lemon/cycle_canceling.h
changeset 815 aef153f430e1
parent 814 0643a9c2c3ae
child 816 277ef0218f0c
equal deleted inserted replaced
0:e2d8763c9dfb 1:e3ba824a6afe
    17  */
    17  */
    18 
    18 
    19 #ifndef LEMON_CYCLE_CANCELING_H
    19 #ifndef LEMON_CYCLE_CANCELING_H
    20 #define LEMON_CYCLE_CANCELING_H
    20 #define LEMON_CYCLE_CANCELING_H
    21 
    21 
    22 /// \ingroup min_cost_flow
    22 /// \ingroup min_cost_flow_algs
    23 ///
       
    24 /// \file
    23 /// \file
    25 /// \brief Cycle-canceling algorithm for finding a minimum cost flow.
    24 /// \brief Cycle-canceling algorithms for finding a minimum cost flow.
    26 
    25 
    27 #include <vector>
    26 #include <vector>
       
    27 #include <limits>
       
    28 
       
    29 #include <lemon/core.h>
       
    30 #include <lemon/maps.h>
       
    31 #include <lemon/path.h>
       
    32 #include <lemon/math.h>
       
    33 #include <lemon/static_graph.h>
    28 #include <lemon/adaptors.h>
    34 #include <lemon/adaptors.h>
    29 #include <lemon/path.h>
       
    30 
       
    31 #include <lemon/circulation.h>
    35 #include <lemon/circulation.h>
    32 #include <lemon/bellman_ford.h>
    36 #include <lemon/bellman_ford.h>
    33 #include <lemon/howard.h>
    37 #include <lemon/howard.h>
    34 
    38 
    35 namespace lemon {
    39 namespace lemon {
    36 
    40 
    37   /// \addtogroup min_cost_flow
    41   /// \addtogroup min_cost_flow_algs
    38   /// @{
    42   /// @{
    39 
    43 
    40   /// \brief Implementation of a cycle-canceling algorithm for
    44   /// \brief Implementation of cycle-canceling algorithms for
    41   /// finding a minimum cost flow.
    45   /// finding a \ref min_cost_flow "minimum cost flow".
    42   ///
    46   ///
    43   /// \ref CycleCanceling implements a cycle-canceling algorithm for
    47   /// \ref CycleCanceling implements three different cycle-canceling
    44   /// finding a minimum cost flow.
    48   /// algorithms for finding a \ref min_cost_flow "minimum cost flow".
       
    49   /// The most efficent one (both theoretically and practically)
       
    50   /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm,
       
    51   /// thus it is the default method.
       
    52   /// It is strongly polynomial, but in practice, it is typically much
       
    53   /// slower than the scaling algorithms and NetworkSimplex.
    45   ///
    54   ///
    46   /// \tparam Digraph The digraph type the algorithm runs on.
    55   /// Most of the parameters of the problem (except for the digraph)
    47   /// \tparam LowerMap The type of the lower bound map.
    56   /// can be given using separate functions, and the algorithm can be
    48   /// \tparam CapacityMap The type of the capacity (upper bound) map.
    57   /// executed using the \ref run() function. If some parameters are not
    49   /// \tparam CostMap The type of the cost (length) map.
    58   /// specified, then default values will be used.
    50   /// \tparam SupplyMap The type of the supply map.
       
    51   ///
    59   ///
    52   /// \warning
    60   /// \tparam GR The digraph type the algorithm runs on.
    53   /// - Arc capacities and costs should be \e non-negative \e integers.
    61   /// \tparam V The number type used for flow amounts, capacity bounds
    54   /// - Supply values should be \e signed \e integers.
    62   /// and supply values in the algorithm. By default, it is \c int.
    55   /// - The value types of the maps should be convertible to each other.
    63   /// \tparam C The number type used for costs and potentials in the
    56   /// - \c CostMap::Value must be signed type.
    64   /// algorithm. By default, it is the same as \c V.
    57   ///
    65   ///
    58   /// \note By default the \ref BellmanFord "Bellman-Ford" algorithm is
    66   /// \warning Both number types must be signed and all input data must
    59   /// used for negative cycle detection with limited iteration number.
    67   /// be integer.
    60   /// However \ref CycleCanceling also provides the "Minimum Mean
    68   /// \warning This algorithm does not support negative costs for such
    61   /// Cycle-Canceling" algorithm, which is \e strongly \e polynomial,
    69   /// arcs that have infinite upper bound.
    62   /// but rather slower in practice.
       
    63   /// To use this version of the algorithm, call \ref run() with \c true
       
    64   /// parameter.
       
    65   ///
    70   ///
    66   /// \author Peter Kovacs
    71   /// \note For more information about the three available methods,
    67   template < typename Digraph,
    72   /// see \ref Method.
    68              typename LowerMap = typename Digraph::template ArcMap<int>,
    73 #ifdef DOXYGEN
    69              typename CapacityMap = typename Digraph::template ArcMap<int>,
    74   template <typename GR, typename V, typename C>
    70              typename CostMap = typename Digraph::template ArcMap<int>,
    75 #else
    71              typename SupplyMap = typename Digraph::template NodeMap<int> >
    76   template <typename GR, typename V = int, typename C = V>
       
    77 #endif
    72   class CycleCanceling
    78   class CycleCanceling
    73   {
    79   {
    74     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
       
    75 
       
    76     typedef typename CapacityMap::Value Capacity;
       
    77     typedef typename CostMap::Value Cost;
       
    78     typedef typename SupplyMap::Value Supply;
       
    79     typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap;
       
    80     typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap;
       
    81 
       
    82     typedef ResidualDigraph< const Digraph,
       
    83       CapacityArcMap, CapacityArcMap > ResDigraph;
       
    84     typedef typename ResDigraph::Node ResNode;
       
    85     typedef typename ResDigraph::NodeIt ResNodeIt;
       
    86     typedef typename ResDigraph::Arc ResArc;
       
    87     typedef typename ResDigraph::ArcIt ResArcIt;
       
    88 
       
    89   public:
    80   public:
    90 
    81 
    91     /// The type of the flow map.
    82     /// The type of the digraph
    92     typedef typename Digraph::template ArcMap<Capacity> FlowMap;
    83     typedef GR Digraph;
    93     /// The type of the potential map.
    84     /// The type of the flow amounts, capacity bounds and supply values
    94     typedef typename Digraph::template NodeMap<Cost> PotentialMap;
    85     typedef V Value;
       
    86     /// The type of the arc costs
       
    87     typedef C Cost;
       
    88 
       
    89   public:
       
    90 
       
    91     /// \brief Problem type constants for the \c run() function.
       
    92     ///
       
    93     /// Enum type containing the problem type constants that can be
       
    94     /// returned by the \ref run() function of the algorithm.
       
    95     enum ProblemType {
       
    96       /// The problem has no feasible solution (flow).
       
    97       INFEASIBLE,
       
    98       /// The problem has optimal solution (i.e. it is feasible and
       
    99       /// bounded), and the algorithm has found optimal flow and node
       
   100       /// potentials (primal and dual solutions).
       
   101       OPTIMAL,
       
   102       /// The digraph contains an arc of negative cost and infinite
       
   103       /// upper bound. It means that the objective function is unbounded
       
   104       /// on that arc, however, note that it could actually be bounded
       
   105       /// over the feasible flows, but this algroithm cannot handle
       
   106       /// these cases.
       
   107       UNBOUNDED
       
   108     };
       
   109 
       
   110     /// \brief Constants for selecting the used method.
       
   111     ///
       
   112     /// Enum type containing constants for selecting the used method
       
   113     /// for the \ref run() function.
       
   114     ///
       
   115     /// \ref CycleCanceling provides three different cycle-canceling
       
   116     /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
       
   117     /// is used, which proved to be the most efficient and the most robust
       
   118     /// on various test inputs.
       
   119     /// However, the other methods can be selected using the \ref run()
       
   120     /// function with the proper parameter.
       
   121     enum Method {
       
   122       /// A simple cycle-canceling method, which uses the
       
   123       /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
       
   124       /// number for detecting negative cycles in the residual network.
       
   125       SIMPLE_CYCLE_CANCELING,
       
   126       /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
       
   127       /// well-known strongly polynomial method. It improves along a
       
   128       /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
       
   129       /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
       
   130       MINIMUM_MEAN_CYCLE_CANCELING,
       
   131       /// The "Cancel And Tighten" algorithm, which can be viewed as an
       
   132       /// improved version of the previous method.
       
   133       /// It is faster both in theory and in practice, its running time
       
   134       /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
       
   135       CANCEL_AND_TIGHTEN
       
   136     };
    95 
   137 
    96   private:
   138   private:
    97 
   139 
    98     /// \brief Map adaptor class for handling residual arc costs.
   140     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
    99     ///
   141     
   100     /// Map adaptor class for handling residual arc costs.
   142     typedef std::vector<int> IntVector;
   101     class ResidualCostMap : public MapBase<ResArc, Cost>
   143     typedef std::vector<char> CharVector;
       
   144     typedef std::vector<double> DoubleVector;
       
   145     typedef std::vector<Value> ValueVector;
       
   146     typedef std::vector<Cost> CostVector;
       
   147 
       
   148   private:
       
   149   
       
   150     template <typename KT, typename VT>
       
   151     class VectorMap {
       
   152     public:
       
   153       typedef KT Key;
       
   154       typedef VT Value;
       
   155       
       
   156       VectorMap(std::vector<Value>& v) : _v(v) {}
       
   157       
       
   158       const Value& operator[](const Key& key) const {
       
   159         return _v[StaticDigraph::id(key)];
       
   160       }
       
   161 
       
   162       Value& operator[](const Key& key) {
       
   163         return _v[StaticDigraph::id(key)];
       
   164       }
       
   165       
       
   166       void set(const Key& key, const Value& val) {
       
   167         _v[StaticDigraph::id(key)] = val;
       
   168       }
       
   169 
       
   170     private:
       
   171       std::vector<Value>& _v;
       
   172     };
       
   173 
       
   174     typedef VectorMap<StaticDigraph::Node, Cost> CostNodeMap;
       
   175     typedef VectorMap<StaticDigraph::Arc, Cost> CostArcMap;
       
   176 
       
   177   private:
       
   178 
       
   179 
       
   180     // Data related to the underlying digraph
       
   181     const GR &_graph;
       
   182     int _node_num;
       
   183     int _arc_num;
       
   184     int _res_node_num;
       
   185     int _res_arc_num;
       
   186     int _root;
       
   187 
       
   188     // Parameters of the problem
       
   189     bool _have_lower;
       
   190     Value _sum_supply;
       
   191 
       
   192     // Data structures for storing the digraph
       
   193     IntNodeMap _node_id;
       
   194     IntArcMap _arc_idf;
       
   195     IntArcMap _arc_idb;
       
   196     IntVector _first_out;
       
   197     CharVector _forward;
       
   198     IntVector _source;
       
   199     IntVector _target;
       
   200     IntVector _reverse;
       
   201 
       
   202     // Node and arc data
       
   203     ValueVector _lower;
       
   204     ValueVector _upper;
       
   205     CostVector _cost;
       
   206     ValueVector _supply;
       
   207 
       
   208     ValueVector _res_cap;
       
   209     CostVector _pi;
       
   210 
       
   211     // Data for a StaticDigraph structure
       
   212     typedef std::pair<int, int> IntPair;
       
   213     StaticDigraph _sgr;
       
   214     std::vector<IntPair> _arc_vec;
       
   215     std::vector<Cost> _cost_vec;
       
   216     IntVector _id_vec;
       
   217     CostArcMap _cost_map;
       
   218     CostNodeMap _pi_map;
       
   219   
       
   220   public:
       
   221   
       
   222     /// \brief Constant for infinite upper bounds (capacities).
       
   223     ///
       
   224     /// Constant for infinite upper bounds (capacities).
       
   225     /// It is \c std::numeric_limits<Value>::infinity() if available,
       
   226     /// \c std::numeric_limits<Value>::max() otherwise.
       
   227     const Value INF;
       
   228 
       
   229   public:
       
   230 
       
   231     /// \brief Constructor.
       
   232     ///
       
   233     /// The constructor of the class.
       
   234     ///
       
   235     /// \param graph The digraph the algorithm runs on.
       
   236     CycleCanceling(const GR& graph) :
       
   237       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
       
   238       _cost_map(_cost_vec), _pi_map(_pi),
       
   239       INF(std::numeric_limits<Value>::has_infinity ?
       
   240           std::numeric_limits<Value>::infinity() :
       
   241           std::numeric_limits<Value>::max())
   102     {
   242     {
   103     private:
   243       // Check the number types
   104 
   244       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   105       const CostMap &_cost_map;
   245         "The flow type of CycleCanceling must be signed");
   106 
   246       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   107     public:
   247         "The cost type of CycleCanceling must be signed");
   108 
   248 
   109       ///\e
   249       // Resize vectors
   110       ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
   250       _node_num = countNodes(_graph);
   111 
   251       _arc_num = countArcs(_graph);
   112       ///\e
   252       _res_node_num = _node_num + 1;
   113       Cost operator[](const ResArc &e) const {
   253       _res_arc_num = 2 * (_arc_num + _node_num);
   114         return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e];
   254       _root = _node_num;
   115       }
   255 
   116 
   256       _first_out.resize(_res_node_num + 1);
   117     }; //class ResidualCostMap
   257       _forward.resize(_res_arc_num);
   118 
   258       _source.resize(_res_arc_num);
   119   private:
   259       _target.resize(_res_arc_num);
   120 
   260       _reverse.resize(_res_arc_num);
   121     // The maximum number of iterations for the first execution of the
   261 
   122     // Bellman-Ford algorithm. It should be at least 2.
   262       _lower.resize(_res_arc_num);
   123     static const int BF_FIRST_LIMIT  = 2;
   263       _upper.resize(_res_arc_num);
   124     // The iteration limit for the Bellman-Ford algorithm is multiplied
   264       _cost.resize(_res_arc_num);
   125     // by BF_LIMIT_FACTOR/100 in every round.
   265       _supply.resize(_res_node_num);
   126     static const int BF_LIMIT_FACTOR = 150;
   266       
   127 
   267       _res_cap.resize(_res_arc_num);
   128   private:
   268       _pi.resize(_res_node_num);
   129 
   269 
   130     // The digraph the algorithm runs on
   270       _arc_vec.reserve(_res_arc_num);
   131     const Digraph &_graph;
   271       _cost_vec.reserve(_res_arc_num);
   132     // The original lower bound map
   272       _id_vec.reserve(_res_arc_num);
   133     const LowerMap *_lower;
   273 
   134     // The modified capacity map
   274       // Copy the graph
   135     CapacityArcMap _capacity;
   275       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   136     // The original cost map
   276       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   137     const CostMap &_cost;
   277         _node_id[n] = i;
   138     // The modified supply map
   278       }
   139     SupplyNodeMap _supply;
   279       i = 0;
   140     bool _valid_supply;
   280       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   141 
   281         _first_out[i] = j;
   142     // Arc map of the current flow
   282         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   143     FlowMap *_flow;
   283           _arc_idf[a] = j;
   144     bool _local_flow;
   284           _forward[j] = true;
   145     // Node map of the current potentials
   285           _source[j] = i;
   146     PotentialMap *_potential;
   286           _target[j] = _node_id[_graph.runningNode(a)];
   147     bool _local_potential;
   287         }
   148 
   288         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   149     // The residual digraph
   289           _arc_idb[a] = j;
   150     ResDigraph *_res_graph;
   290           _forward[j] = false;
   151     // The residual cost map
   291           _source[j] = i;
   152     ResidualCostMap _res_cost;
   292           _target[j] = _node_id[_graph.runningNode(a)];
   153 
   293         }
   154   public:
   294         _forward[j] = false;
   155 
   295         _source[j] = i;
   156     /// \brief General constructor (with lower bounds).
   296         _target[j] = _root;
   157     ///
   297         _reverse[j] = k;
   158     /// General constructor (with lower bounds).
   298         _forward[k] = true;
   159     ///
   299         _source[k] = _root;
   160     /// \param digraph The digraph the algorithm runs on.
   300         _target[k] = i;
   161     /// \param lower The lower bounds of the arcs.
   301         _reverse[k] = j;
   162     /// \param capacity The capacities (upper bounds) of the arcs.
   302         ++j; ++k;
   163     /// \param cost The cost (length) values of the arcs.
   303       }
   164     /// \param supply The supply values of the nodes (signed).
   304       _first_out[i] = j;
   165     CycleCanceling( const Digraph &digraph,
   305       _first_out[_res_node_num] = k;
   166                     const LowerMap &lower,
   306       for (ArcIt a(_graph); a != INVALID; ++a) {
   167                     const CapacityMap &capacity,
   307         int fi = _arc_idf[a];
   168                     const CostMap &cost,
   308         int bi = _arc_idb[a];
   169                     const SupplyMap &supply ) :
   309         _reverse[fi] = bi;
   170       _graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost),
   310         _reverse[bi] = fi;
   171       _supply(digraph), _flow(NULL), _local_flow(false),
   311       }
   172       _potential(NULL), _local_potential(false),
   312       
   173       _res_graph(NULL), _res_cost(_cost)
   313       // Reset parameters
   174     {
   314       reset();
   175       // Check the sum of supply values
   315     }
   176       Supply sum = 0;
   316 
       
   317     /// \name Parameters
       
   318     /// The parameters of the algorithm can be specified using these
       
   319     /// functions.
       
   320 
       
   321     /// @{
       
   322 
       
   323     /// \brief Set the lower bounds on the arcs.
       
   324     ///
       
   325     /// This function sets the lower bounds on the arcs.
       
   326     /// If it is not used before calling \ref run(), the lower bounds
       
   327     /// will be set to zero on all arcs.
       
   328     ///
       
   329     /// \param map An arc map storing the lower bounds.
       
   330     /// Its \c Value type must be convertible to the \c Value type
       
   331     /// of the algorithm.
       
   332     ///
       
   333     /// \return <tt>(*this)</tt>
       
   334     template <typename LowerMap>
       
   335     CycleCanceling& lowerMap(const LowerMap& map) {
       
   336       _have_lower = true;
       
   337       for (ArcIt a(_graph); a != INVALID; ++a) {
       
   338         _lower[_arc_idf[a]] = map[a];
       
   339         _lower[_arc_idb[a]] = map[a];
       
   340       }
       
   341       return *this;
       
   342     }
       
   343 
       
   344     /// \brief Set the upper bounds (capacities) on the arcs.
       
   345     ///
       
   346     /// This function sets the upper bounds (capacities) on the arcs.
       
   347     /// If it is not used before calling \ref run(), the upper bounds
       
   348     /// will be set to \ref INF on all arcs (i.e. the flow value will be
       
   349     /// unbounded from above).
       
   350     ///
       
   351     /// \param map An arc map storing the upper bounds.
       
   352     /// Its \c Value type must be convertible to the \c Value type
       
   353     /// of the algorithm.
       
   354     ///
       
   355     /// \return <tt>(*this)</tt>
       
   356     template<typename UpperMap>
       
   357     CycleCanceling& upperMap(const UpperMap& map) {
       
   358       for (ArcIt a(_graph); a != INVALID; ++a) {
       
   359         _upper[_arc_idf[a]] = map[a];
       
   360       }
       
   361       return *this;
       
   362     }
       
   363 
       
   364     /// \brief Set the costs of the arcs.
       
   365     ///
       
   366     /// This function sets the costs of the arcs.
       
   367     /// If it is not used before calling \ref run(), the costs
       
   368     /// will be set to \c 1 on all arcs.
       
   369     ///
       
   370     /// \param map An arc map storing the costs.
       
   371     /// Its \c Value type must be convertible to the \c Cost type
       
   372     /// of the algorithm.
       
   373     ///
       
   374     /// \return <tt>(*this)</tt>
       
   375     template<typename CostMap>
       
   376     CycleCanceling& costMap(const CostMap& map) {
       
   377       for (ArcIt a(_graph); a != INVALID; ++a) {
       
   378         _cost[_arc_idf[a]] =  map[a];
       
   379         _cost[_arc_idb[a]] = -map[a];
       
   380       }
       
   381       return *this;
       
   382     }
       
   383 
       
   384     /// \brief Set the supply values of the nodes.
       
   385     ///
       
   386     /// This function sets the supply values of the nodes.
       
   387     /// If neither this function nor \ref stSupply() is used before
       
   388     /// calling \ref run(), the supply of each node will be set to zero.
       
   389     ///
       
   390     /// \param map A node map storing the supply values.
       
   391     /// Its \c Value type must be convertible to the \c Value type
       
   392     /// of the algorithm.
       
   393     ///
       
   394     /// \return <tt>(*this)</tt>
       
   395     template<typename SupplyMap>
       
   396     CycleCanceling& supplyMap(const SupplyMap& map) {
   177       for (NodeIt n(_graph); n != INVALID; ++n) {
   397       for (NodeIt n(_graph); n != INVALID; ++n) {
   178         _supply[n] = supply[n];
   398         _supply[_node_id[n]] = map[n];
   179         sum += _supply[n];
   399       }
   180       }
   400       return *this;
   181       _valid_supply = sum == 0;
   401     }
   182 
   402 
   183       // Remove non-zero lower bounds
   403     /// \brief Set single source and target nodes and a supply value.
   184       for (ArcIt e(_graph); e != INVALID; ++e) {
   404     ///
   185         _capacity[e] = capacity[e];
   405     /// This function sets a single source node and a single target node
   186         if (lower[e] != 0) {
   406     /// and the required flow value.
   187           _capacity[e] -= lower[e];
   407     /// If neither this function nor \ref supplyMap() is used before
   188           _supply[_graph.source(e)] -= lower[e];
   408     /// calling \ref run(), the supply of each node will be set to zero.
   189           _supply[_graph.target(e)] += lower[e];
   409     ///
   190         }
   410     /// Using this function has the same effect as using \ref supplyMap()
   191       }
   411     /// with such a map in which \c k is assigned to \c s, \c -k is
   192     }
   412     /// assigned to \c t and all other nodes have zero supply value.
   193 /*
   413     ///
   194     /// \brief General constructor (without lower bounds).
       
   195     ///
       
   196     /// General constructor (without lower bounds).
       
   197     ///
       
   198     /// \param digraph The digraph the algorithm runs on.
       
   199     /// \param capacity The capacities (upper bounds) of the arcs.
       
   200     /// \param cost The cost (length) values of the arcs.
       
   201     /// \param supply The supply values of the nodes (signed).
       
   202     CycleCanceling( const Digraph &digraph,
       
   203                     const CapacityMap &capacity,
       
   204                     const CostMap &cost,
       
   205                     const SupplyMap &supply ) :
       
   206       _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
       
   207       _supply(supply), _flow(NULL), _local_flow(false),
       
   208       _potential(NULL), _local_potential(false), _res_graph(NULL),
       
   209       _res_cost(_cost)
       
   210     {
       
   211       // Check the sum of supply values
       
   212       Supply sum = 0;
       
   213       for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
       
   214       _valid_supply = sum == 0;
       
   215     }
       
   216 
       
   217     /// \brief Simple constructor (with lower bounds).
       
   218     ///
       
   219     /// Simple constructor (with lower bounds).
       
   220     ///
       
   221     /// \param digraph The digraph the algorithm runs on.
       
   222     /// \param lower The lower bounds of the arcs.
       
   223     /// \param capacity The capacities (upper bounds) of the arcs.
       
   224     /// \param cost The cost (length) values of the arcs.
       
   225     /// \param s The source node.
   414     /// \param s The source node.
   226     /// \param t The target node.
   415     /// \param t The target node.
   227     /// \param flow_value The required amount of flow from node \c s
   416     /// \param k The required amount of flow from node \c s to node \c t
   228     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   417     /// (i.e. the supply of \c s and the demand of \c t).
   229     CycleCanceling( const Digraph &digraph,
   418     ///
   230                     const LowerMap &lower,
   419     /// \return <tt>(*this)</tt>
   231                     const CapacityMap &capacity,
   420     CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
   232                     const CostMap &cost,
   421       for (int i = 0; i != _res_node_num; ++i) {
   233                     Node s, Node t,
   422         _supply[i] = 0;
   234                     Supply flow_value ) :
   423       }
   235       _graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost),
   424       _supply[_node_id[s]] =  k;
   236       _supply(digraph, 0), _flow(NULL), _local_flow(false),
   425       _supply[_node_id[t]] = -k;
   237       _potential(NULL), _local_potential(false), _res_graph(NULL),
       
   238       _res_cost(_cost)
       
   239     {
       
   240       // Remove non-zero lower bounds
       
   241       _supply[s] =  flow_value;
       
   242       _supply[t] = -flow_value;
       
   243       for (ArcIt e(_graph); e != INVALID; ++e) {
       
   244         if (lower[e] != 0) {
       
   245           _capacity[e] -= lower[e];
       
   246           _supply[_graph.source(e)] -= lower[e];
       
   247           _supply[_graph.target(e)] += lower[e];
       
   248         }
       
   249       }
       
   250       _valid_supply = true;
       
   251     }
       
   252 
       
   253     /// \brief Simple constructor (without lower bounds).
       
   254     ///
       
   255     /// Simple constructor (without lower bounds).
       
   256     ///
       
   257     /// \param digraph The digraph the algorithm runs on.
       
   258     /// \param capacity The capacities (upper bounds) of the arcs.
       
   259     /// \param cost The cost (length) values of the arcs.
       
   260     /// \param s The source node.
       
   261     /// \param t The target node.
       
   262     /// \param flow_value The required amount of flow from node \c s
       
   263     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
       
   264     CycleCanceling( const Digraph &digraph,
       
   265                     const CapacityMap &capacity,
       
   266                     const CostMap &cost,
       
   267                     Node s, Node t,
       
   268                     Supply flow_value ) :
       
   269       _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
       
   270       _supply(digraph, 0), _flow(NULL), _local_flow(false),
       
   271       _potential(NULL), _local_potential(false), _res_graph(NULL),
       
   272       _res_cost(_cost)
       
   273     {
       
   274       _supply[s] =  flow_value;
       
   275       _supply[t] = -flow_value;
       
   276       _valid_supply = true;
       
   277     }
       
   278 */
       
   279     /// Destructor.
       
   280     ~CycleCanceling() {
       
   281       if (_local_flow) delete _flow;
       
   282       if (_local_potential) delete _potential;
       
   283       delete _res_graph;
       
   284     }
       
   285 
       
   286     /// \brief Set the flow map.
       
   287     ///
       
   288     /// Set the flow map.
       
   289     ///
       
   290     /// \return \c (*this)
       
   291     CycleCanceling& flowMap(FlowMap &map) {
       
   292       if (_local_flow) {
       
   293         delete _flow;
       
   294         _local_flow = false;
       
   295       }
       
   296       _flow = &map;
       
   297       return *this;
   426       return *this;
   298     }
   427     }
   299 
   428     
   300     /// \brief Set the potential map.
   429     /// @}
   301     ///
   430 
   302     /// Set the potential map.
   431     /// \name Execution control
   303     ///
   432     /// The algorithm can be executed using \ref run().
   304     /// \return \c (*this)
   433 
   305     CycleCanceling& potentialMap(PotentialMap &map) {
   434     /// @{
   306       if (_local_potential) {
   435 
   307         delete _potential;
   436     /// \brief Run the algorithm.
   308         _local_potential = false;
   437     ///
   309       }
   438     /// This function runs the algorithm.
   310       _potential = &map;
   439     /// The paramters can be specified using functions \ref lowerMap(),
       
   440     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
       
   441     /// For example,
       
   442     /// \code
       
   443     ///   CycleCanceling<ListDigraph> cc(graph);
       
   444     ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
       
   445     ///     .supplyMap(sup).run();
       
   446     /// \endcode
       
   447     ///
       
   448     /// This function can be called more than once. All the parameters
       
   449     /// that have been given are kept for the next call, unless
       
   450     /// \ref reset() is called, thus only the modified parameters
       
   451     /// have to be set again. See \ref reset() for examples.
       
   452     /// However, the underlying digraph must not be modified after this
       
   453     /// class have been constructed, since it copies and extends the graph.
       
   454     ///
       
   455     /// \param method The cycle-canceling method that will be used.
       
   456     /// For more information, see \ref Method.
       
   457     ///
       
   458     /// \return \c INFEASIBLE if no feasible flow exists,
       
   459     /// \n \c OPTIMAL if the problem has optimal solution
       
   460     /// (i.e. it is feasible and bounded), and the algorithm has found
       
   461     /// optimal flow and node potentials (primal and dual solutions),
       
   462     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
       
   463     /// and infinite upper bound. It means that the objective function
       
   464     /// is unbounded on that arc, however, note that it could actually be
       
   465     /// bounded over the feasible flows, but this algroithm cannot handle
       
   466     /// these cases.
       
   467     ///
       
   468     /// \see ProblemType, Method
       
   469     ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
       
   470       ProblemType pt = init();
       
   471       if (pt != OPTIMAL) return pt;
       
   472       start(method);
       
   473       return OPTIMAL;
       
   474     }
       
   475 
       
   476     /// \brief Reset all the parameters that have been given before.
       
   477     ///
       
   478     /// This function resets all the paramaters that have been given
       
   479     /// before using functions \ref lowerMap(), \ref upperMap(),
       
   480     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
       
   481     ///
       
   482     /// It is useful for multiple run() calls. If this function is not
       
   483     /// used, all the parameters given before are kept for the next
       
   484     /// \ref run() call.
       
   485     /// However, the underlying digraph must not be modified after this
       
   486     /// class have been constructed, since it copies and extends the graph.
       
   487     ///
       
   488     /// For example,
       
   489     /// \code
       
   490     ///   CycleCanceling<ListDigraph> cs(graph);
       
   491     ///
       
   492     ///   // First run
       
   493     ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
       
   494     ///     .supplyMap(sup).run();
       
   495     ///
       
   496     ///   // Run again with modified cost map (reset() is not called,
       
   497     ///   // so only the cost map have to be set again)
       
   498     ///   cost[e] += 100;
       
   499     ///   cc.costMap(cost).run();
       
   500     ///
       
   501     ///   // Run again from scratch using reset()
       
   502     ///   // (the lower bounds will be set to zero on all arcs)
       
   503     ///   cc.reset();
       
   504     ///   cc.upperMap(capacity).costMap(cost)
       
   505     ///     .supplyMap(sup).run();
       
   506     /// \endcode
       
   507     ///
       
   508     /// \return <tt>(*this)</tt>
       
   509     CycleCanceling& reset() {
       
   510       for (int i = 0; i != _res_node_num; ++i) {
       
   511         _supply[i] = 0;
       
   512       }
       
   513       int limit = _first_out[_root];
       
   514       for (int j = 0; j != limit; ++j) {
       
   515         _lower[j] = 0;
       
   516         _upper[j] = INF;
       
   517         _cost[j] = _forward[j] ? 1 : -1;
       
   518       }
       
   519       for (int j = limit; j != _res_arc_num; ++j) {
       
   520         _lower[j] = 0;
       
   521         _upper[j] = INF;
       
   522         _cost[j] = 0;
       
   523         _cost[_reverse[j]] = 0;
       
   524       }      
       
   525       _have_lower = false;
   311       return *this;
   526       return *this;
   312     }
   527     }
   313 
   528 
   314     /// \name Execution control
   529     /// @}
       
   530 
       
   531     /// \name Query Functions
       
   532     /// The results of the algorithm can be obtained using these
       
   533     /// functions.\n
       
   534     /// The \ref run() function must be called before using them.
   315 
   535 
   316     /// @{
   536     /// @{
   317 
   537 
   318     /// \brief Run the algorithm.
   538     /// \brief Return the total cost of the found flow.
   319     ///
   539     ///
   320     /// Run the algorithm.
   540     /// This function returns the total cost of the found flow.
   321     ///
   541     /// Its complexity is O(e).
   322     /// \param min_mean_cc Set this parameter to \c true to run the
   542     ///
   323     /// "Minimum Mean Cycle-Canceling" algorithm, which is strongly
   543     /// \note The return type of the function can be specified as a
   324     /// polynomial, but rather slower in practice.
   544     /// template parameter. For example,
   325     ///
   545     /// \code
   326     /// \return \c true if a feasible flow can be found.
   546     ///   cc.totalCost<double>();
   327     bool run(bool min_mean_cc = false) {
   547     /// \endcode
   328       return init() && start(min_mean_cc);
   548     /// It is useful if the total cost cannot be stored in the \c Cost
       
   549     /// type of the algorithm, which is the default return type of the
       
   550     /// function.
       
   551     ///
       
   552     /// \pre \ref run() must be called before using this function.
       
   553     template <typename Number>
       
   554     Number totalCost() const {
       
   555       Number c = 0;
       
   556       for (ArcIt a(_graph); a != INVALID; ++a) {
       
   557         int i = _arc_idb[a];
       
   558         c += static_cast<Number>(_res_cap[i]) *
       
   559              (-static_cast<Number>(_cost[i]));
       
   560       }
       
   561       return c;
       
   562     }
       
   563 
       
   564 #ifndef DOXYGEN
       
   565     Cost totalCost() const {
       
   566       return totalCost<Cost>();
       
   567     }
       
   568 #endif
       
   569 
       
   570     /// \brief Return the flow on the given arc.
       
   571     ///
       
   572     /// This function returns the flow on the given arc.
       
   573     ///
       
   574     /// \pre \ref run() must be called before using this function.
       
   575     Value flow(const Arc& a) const {
       
   576       return _res_cap[_arc_idb[a]];
       
   577     }
       
   578 
       
   579     /// \brief Return the flow map (the primal solution).
       
   580     ///
       
   581     /// This function copies the flow value on each arc into the given
       
   582     /// map. The \c Value type of the algorithm must be convertible to
       
   583     /// the \c Value type of the map.
       
   584     ///
       
   585     /// \pre \ref run() must be called before using this function.
       
   586     template <typename FlowMap>
       
   587     void flowMap(FlowMap &map) const {
       
   588       for (ArcIt a(_graph); a != INVALID; ++a) {
       
   589         map.set(a, _res_cap[_arc_idb[a]]);
       
   590       }
       
   591     }
       
   592 
       
   593     /// \brief Return the potential (dual value) of the given node.
       
   594     ///
       
   595     /// This function returns the potential (dual value) of the
       
   596     /// given node.
       
   597     ///
       
   598     /// \pre \ref run() must be called before using this function.
       
   599     Cost potential(const Node& n) const {
       
   600       return static_cast<Cost>(_pi[_node_id[n]]);
       
   601     }
       
   602 
       
   603     /// \brief Return the potential map (the dual solution).
       
   604     ///
       
   605     /// This function copies the potential (dual value) of each node
       
   606     /// into the given map.
       
   607     /// The \c Cost type of the algorithm must be convertible to the
       
   608     /// \c Value type of the map.
       
   609     ///
       
   610     /// \pre \ref run() must be called before using this function.
       
   611     template <typename PotentialMap>
       
   612     void potentialMap(PotentialMap &map) const {
       
   613       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   614         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
       
   615       }
   329     }
   616     }
   330 
   617 
   331     /// @}
   618     /// @}
   332 
   619 
   333     /// \name Query Functions
       
   334     /// The result of the algorithm can be obtained using these
       
   335     /// functions.\n
       
   336     /// \ref lemon::CycleCanceling::run() "run()" must be called before
       
   337     /// using them.
       
   338 
       
   339     /// @{
       
   340 
       
   341     /// \brief Return a const reference to the arc map storing the
       
   342     /// found flow.
       
   343     ///
       
   344     /// Return a const reference to the arc map storing the found flow.
       
   345     ///
       
   346     /// \pre \ref run() must be called before using this function.
       
   347     const FlowMap& flowMap() const {
       
   348       return *_flow;
       
   349     }
       
   350 
       
   351     /// \brief Return a const reference to the node map storing the
       
   352     /// found potentials (the dual solution).
       
   353     ///
       
   354     /// Return a const reference to the node map storing the found
       
   355     /// potentials (the dual solution).
       
   356     ///
       
   357     /// \pre \ref run() must be called before using this function.
       
   358     const PotentialMap& potentialMap() const {
       
   359       return *_potential;
       
   360     }
       
   361 
       
   362     /// \brief Return the flow on the given arc.
       
   363     ///
       
   364     /// Return the flow on the given arc.
       
   365     ///
       
   366     /// \pre \ref run() must be called before using this function.
       
   367     Capacity flow(const Arc& arc) const {
       
   368       return (*_flow)[arc];
       
   369     }
       
   370 
       
   371     /// \brief Return the potential of the given node.
       
   372     ///
       
   373     /// Return the potential of the given node.
       
   374     ///
       
   375     /// \pre \ref run() must be called before using this function.
       
   376     Cost potential(const Node& node) const {
       
   377       return (*_potential)[node];
       
   378     }
       
   379 
       
   380     /// \brief Return the total cost of the found flow.
       
   381     ///
       
   382     /// Return the total cost of the found flow. The complexity of the
       
   383     /// function is \f$ O(e) \f$.
       
   384     ///
       
   385     /// \pre \ref run() must be called before using this function.
       
   386     Cost totalCost() const {
       
   387       Cost c = 0;
       
   388       for (ArcIt e(_graph); e != INVALID; ++e)
       
   389         c += (*_flow)[e] * _cost[e];
       
   390       return c;
       
   391     }
       
   392 
       
   393     /// @}
       
   394 
       
   395   private:
   620   private:
   396 
   621 
   397     /// Initialize the algorithm.
   622     // Initialize the algorithm
   398     bool init() {
   623     ProblemType init() {
   399       if (!_valid_supply) return false;
   624       if (_res_node_num <= 1) return INFEASIBLE;
   400 
   625 
   401       // Initializing flow and potential maps
   626       // Check the sum of supply values
   402       if (!_flow) {
   627       _sum_supply = 0;
   403         _flow = new FlowMap(_graph);
   628       for (int i = 0; i != _root; ++i) {
   404         _local_flow = true;
   629         _sum_supply += _supply[i];
   405       }
   630       }
   406       if (!_potential) {
   631       if (_sum_supply > 0) return INFEASIBLE;
   407         _potential = new PotentialMap(_graph);
   632       
   408         _local_potential = true;
   633 
   409       }
   634       // Initialize vectors
   410 
   635       for (int i = 0; i != _res_node_num; ++i) {
   411       _res_graph = new ResDigraph(_graph, _capacity, *_flow);
   636         _pi[i] = 0;
   412 
   637       }
   413       // Finding a feasible flow using Circulation
   638       ValueVector excess(_supply);
   414       Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap,
   639       
   415                    SupplyMap >
   640       // Remove infinite upper bounds and check negative arcs
   416         circulation( _graph, constMap<Arc>(Capacity(0)), _capacity,
   641       const Value MAX = std::numeric_limits<Value>::max();
   417                      _supply );
   642       int last_out;
   418       return circulation.flowMap(*_flow).run();
   643       if (_have_lower) {
   419     }
   644         for (int i = 0; i != _root; ++i) {
   420 
   645           last_out = _first_out[i+1];
   421     bool start(bool min_mean_cc) {
   646           for (int j = _first_out[i]; j != last_out; ++j) {
   422       if (min_mean_cc)
   647             if (_forward[j]) {
   423         startMinMean();
   648               Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
   424       else
   649               if (c >= MAX) return UNBOUNDED;
   425         start();
   650               excess[i] -= c;
   426 
   651               excess[_target[j]] += c;
   427       // Handling non-zero lower bounds
   652             }
   428       if (_lower) {
   653           }
   429         for (ArcIt e(_graph); e != INVALID; ++e)
   654         }
   430           (*_flow)[e] += (*_lower)[e];
   655       } else {
   431       }
   656         for (int i = 0; i != _root; ++i) {
   432       return true;
   657           last_out = _first_out[i+1];
   433     }
   658           for (int j = _first_out[i]; j != last_out; ++j) {
   434 
   659             if (_forward[j] && _cost[j] < 0) {
   435     /// \brief Execute the algorithm using \ref BellmanFord.
   660               Value c = _upper[j];
   436     ///
   661               if (c >= MAX) return UNBOUNDED;
   437     /// Execute the algorithm using the \ref BellmanFord
   662               excess[i] -= c;
   438     /// "Bellman-Ford" algorithm for negative cycle detection with
   663               excess[_target[j]] += c;
   439     /// successively larger limit for the number of iterations.
   664             }
   440     void start() {
   665           }
   441       typename BellmanFord<ResDigraph, ResidualCostMap>::PredMap pred(*_res_graph);
   666         }
   442       typename ResDigraph::template NodeMap<int> visited(*_res_graph);
   667       }
   443       std::vector<ResArc> cycle;
   668       Value ex, max_cap = 0;
   444       int node_num = countNodes(_graph);
   669       for (int i = 0; i != _res_node_num; ++i) {
       
   670         ex = excess[i];
       
   671         if (ex < 0) max_cap -= ex;
       
   672       }
       
   673       for (int j = 0; j != _res_arc_num; ++j) {
       
   674         if (_upper[j] >= MAX) _upper[j] = max_cap;
       
   675       }
       
   676 
       
   677       // Initialize maps for Circulation and remove non-zero lower bounds
       
   678       ConstMap<Arc, Value> low(0);
       
   679       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
       
   680       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
       
   681       ValueArcMap cap(_graph), flow(_graph);
       
   682       ValueNodeMap sup(_graph);
       
   683       for (NodeIt n(_graph); n != INVALID; ++n) {
       
   684         sup[n] = _supply[_node_id[n]];
       
   685       }
       
   686       if (_have_lower) {
       
   687         for (ArcIt a(_graph); a != INVALID; ++a) {
       
   688           int j = _arc_idf[a];
       
   689           Value c = _lower[j];
       
   690           cap[a] = _upper[j] - c;
       
   691           sup[_graph.source(a)] -= c;
       
   692           sup[_graph.target(a)] += c;
       
   693         }
       
   694       } else {
       
   695         for (ArcIt a(_graph); a != INVALID; ++a) {
       
   696           cap[a] = _upper[_arc_idf[a]];
       
   697         }
       
   698       }
       
   699 
       
   700       // Find a feasible flow using Circulation
       
   701       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
       
   702         circ(_graph, low, cap, sup);
       
   703       if (!circ.flowMap(flow).run()) return INFEASIBLE;
       
   704 
       
   705       // Set residual capacities and handle GEQ supply type
       
   706       if (_sum_supply < 0) {
       
   707         for (ArcIt a(_graph); a != INVALID; ++a) {
       
   708           Value fa = flow[a];
       
   709           _res_cap[_arc_idf[a]] = cap[a] - fa;
       
   710           _res_cap[_arc_idb[a]] = fa;
       
   711           sup[_graph.source(a)] -= fa;
       
   712           sup[_graph.target(a)] += fa;
       
   713         }
       
   714         for (NodeIt n(_graph); n != INVALID; ++n) {
       
   715           excess[_node_id[n]] = sup[n];
       
   716         }
       
   717         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
       
   718           int u = _target[a];
       
   719           int ra = _reverse[a];
       
   720           _res_cap[a] = -_sum_supply + 1;
       
   721           _res_cap[ra] = -excess[u];
       
   722           _cost[a] = 0;
       
   723           _cost[ra] = 0;
       
   724         }
       
   725       } else {
       
   726         for (ArcIt a(_graph); a != INVALID; ++a) {
       
   727           Value fa = flow[a];
       
   728           _res_cap[_arc_idf[a]] = cap[a] - fa;
       
   729           _res_cap[_arc_idb[a]] = fa;
       
   730         }
       
   731         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
       
   732           int ra = _reverse[a];
       
   733           _res_cap[a] = 1;
       
   734           _res_cap[ra] = 0;
       
   735           _cost[a] = 0;
       
   736           _cost[ra] = 0;
       
   737         }
       
   738       }
       
   739       
       
   740       return OPTIMAL;
       
   741     }
       
   742     
       
   743     // Build a StaticDigraph structure containing the current
       
   744     // residual network
       
   745     void buildResidualNetwork() {
       
   746       _arc_vec.clear();
       
   747       _cost_vec.clear();
       
   748       _id_vec.clear();
       
   749       for (int j = 0; j != _res_arc_num; ++j) {
       
   750         if (_res_cap[j] > 0) {
       
   751           _arc_vec.push_back(IntPair(_source[j], _target[j]));
       
   752           _cost_vec.push_back(_cost[j]);
       
   753           _id_vec.push_back(j);
       
   754         }
       
   755       }
       
   756       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
       
   757     }
       
   758 
       
   759     // Execute the algorithm and transform the results
       
   760     void start(Method method) {
       
   761       // Execute the algorithm
       
   762       switch (method) {
       
   763         case SIMPLE_CYCLE_CANCELING:
       
   764           startSimpleCycleCanceling();
       
   765           break;
       
   766         case MINIMUM_MEAN_CYCLE_CANCELING:
       
   767           startMinMeanCycleCanceling();
       
   768           break;
       
   769         case CANCEL_AND_TIGHTEN:
       
   770           startCancelAndTighten();
       
   771           break;
       
   772       }
       
   773 
       
   774       // Compute node potentials
       
   775       if (method != SIMPLE_CYCLE_CANCELING) {
       
   776         buildResidualNetwork();
       
   777         typename BellmanFord<StaticDigraph, CostArcMap>
       
   778           ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
       
   779         bf.distMap(_pi_map);
       
   780         bf.init(0);
       
   781         bf.start();
       
   782       }
       
   783 
       
   784       // Handle non-zero lower bounds
       
   785       if (_have_lower) {
       
   786         int limit = _first_out[_root];
       
   787         for (int j = 0; j != limit; ++j) {
       
   788           if (!_forward[j]) _res_cap[j] += _lower[j];
       
   789         }
       
   790       }
       
   791     }
       
   792 
       
   793     // Execute the "Simple Cycle Canceling" method
       
   794     void startSimpleCycleCanceling() {
       
   795       // Constants for computing the iteration limits
       
   796       const int BF_FIRST_LIMIT  = 2;
       
   797       const double BF_LIMIT_FACTOR = 1.5;
       
   798       
       
   799       typedef VectorMap<StaticDigraph::Arc, Value> FilterMap;
       
   800       typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
       
   801       typedef VectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
       
   802       typedef typename BellmanFord<ResDigraph, CostArcMap>
       
   803         ::template SetDistMap<CostNodeMap>
       
   804         ::template SetPredMap<PredMap>::Create BF;
       
   805       
       
   806       // Build the residual network
       
   807       _arc_vec.clear();
       
   808       _cost_vec.clear();
       
   809       for (int j = 0; j != _res_arc_num; ++j) {
       
   810         _arc_vec.push_back(IntPair(_source[j], _target[j]));
       
   811         _cost_vec.push_back(_cost[j]);
       
   812       }
       
   813       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
       
   814 
       
   815       FilterMap filter_map(_res_cap);
       
   816       ResDigraph rgr(_sgr, filter_map);
       
   817       std::vector<int> cycle;
       
   818       std::vector<StaticDigraph::Arc> pred(_res_arc_num);
       
   819       PredMap pred_map(pred);
       
   820       BF bf(rgr, _cost_map);
       
   821       bf.distMap(_pi_map).predMap(pred_map);
   445 
   822 
   446       int length_bound = BF_FIRST_LIMIT;
   823       int length_bound = BF_FIRST_LIMIT;
   447       bool optimal = false;
   824       bool optimal = false;
   448       while (!optimal) {
   825       while (!optimal) {
   449         BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost);
       
   450         bf.predMap(pred);
       
   451         bf.init(0);
   826         bf.init(0);
   452         int iter_num = 0;
   827         int iter_num = 0;
   453         bool cycle_found = false;
   828         bool cycle_found = false;
   454         while (!cycle_found) {
   829         while (!cycle_found) {
   455           int curr_iter_num = iter_num + length_bound <= node_num ?
   830           // Perform some iterations of the Bellman-Ford algorithm
   456                               length_bound : node_num - iter_num;
   831           int curr_iter_num = iter_num + length_bound <= _node_num ?
       
   832             length_bound : _node_num - iter_num;
   457           iter_num += curr_iter_num;
   833           iter_num += curr_iter_num;
   458           int real_iter_num = curr_iter_num;
   834           int real_iter_num = curr_iter_num;
   459           for (int i = 0; i < curr_iter_num; ++i) {
   835           for (int i = 0; i < curr_iter_num; ++i) {
   460             if (bf.processNextWeakRound()) {
   836             if (bf.processNextWeakRound()) {
   461               real_iter_num = i;
   837               real_iter_num = i;
   463             }
   839             }
   464           }
   840           }
   465           if (real_iter_num < curr_iter_num) {
   841           if (real_iter_num < curr_iter_num) {
   466             // Optimal flow is found
   842             // Optimal flow is found
   467             optimal = true;
   843             optimal = true;
   468             // Setting node potentials
       
   469             for (NodeIt n(_graph); n != INVALID; ++n)
       
   470               (*_potential)[n] = bf.dist(n);
       
   471             break;
   844             break;
   472           } else {
   845           } else {
   473             // Searching for node disjoint negative cycles
   846             // Search for node disjoint negative cycles
   474             for (ResNodeIt n(*_res_graph); n != INVALID; ++n)
   847             std::vector<int> state(_res_node_num, 0);
   475               visited[n] = 0;
       
   476             int id = 0;
   848             int id = 0;
   477             for (ResNodeIt n(*_res_graph); n != INVALID; ++n) {
   849             for (int u = 0; u != _res_node_num; ++u) {
   478               if (visited[n] > 0) continue;
   850               if (state[u] != 0) continue;
   479               visited[n] = ++id;
   851               ++id;
   480               ResNode u = pred[n] == INVALID ?
   852               int v = u;
   481                           INVALID : _res_graph->source(pred[n]);
   853               for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
   482               while (u != INVALID && visited[u] == 0) {
   854                    -1 : rgr.id(rgr.source(pred[v]))) {
   483                 visited[u] = id;
   855                 state[v] = id;
   484                 u = pred[u] == INVALID ?
       
   485                     INVALID : _res_graph->source(pred[u]);
       
   486               }
   856               }
   487               if (u != INVALID && visited[u] == id) {
   857               if (v != -1 && state[v] == id) {
   488                 // Finding the negative cycle
   858                 // A negative cycle is found
   489                 cycle_found = true;
   859                 cycle_found = true;
   490                 cycle.clear();
   860                 cycle.clear();
   491                 ResArc e = pred[u];
   861                 StaticDigraph::Arc a = pred[v];
   492                 cycle.push_back(e);
   862                 Value d, delta = _res_cap[rgr.id(a)];
   493                 Capacity d = _res_graph->residualCapacity(e);
   863                 cycle.push_back(rgr.id(a));
   494                 while (_res_graph->source(e) != u) {
   864                 while (rgr.id(rgr.source(a)) != v) {
   495                   cycle.push_back(e = pred[_res_graph->source(e)]);
   865                   a = pred_map[rgr.source(a)];
   496                   if (_res_graph->residualCapacity(e) < d)
   866                   d = _res_cap[rgr.id(a)];
   497                     d = _res_graph->residualCapacity(e);
   867                   if (d < delta) delta = d;
       
   868                   cycle.push_back(rgr.id(a));
   498                 }
   869                 }
   499 
   870 
   500                 // Augmenting along the cycle
   871                 // Augment along the cycle
   501                 for (int i = 0; i < int(cycle.size()); ++i)
   872                 for (int i = 0; i < int(cycle.size()); ++i) {
   502                   _res_graph->augment(cycle[i], d);
   873                   int j = cycle[i];
       
   874                   _res_cap[j] -= delta;
       
   875                   _res_cap[_reverse[j]] += delta;
       
   876                 }
   503               }
   877               }
   504             }
   878             }
   505           }
   879           }
   506 
   880 
   507           if (!cycle_found)
   881           // Increase iteration limit if no cycle is found
   508             length_bound = length_bound * BF_LIMIT_FACTOR / 100;
   882           if (!cycle_found) {
   509         }
   883             length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
   510       }
   884           }
   511     }
   885         }
   512 
   886       }
   513     /// \brief Execute the algorithm using \ref Howard.
   887     }
   514     ///
   888 
   515     /// Execute the algorithm using \ref Howard for negative
   889     // Execute the "Minimum Mean Cycle Canceling" method
   516     /// cycle detection.
   890     void startMinMeanCycleCanceling() {
   517     void startMinMean() {
   891       typedef SimplePath<StaticDigraph> SPath;
   518       typedef Path<ResDigraph> ResPath;
   892       typedef typename SPath::ArcIt SPathArcIt;
   519       Howard<ResDigraph, ResidualCostMap> mmc(*_res_graph, _res_cost);
   893       typedef typename Howard<StaticDigraph, CostArcMap>
   520       ResPath cycle;
   894         ::template SetPath<SPath>::Create MMC;
   521 
   895       
       
   896       SPath cycle;
       
   897       MMC mmc(_sgr, _cost_map);
   522       mmc.cycle(cycle);
   898       mmc.cycle(cycle);
   523       if (mmc.findMinMean()) {
   899       buildResidualNetwork();
   524         while (mmc.cycleLength() < 0) {
   900       while (mmc.findMinMean() && mmc.cycleLength() < 0) {
   525           // Finding the cycle
   901         // Find the cycle
   526           mmc.findCycle();
   902         mmc.findCycle();
   527 
   903 
   528           // Finding the largest flow amount that can be augmented
   904         // Compute delta value
   529           // along the cycle
   905         Value delta = INF;
   530           Capacity delta = 0;
   906         for (SPathArcIt a(cycle); a != INVALID; ++a) {
   531           for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e) {
   907           Value d = _res_cap[_id_vec[_sgr.id(a)]];
   532             if (delta == 0 || _res_graph->residualCapacity(e) < delta)
   908           if (d < delta) delta = d;
   533               delta = _res_graph->residualCapacity(e);
   909         }
   534           }
   910 
   535 
   911         // Augment along the cycle
   536           // Augmenting along the cycle
   912         for (SPathArcIt a(cycle); a != INVALID; ++a) {
   537           for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e)
   913           int j = _id_vec[_sgr.id(a)];
   538             _res_graph->augment(e, delta);
   914           _res_cap[j] -= delta;
   539 
   915           _res_cap[_reverse[j]] += delta;
   540           // Finding the minimum cycle mean for the modified residual
   916         }
   541           // digraph
   917 
   542           if (!mmc.findMinMean()) break;
   918         // Rebuild the residual network        
   543         }
   919         buildResidualNetwork();
   544       }
   920       }
   545 
   921     }
   546       // Computing node potentials
   922 
   547       BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost);
   923     // Execute the "Cancel And Tighten" method
   548       bf.init(0); bf.start();
   924     void startCancelAndTighten() {
   549       for (NodeIt n(_graph); n != INVALID; ++n)
   925       // Constants for the min mean cycle computations
   550         (*_potential)[n] = bf.dist(n);
   926       const double LIMIT_FACTOR = 1.0;
       
   927       const int MIN_LIMIT = 5;
       
   928 
       
   929       // Contruct auxiliary data vectors
       
   930       DoubleVector pi(_res_node_num, 0.0);
       
   931       IntVector level(_res_node_num);
       
   932       CharVector reached(_res_node_num);
       
   933       CharVector processed(_res_node_num);
       
   934       IntVector pred_node(_res_node_num);
       
   935       IntVector pred_arc(_res_node_num);
       
   936       std::vector<int> stack(_res_node_num);
       
   937       std::vector<int> proc_vector(_res_node_num);
       
   938 
       
   939       // Initialize epsilon
       
   940       double epsilon = 0;
       
   941       for (int a = 0; a != _res_arc_num; ++a) {
       
   942         if (_res_cap[a] > 0 && -_cost[a] > epsilon)
       
   943           epsilon = -_cost[a];
       
   944       }
       
   945 
       
   946       // Start phases
       
   947       Tolerance<double> tol;
       
   948       tol.epsilon(1e-6);
       
   949       int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
       
   950       if (limit < MIN_LIMIT) limit = MIN_LIMIT;
       
   951       int iter = limit;
       
   952       while (epsilon * _res_node_num >= 1) {
       
   953         // Find and cancel cycles in the admissible network using DFS
       
   954         for (int u = 0; u != _res_node_num; ++u) {
       
   955           reached[u] = false;
       
   956           processed[u] = false;
       
   957         }
       
   958         int stack_head = -1;
       
   959         int proc_head = -1;
       
   960         for (int start = 0; start != _res_node_num; ++start) {
       
   961           if (reached[start]) continue;
       
   962 
       
   963           // New start node
       
   964           reached[start] = true;
       
   965           pred_arc[start] = -1;
       
   966           pred_node[start] = -1;
       
   967 
       
   968           // Find the first admissible outgoing arc
       
   969           double p = pi[start];
       
   970           int a = _first_out[start];
       
   971           int last_out = _first_out[start+1];
       
   972           for (; a != last_out && (_res_cap[a] == 0 ||
       
   973                !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
       
   974           if (a == last_out) {
       
   975             processed[start] = true;
       
   976             proc_vector[++proc_head] = start;
       
   977             continue;
       
   978           }
       
   979           stack[++stack_head] = a;
       
   980 
       
   981           while (stack_head >= 0) {
       
   982             int sa = stack[stack_head];
       
   983             int u = _source[sa];
       
   984             int v = _target[sa];
       
   985 
       
   986             if (!reached[v]) {
       
   987               // A new node is reached
       
   988               reached[v] = true;
       
   989               pred_node[v] = u;
       
   990               pred_arc[v] = sa;
       
   991               p = pi[v];
       
   992               a = _first_out[v];
       
   993               last_out = _first_out[v+1];
       
   994               for (; a != last_out && (_res_cap[a] == 0 ||
       
   995                    !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
       
   996               stack[++stack_head] = a == last_out ? -1 : a;
       
   997             } else {
       
   998               if (!processed[v]) {
       
   999                 // A cycle is found
       
  1000                 int n, w = u;
       
  1001                 Value d, delta = _res_cap[sa];
       
  1002                 for (n = u; n != v; n = pred_node[n]) {
       
  1003                   d = _res_cap[pred_arc[n]];
       
  1004                   if (d <= delta) {
       
  1005                     delta = d;
       
  1006                     w = pred_node[n];
       
  1007                   }
       
  1008                 }
       
  1009 
       
  1010                 // Augment along the cycle
       
  1011                 _res_cap[sa] -= delta;
       
  1012                 _res_cap[_reverse[sa]] += delta;
       
  1013                 for (n = u; n != v; n = pred_node[n]) {
       
  1014                   int pa = pred_arc[n];
       
  1015                   _res_cap[pa] -= delta;
       
  1016                   _res_cap[_reverse[pa]] += delta;
       
  1017                 }
       
  1018                 for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
       
  1019                   --stack_head;
       
  1020                   reached[n] = false;
       
  1021                 }
       
  1022                 u = w;
       
  1023               }
       
  1024               v = u;
       
  1025 
       
  1026               // Find the next admissible outgoing arc
       
  1027               p = pi[v];
       
  1028               a = stack[stack_head] + 1;
       
  1029               last_out = _first_out[v+1];
       
  1030               for (; a != last_out && (_res_cap[a] == 0 ||
       
  1031                    !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
       
  1032               stack[stack_head] = a == last_out ? -1 : a;
       
  1033             }
       
  1034 
       
  1035             while (stack_head >= 0 && stack[stack_head] == -1) {
       
  1036               processed[v] = true;
       
  1037               proc_vector[++proc_head] = v;
       
  1038               if (--stack_head >= 0) {
       
  1039                 // Find the next admissible outgoing arc
       
  1040                 v = _source[stack[stack_head]];
       
  1041                 p = pi[v];
       
  1042                 a = stack[stack_head] + 1;
       
  1043                 last_out = _first_out[v+1];
       
  1044                 for (; a != last_out && (_res_cap[a] == 0 ||
       
  1045                      !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
       
  1046                 stack[stack_head] = a == last_out ? -1 : a;
       
  1047               }
       
  1048             }
       
  1049           }
       
  1050         }
       
  1051 
       
  1052         // Tighten potentials and epsilon
       
  1053         if (--iter > 0) {
       
  1054           for (int u = 0; u != _res_node_num; ++u) {
       
  1055             level[u] = 0;
       
  1056           }
       
  1057           for (int i = proc_head; i > 0; --i) {
       
  1058             int u = proc_vector[i];
       
  1059             double p = pi[u];
       
  1060             int l = level[u] + 1;
       
  1061             int last_out = _first_out[u+1];
       
  1062             for (int a = _first_out[u]; a != last_out; ++a) {
       
  1063               int v = _target[a];
       
  1064               if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
       
  1065                   l > level[v]) level[v] = l;
       
  1066             }
       
  1067           }
       
  1068 
       
  1069           // Modify potentials
       
  1070           double q = std::numeric_limits<double>::max();
       
  1071           for (int u = 0; u != _res_node_num; ++u) {
       
  1072             int lu = level[u];
       
  1073             double p, pu = pi[u];
       
  1074             int last_out = _first_out[u+1];
       
  1075             for (int a = _first_out[u]; a != last_out; ++a) {
       
  1076               if (_res_cap[a] == 0) continue;
       
  1077               int v = _target[a];
       
  1078               int ld = lu - level[v];
       
  1079               if (ld > 0) {
       
  1080                 p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
       
  1081                 if (p < q) q = p;
       
  1082               }
       
  1083             }
       
  1084           }
       
  1085           for (int u = 0; u != _res_node_num; ++u) {
       
  1086             pi[u] -= q * level[u];
       
  1087           }
       
  1088 
       
  1089           // Modify epsilon
       
  1090           epsilon = 0;
       
  1091           for (int u = 0; u != _res_node_num; ++u) {
       
  1092             double curr, pu = pi[u];
       
  1093             int last_out = _first_out[u+1];
       
  1094             for (int a = _first_out[u]; a != last_out; ++a) {
       
  1095               if (_res_cap[a] == 0) continue;
       
  1096               curr = _cost[a] + pu - pi[_target[a]];
       
  1097               if (-curr > epsilon) epsilon = -curr;
       
  1098             }
       
  1099           }
       
  1100         } else {
       
  1101           typedef Howard<StaticDigraph, CostArcMap> MMC;
       
  1102           typedef typename BellmanFord<StaticDigraph, CostArcMap>
       
  1103             ::template SetDistMap<CostNodeMap>::Create BF;
       
  1104 
       
  1105           // Set epsilon to the minimum cycle mean
       
  1106           buildResidualNetwork();
       
  1107           MMC mmc(_sgr, _cost_map);
       
  1108           mmc.findMinMean();
       
  1109           epsilon = -mmc.cycleMean();
       
  1110           Cost cycle_cost = mmc.cycleLength();
       
  1111           int cycle_size = mmc.cycleArcNum();
       
  1112           
       
  1113           // Compute feasible potentials for the current epsilon
       
  1114           for (int i = 0; i != int(_cost_vec.size()); ++i) {
       
  1115             _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
       
  1116           }
       
  1117           BF bf(_sgr, _cost_map);
       
  1118           bf.distMap(_pi_map);
       
  1119           bf.init(0);
       
  1120           bf.start();
       
  1121           for (int u = 0; u != _res_node_num; ++u) {
       
  1122             pi[u] = static_cast<double>(_pi[u]) / cycle_size;
       
  1123           }
       
  1124         
       
  1125           iter = limit;
       
  1126         }
       
  1127       }
   551     }
  1128     }
   552 
  1129 
   553   }; //class CycleCanceling
  1130   }; //class CycleCanceling
   554 
  1131 
   555   ///@}
  1132   ///@}