brief Default traits class of HartmannOrlin algorithm.
       
    37   ///
       
    38   /// Default traits class of HartmannOrlin algorithm.
       
    39   /// \tparam GR The type of the digraph.
       
    40   /// \tparam LEN The type of the length map.
       
    41   /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
       
    42 #ifdef DOXYGEN
       
    43   template <typename GR, typename LEN>
       
    44 #else
       
    45   template <typename GR, typename LEN,
       
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
       
    47 #endif
       
    48   struct HartmannOrlinDefaultTraits
       
    49   {
       
    50     /// The type of the digraph
       
    51     typedef GR Digraph;
       
    52     /// The type of the length map
       
    53     typedef LEN LengthMap;
       
    54     /// The type of the arc lengths
       
    55     typedef typename LengthMap::Value Value;
       
    56 
       
    57     /// \brief The large value type used for internal computations
       
    58     ///
       
    59     /// The large value type used for internal computations.
       
    60     /// It is \c long \c long if the \c Value type is integer,
       
    61     /// otherwise it is \c double.
       
    62     /// \c Value must be convertible to \c LargeValue.
       
    63     typedef double LargeValue;
       
    64 
       
    65     /// The tolerance type used for internal computations
       
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
       
    67 
       
    68     /// \brief The path type of the found cycles
       
    69     ///
       
    70     /// The path type of the found cycles.
       
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
       
    72     /// and it must have an \c addBack() function.
       
    73     typedef lemon::Path<Digraph> Path;
       
    74   };
       
    75 
       
    76   // Default traits class for integer value types
       
    77   template <typename GR, typename LEN>
       
    78   struct HartmannOrlinDefaultTraits<GR, LEN, true>
       
    79   {
       
    80     typedef GR Digraph;
       
    81     typedef LEN LengthMap;
       
    82     typedef typename LengthMap::Value Value;
       
    83 #ifdef LEMON_HAVE_LONG_LONG
       
    84     typedef long long LargeValue;
       
    85 #else
       
    86     typedef long LargeValue;
       
    87 #endif
       
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
       
    89     typedef lemon::Path<Digraph> Path;
       
    90   };
       
    91 
       
    92 
       
    93   /// \addtogroup shortest_path
       
    94   /// @{
       
    95 
       
    96   /// \brief Implementation of the Hartmann-Orlin algorithm for finding
       
    97   /// a minimum mean cycle.
       
    98   ///
       
    99   /// This class implements the Hartmann-Orlin algorithm for finding
       
   100   /// a directed cycle of minimum mean length (cost) in a digraph.
       
   101   /// It is an improved version of \ref Karp "Karp's original algorithm",
       
   102   /// it applies an efficient early termination scheme.
       
   103   ///
       
   104   /// \tparam GR The type of the digraph the algorithm runs on.
       
   105   /// \tparam LEN The type of the length map. The default
       
   106   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
       
   107 #ifdef DOXYGEN
       
   108   template <typename GR, typename LEN, typename TR>
       
   109 #else
       
   110   template < typename GR,
       
   111              typename LEN = typename GR::template ArcMap<int>,
       
   112              typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
       
   113 #endif
       
   114   class HartmannOrlin
       
   115   {
       
   116   public:
       
   117 
       
   118     /// The type of the digraph
       
   119     typedef typename TR::Digraph Digraph;
       
   120     /// The type of the length map
       
   121     typedef typename TR::LengthMap LengthMap;
       
   122     /// The type of the arc lengths
       
   123     typedef typename TR::Value Value;
       
   124 
       
   125     /// \brief The large value type
       
   126     ///
       
   127     /// The large value type used for internal computations.
       
   128     /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
       
   129     /// it is \c long \c long if the \c Value type is integer,
       
   130     /// otherwise it is \c double.
       
   131     typedef typename TR::LargeValue LargeValue;
       
   132 
       
   133     /// The tolerance type
       
   134     typedef typename TR::Tolerance Tolerance;
       
   135 
       
   136     /// \brief The path type of the found cycles
       
   137     ///
       
   138     /// The path type of the found cycles.
       
   139     /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
       
   140     /// it is \ref lemon::Path "Path<Digraph>".
       
   141     typedef typename TR::Path Path;
       
   142 
       
   143     /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
       
   144     typedef TR Traits;
       
   145 
       
   146   private:
       
   147 
       
   148     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
       
   149 
       
   150     // Data sturcture for path data
       
   151     struct PathData
       
   152     {
       
   153       bool found;
       
   154       LargeValue dist;
       
   155       Arc pred;
       
   156       PathData(bool f = false, LargeValue d = 0, Arc p = INVALID) :
       
   157         found(f), dist(d), pred(p) {}
       
   158     };
       
   159 
       
   160     typedef typename Digraph::template NodeMap<std::vector<PathData> >
       
   161       PathDataNodeMap;
       
   162 
       
   163   private:
       
   164 
       
   165     // The digraph the algorithm runs on
       
   166     const Digraph &_gr;
       
   167     // The length of the arcs
       
   168     const LengthMap &_length;
       
   169 
       
   170     // Data for storing the strongly connected components
       
   171     int _comp_num;
       
   172     typename Digraph::template NodeMap<int> _comp;
       
   173     std::vector<std::vector<Node> > _comp_nodes;
       
   174     std::vector<Node>* _nodes;
       
   175     typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
       
   176 
       
   177     // Data for the found cycles
       
   178     bool _curr_found, _best_found;
       
   179     LargeValue _curr_length, _best_length;
       
   180     int _curr_size, _best_size;
       
   181     Node _curr_node, _best_node;
       
   182     int _curr_level, _best_level;
       
   183 
       
   184     Path *_cycle_path;
       
   185     bool _local_path;
       
   186 
       
   187     // Node map for storing path data
       
   188     PathDataNodeMap _data;
       
   189     // The processed nodes in the last round
       
   190     std::vector<Node> _process;
       
   191 
       
   192     Tolerance _tolerance;
       
   193 
       
   194   public:
       
   195 
       
   196     /// \name Named Template Parameters
       
   197     /// @{
       
   198 
       
   199     template <typename T>
       
   200     struct SetLargeValueTraits : public Traits {
       
   201       typedef T LargeValue;
       
   202       typedef lemon::Tolerance<T> Tolerance;
       
   203     };
       
   204 
       
   205     /// \brief \ref named-templ-param "Named parameter" for setting
       
   206     /// \c LargeValue type.
       
   207     ///
       
   208     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
       
   209     /// type. It is used for internal computations in the algorithm.
       
   210     template <typename T>
       
   211     struct SetLargeValue
       
   212       : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
       
   213       typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
       
   214     };
       
   215 
       
   216     template <typename T>
       
   217     struct SetPathTraits : public Traits {
       
   218       typedef T Path;
       
   219     };
       
   220 
       
   221     /// \brief \ref named-templ-param "Named parameter" for setting
       
   222     /// \c %Path type.
       
   223     ///
       
   224     /// \ref named-templ-param "Named parameter" for setting the \c %Path
       
   225     /// type of the found cycles.
       
   226     /// It must conform to the \ref lemon::concepts::Path "Path" concept
       
   227     /// and it must have an \c addFront() function.
       
   228     template <typename T>
       
   229     struct SetPath
       
   230       : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
       
   231       typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
       
   232     };
       
   233 
       
   234     /// @}
       
   235 
       
   236   public:
       
   237 
       
   238     /// \brief Constructor.
       
   239     ///
       
   240     /// The constructor of the class.
       
   241     ///
       
   242     /// \param digraph The digraph the algorithm runs on.
       
   243     /// \param length The lengths (costs) of the arcs.
       
   244     HartmannOrlin( const Digraph &digraph,
       
   245                    const LengthMap &length ) :
       
   246       _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
       
   247       _best_found(false), _best_length(0), _best_size(1),
       
   248       _cycle_path(NULL), _local_path(false), _data(digraph)
       
   249     {}
       
   250 
       
   251     /// Destructor.
       
   252     ~HartmannOrlin() {
       
   253       if (_local_path) delete _cycle_path;
       
   254     }
       
   255 
       
   256     /// \brief Set the path structure for storing the found cycle.
       
   257     ///
       
   258     /// This function sets an external path structure for storing the
       
   259     /// found cycle.
       
   260     ///
       
   261     /// If you don't call this function before calling \ref run() or
       
   262     /// \ref findMinMean(), it will allocate a local \ref Path "path"
       
   263     /// structure. The destuctor deallocates this automatically
       
   264     /// allocated object, of course.
       
   265     ///
       
   266     /// \note The algorithm calls only the \ref lemon::Path::addFront()
       
   267     /// "addFront()" function of the given path structure.
       
   268     ///
       
   269     /// \return <tt>(*this)</tt>
       
   270     HartmannOrlin& cycle(Path &path) {
       
   271       if (_local_path) {
       
   272         delete _cycle_path;
       
   273         _local_path = false;
       
   274       }
       
   275       _cycle_path = &path;
       
   276       return *this;
       
   277     }
       
   278 
       
   279     /// \name Execution control
       
   280     /// The simplest way to execute the algorithm is to call the \ref run()
       
   281     /// function.\n
       
   282     /// If you only need the minimum mean length, you may call
       
   283     /// \ref findMinMean().
       
   284 
       
   285     /// @{
       
   286 
       
   287     /// \brief Run the algorithm.
       
   288     ///
       
   289     /// This function runs the algorithm.
       
   290     /// It can be called more than once (e.g. if the underlying digraph
       
   291     /// and/or the arc lengths have been modified).
       
   292     ///
       
   293     /// \return \c true if a directed cycle exists in the digraph.
       
   294     ///
       
   295     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
       
   296     /// \code
       
   297     ///   return mmc.findMinMean() && mmc.findCycle();
       
   298     /// \endcode
       
   299     bool run() {
       
   300       return findMinMean() && findCycle();
       
   301     }
       
   302 
       
   303     /// \brief Find the minimum cycle mean.
       
   304     ///
       
   305     /// This function finds the minimum mean length of the directed
       
   306     /// cycles in the digraph.
       
   307     ///
       
   308     /// \return \c true if a directed cycle exists in the digraph.
       
   309     bool findMinMean() {
       
   310       // Initialization and find strongly connected components
       
   311       init();
       
   312       findComponents();
       
   313       
       
   314       // Find the minimum cycle mean in the components
       
   315       for (int comp = 0; comp < _comp_num; ++comp) {
       
   316         if (!initComponent(comp)) continue;
       
   317         processRounds();
       
   318         
       
   319         // Update the best cycle (global minimum mean cycle)
       
   320         if ( _curr_found && (!_best_found || 
       
   321              _curr_length * _best_size < _best_length * _curr_size) ) {
       
   322           _best_found = true;
       
   323           _best_length = _curr_length;
       
   324           _best_size = _curr_size;
       
   325           _best_node = _curr_node;
       
   326           _best_level = _curr_level;
       
   327         }
       
   328       }
       
   329       return _best_found;
       
   330     }
       
   331 
       
   332     /// \brief Find a minimum mean directed cycle.
       
   333     ///
       
   334     /// This function finds a directed cycle of minimum mean length
       
   335     /// in the digraph using the data computed by findMinMean().
       
   336     ///
       
   337     /// \return \c true if a directed cycle exists in the digraph.
       
   338     ///
       
   339     /// \pre \ref findMinMean() must be called before using this function.
       
   340     bool findCycle() {
       
   341       if (!_best_found) return false;
       
   342       IntNodeMap reached(_gr, -1);
       
   343       int r = _best_level + 1;
       
   344       Node u = _best_node;
       
   345       while (reached[u] < 0) {
       
   346         reached[u] = --r;
       
   347         u = _gr.source(_data[u][r].pred);
       
   348       }
       
   349       r = reached[u];
       
   350       Arc e = _data[u][r].pred;
       
   351       _cycle_path->addFront(e);
       
   352       _best_length = _length[e];
       
   353       _best_size = 1;
       
   354       Node v;
       
   355       while ((v = _gr.source(e)) != u) {
       
   356         e = _data[v][--r].pred;
       
   357         _cycle_path->addFront(e);
       
   358         _best_length += _length[e];
       
   359         ++_best_size;
       
   360       }
       
   361       return true;
       
   362     }
       
   363 
       
   364     /// @}
       
   365 
       
   366     /// \name Query Functions
       
   367     /// The results of the algorithm can be obtained using these
       
   368     /// functions.\n
       
   369     /// The algorithm should be executed before using them.
       
   370 
       
   371     /// @{
       
   372 
       
   373     /// \brief Return the total length of the found cycle.
       
   374     ///
       
   375     /// This function returns the total length of the found cycle.
       
   376     ///
       
   377     /// \pre \ref run() or \ref findMinMean() must be called before
       
   378     /// using this function.
       
   379     LargeValue cycleLength() const {
       
   380       return _best_length;
       
   381     }
       
   382 
       
   383     /// \brief Return the number of arcs on the found cycle.
       
   384     ///
       
   385     /// This function returns the number of arcs on the found cycle.
       
   386     ///
       
   387     /// \pre \ref run() or \ref findMinMean() must be called before
       
   388     /// using this function.
       
   389     int cycleArcNum() const {
       
   390       return _best_size;
       
   391     }
       
   392 
       
   393     /// \brief Return the mean length of the found cycle.
       
   394     ///
       
   395     /// This function returns the mean length of the found cycle.
       
   396     ///
       
   397     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
       
   398     /// following code.
       
   399     /// \code
       
   400     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
       
   401     /// \endcode
       
   402     ///
       
   403     /// \pre \ref run() or \ref findMinMean() must be called before
       
   404     /// using this function.
       
   405     double cycleMean() const {
       
   406       return static_cast<double>(_best_length) / _best_size;
       
   407     }
       
   408 
       
   409     /// \brief Return the found cycle.
       
   410     ///
       
   411     /// This function returns a const reference to the path structure
       
   412     /// storing the found cycle.
       
   413     ///
       
   414     /// \pre \ref run() or \ref findCycle() must be called before using
       
   415     /// this function.
       
   416     const Path& cycle() const {
       
   417       return *_cycle_path;
       
   418     }
       
   419 
       
   420     ///@}
       
   421 
       
   422   private:
       
   423 
       
   424     // Initialization
       
   425     void init() {
       
   426       if (!_cycle_path) {
       
   427         _local_path = true;
       
   428         _cycle_path = new Path;
       
   429       }
       
   430       _cycle_path->clear();
       
   431       _best_found = false;
       
   432       _best_length = 0;
       
   433       _best_size = 1;
       
   434       _cycle_path->clear();
       
   435       for (NodeIt u(_gr); u != INVALID; ++u)
       
   436         _data[u].clear();
       
   437     }
       
   438 
       
   439     // Find strongly connected components and initialize _comp_nodes
       
   440     // and _out_arcs
       
   441     void findComponents() {
       
   442       _comp_num = stronglyConnectedComponents(_gr, _comp);
       
   443       _comp_nodes.resize(_comp_num);
       
   444       if (_comp_num == 1) {
       
   445         _comp_nodes[0].clear();
       
   446         for (NodeIt n(_gr); n != INVALID; ++n) {
       
   447           _comp_nodes[0].push_back(n);
       
   448           _out_arcs[n].clear();
       
   449           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
       
   450             _out_arcs[n].push_back(a);
       
   451           }
       
   452         }
       
   453       } else {
       
   454         for (int i = 0; i < _comp_num; ++i)
       
   455           _comp_nodes[i].clear();
       
   456         for (NodeIt n(_gr); n != INVALID; ++n) {
       
   457           int k = _comp[n];
       
   458           _comp_nodes[k].push_back(n);
       
   459           _out_arcs[n].clear();
       
   460           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
       
   461             if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
       
   462           }
       
   463         }
       
   464       }
       
   465     }
       
   466 
       
   467     // Initialize path data for the current component
       
   468     bool initComponent(int comp) {
       
   469       _nodes = &(_comp_nodes[comp]);
       
   470       int n = _nodes->size();
       
   471       if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
       
   472         return false;
       
   473       }      
       
   474       for (int i = 0; i < n; ++i) {
       
   475         _data[(*_nodes)[i]].resize(n + 1);
       
   476       }
       
   477       return true;
       
   478     }
       
   479 
       
   480     // Process all rounds of computing path data for the current component.
       
   481     // _data[v][k] is the length of a shortest directed walk from the root
       
   482     // node to node v containing exactly k arcs.
       
   483     void processRounds() {
       
   484       Node start = (*_nodes)[0];
       
   485       _data[start][0] = PathData(true, 0);
       
   486       _process.clear();
       
   487       _process.push_back(start);
       
   488 
       
   489       int k, n = _nodes->size();
       
   490       int next_check = 4;
       
   491       bool terminate = false;
       
   492       for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
       
   493         processNextBuildRound(k);
       
   494         if (k == next_check || k == n) {
       
   495           terminate = checkTermination(k);
       
   496           next_check = next_check * 3 / 2;
       
   497         }
       
   498       }
       
   499       for ( ; k <= n && !terminate; ++k) {
       
   500         processNextFullRound(k);
       
   501         if (k == next_check || k == n) {
       
   502           terminate = checkTermination(k);
       
   503           next_check = next_check * 3 / 2;
       
   504         }
       
   505       }
       
   506     }
       
   507 
       
   508     // Process one round and rebuild _process
       
   509     void processNextBuildRound(int k) {
       
   510       std::vector<Node> next;
       
   511       Node u, v;
       
   512       Arc e;
       
   513       LargeValue d;
       
   514       for (int i = 0; i < int(_process.size()); ++i) {
       
   515         u = _process[i];
       
   516         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
       
   517           e = _out_arcs[u][j];
       
   518           v = _gr.target(e);
       
   519           d = _data[u][k-1].dist + _length[e];
       
   520           if (!_data[v][k].found) {
       
   521             next.push_back(v);
       
   522             _data[v][k] = PathData(true, _data[u][k-1].dist + _length[e], e);
       
   523           }
       
   524           else if (_tolerance.less(d, _data[v][k].dist)) {
       
   525             _data[v][k] = PathData(true, d, e);
       
   526           }
       
   527         }
       
   528       }
       
   529       _process.swap(next);
       
   530     }
       
   531 
       
   532     // Process one round using _nodes instead of _process
       
   533     void processNextFullRound(int k) {
       
   534       Node u, v;
       
   535       Arc e;
       
   536       LargeValue d;
       
   537       for (int i = 0; i < int(_nodes->size()); ++i) {
       
   538         u = (*_nodes)[i];
       
   539         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
       
   540           e = _out_arcs[u][j];
       
   541           v = _gr.target(e);
       
   542           d = _data[u][k-1].dist + _length[e];
       
   543           if (!_data[v][k].found || _tolerance.less(d, _data[v][k].dist)) {
       
   544             _data[v][k] = PathData(true, d, e);
       
   545           }
       
   546         }
       
   547       }
       
   548     }
       
   549     
       
   550     // Check early termination
       
   551     bool checkTermination(int k) {
       
   552       typedef std::pair<int, int> Pair;
       
   553       typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
       
   554       typename GR::template NodeMap<LargeValue> pi(_gr);
       
   555       int n = _nodes->size();
       
   556       LargeValue length;
       
   557       int size;
       
   558       Node u;
       
   559       
       
   560       // Search for cycles that are already found
       
   561       _curr_found = false;
       
   562       for (int i = 0; i < n; ++i) {
       
   563         u = (*_nodes)[i];
       
   564         if (!_data[u][k].found) continue;
       
   565         for (int j = k; j >= 0; --j) {
       
   566           if (level[u].first == i && level[u].second > 0) {
       
   567             // A cycle is found
       
   568             length = _data[u][level[u].second].dist - _data[u][j].dist;
       
   569             size = level[u].second - j;
       
   570             if (!_curr_found || length * _curr_size < _curr_length * size) {
       
   571               _curr_length = length;
       
   572               _curr_size = size;
       
   573               _curr_node = u;
       
   574               _curr_level = level[u].second;
       
   575               _curr_found = true;
       
   576             }
       
   577           }
       
   578           level[u] = Pair(i, j);
       
   579           u = _gr.source(_data[u][j].pred);
       
   580         }
       
   581       }
       
   582 
       
   583       // If at least one cycle is found, check the optimality condition
       
   584       LargeValue d;
       
   585       if (_curr_found && k < n) {
       
   586         // Find node potentials
       
   587         for (int i = 0; i < n; ++i) {
       
   588           u = (*_nodes)[i];
       
   589           pi[u] = std::numeric_limits<LargeValue>::max();
       
   590           for (int j = 0; j <= k; ++j) {
       
   591             d = _data[u][j].dist * _curr_size - j * _curr_length;
       
   592             if (_data[u][j].found && _tolerance.less(d, pi[u])) {
       
   593               pi[u] = d;
       
   594             }
       
   595           }
       
   596         }
       
   597 
       
   598         // Check the optimality condition for all arcs
       
   599         bool done = true;
       
   600         for (ArcIt a(_gr); a != INVALID; ++a) {
       
   601           if (_tolerance.less(_length[a] * _curr_size - _curr_length,
       
   602                               pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
       
   603             done = false;
       
   604             break;
       
   605           }
       
   606         }
       
   607         return done;
       
   608       }
       
   609       return (k == n);
       
   610     }
       
   611 
       
   612   }; //class HartmannOrlin
       
   613 
       
   614   ///@}
       
   615 
       
   616 } //namespace lemon
       
   617 
       
   618 #endif //LEMON_HARTMANN_ORLIN_H