lemon/fourary_heap.h
changeset 701 d1a9224f1e30
child 703 bb3392fe91f2
equal deleted inserted replaced
-1:000000000000 0:951b5faf9cfa
       
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2008
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_FOURARY_HEAP_H
       
    20 #define LEMON_FOURARY_HEAP_H
       
    21 
       
    22 ///\ingroup auxdat
       
    23 ///\file
       
    24 ///\brief 4ary Heap implementation.
       
    25 
       
    26 #include <iostream>
       
    27 #include <vector>
       
    28 #include <utility>
       
    29 #include <functional>
       
    30 
       
    31 namespace lemon {
       
    32 
       
    33   ///\ingroup auxdat
       
    34   ///
       
    35   ///\brief A 4ary Heap implementation.
       
    36   ///
       
    37   ///This class implements the \e 4ary \e heap data structure. A \e heap
       
    38   ///is a data structure for storing items with specified values called \e
       
    39   ///priorities in such a way that finding the item with minimum priority is
       
    40   ///efficient. \c Compare specifies the ordering of the priorities. In a heap
       
    41   ///one can change the priority of an item, add or erase an item, etc.
       
    42   ///
       
    43   ///\param _Prio Type of the priority of the items.
       
    44   ///\param _ItemIntMap A read and writable Item int map, used internally
       
    45   ///to handle the cross references.
       
    46   ///\param _Compare A class for the ordering of the priorities. The
       
    47   ///default is \c std::less<_Prio>.
       
    48   ///
       
    49   ///\sa FibHeap
       
    50   ///\sa Dijkstra
       
    51   ///\author Dorian Batha
       
    52 
       
    53   template <typename _Prio, typename _ItemIntMap,
       
    54             typename _Compare = std::less<_Prio> >
       
    55 
       
    56   class FouraryHeap {
       
    57 
       
    58   public:
       
    59     ///\e
       
    60     typedef _ItemIntMap ItemIntMap;
       
    61     ///\e
       
    62     typedef _Prio Prio;
       
    63     ///\e
       
    64     typedef typename ItemIntMap::Key Item;
       
    65     ///\e
       
    66     typedef std::pair<Item,Prio> Pair;
       
    67     ///\e
       
    68     typedef _Compare Compare;
       
    69 
       
    70     /// \brief Type to represent the items states.
       
    71     ///
       
    72     /// Each Item element have a state associated to it. It may be "in heap",
       
    73     /// "pre heap" or "post heap". The latter two are indifferent from the
       
    74     /// heap's point of view, but may be useful to the user.
       
    75     ///
       
    76     /// The ItemIntMap \e should be initialized in such way that it maps
       
    77     /// PRE_HEAP (-1) to any element to be put in the heap...
       
    78     enum State {
       
    79       IN_HEAP = 0,
       
    80       PRE_HEAP = -1,
       
    81       POST_HEAP = -2
       
    82     };
       
    83 
       
    84   private:
       
    85     std::vector<Pair> data;
       
    86     Compare comp;
       
    87     ItemIntMap &iim;
       
    88 
       
    89   public:
       
    90     /// \brief The constructor.
       
    91     ///
       
    92     /// The constructor.
       
    93     /// \param _iim should be given to the constructor, since it is used
       
    94     /// internally to handle the cross references. The value of the map
       
    95     /// should be PRE_HEAP (-1) for each element.
       
    96     explicit FouraryHeap(ItemIntMap &_iim) : iim(_iim) {}
       
    97 
       
    98     /// \brief The constructor.
       
    99     ///
       
   100     /// The constructor.
       
   101     /// \param _iim should be given to the constructor, since it is used
       
   102     /// internally to handle the cross references. The value of the map
       
   103     /// should be PRE_HEAP (-1) for each element.
       
   104     ///
       
   105     /// \param _comp The comparator function object.
       
   106     FouraryHeap(ItemIntMap &_iim, const Compare &_comp)
       
   107       : iim(_iim), comp(_comp) {}
       
   108 
       
   109     /// The number of items stored in the heap.
       
   110     ///
       
   111     /// \brief Returns the number of items stored in the heap.
       
   112     int size() const { return data.size(); }
       
   113 
       
   114     /// \brief Checks if the heap stores no items.
       
   115     ///
       
   116     /// Returns \c true if and only if the heap stores no items.
       
   117     bool empty() const { return data.empty(); }
       
   118 
       
   119     /// \brief Make empty this heap.
       
   120     ///
       
   121     /// Make empty this heap. It does not change the cross reference map.
       
   122     /// If you want to reuse what is not surely empty you should first clear
       
   123     /// the heap and after that you should set the cross reference map for
       
   124     /// each item to \c PRE_HEAP.
       
   125     void clear() { data.clear(); }
       
   126 
       
   127   private:
       
   128     static int parent(int i) { return (i-1)/4; }
       
   129     static int firstChild(int i) { return 4*i+1; }
       
   130 
       
   131     bool less(const Pair &p1, const Pair &p2) const {
       
   132       return comp(p1.second, p2.second);
       
   133     }
       
   134 
       
   135     int find_min(const int child, const int length) {
       
   136       int min=child;
       
   137       if( child+3<length ) {
       
   138         if( less(data[child+3], data[min]) )
       
   139           min=child+3;
       
   140         if( less(data[child+2], data[min]) )
       
   141           min=child+2;
       
   142         if( less(data[child+1], data[min]) )
       
   143           min=child+1;
       
   144       }
       
   145       else if( child+2<length ) {
       
   146         if( less(data[child+2], data[min]) )
       
   147           min=child+2;
       
   148         if( less(data[child+1], data[min]) )
       
   149           min=child+1;
       
   150       }
       
   151       else if( child+1<length ) {
       
   152         if( less(data[child+1], data[min]) )
       
   153           min=child+1;
       
   154       }
       
   155       return min;
       
   156     }
       
   157 
       
   158     void bubble_up(int hole, Pair p) {
       
   159       int par = parent(hole);
       
   160       while( hole>0 && less(p,data[par]) ) {
       
   161         move(data[par],hole);
       
   162         hole = par;
       
   163         par = parent(hole);
       
   164       }
       
   165       move(p, hole);
       
   166     }
       
   167 
       
   168     void bubble_down(int hole, Pair p, int length) {
       
   169       int child = firstChild(hole);
       
   170       while( child<length && length>1 ) {
       
   171         child = find_min(child,length);
       
   172         if( !less(data[child], p) )
       
   173           goto ok;
       
   174         move(data[child], hole);
       
   175         hole = child;
       
   176         child = firstChild(hole);
       
   177       }
       
   178     ok:
       
   179       move(p, hole);
       
   180     }
       
   181 
       
   182     void move(const Pair &p, int i) {
       
   183       data[i] = p;
       
   184       iim.set(p.first, i);
       
   185     }
       
   186 
       
   187   public:
       
   188 
       
   189     /// \brief Insert a pair of item and priority into the heap.
       
   190     ///
       
   191     /// Adds \c p.first to the heap with priority \c p.second.
       
   192     /// \param p The pair to insert.
       
   193     void push(const Pair &p) {
       
   194       int n = data.size();
       
   195       data.resize(n+1);
       
   196       bubble_up(n, p);
       
   197     }
       
   198 
       
   199     /// \brief Insert an item into the heap with the given heap.
       
   200     ///
       
   201     /// Adds \c i to the heap with priority \c p.
       
   202     /// \param i The item to insert.
       
   203     /// \param p The priority of the item.
       
   204     void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
       
   205 
       
   206     /// \brief Returns the item with minimum priority relative to \c Compare.
       
   207     ///
       
   208     /// This method returns the item with minimum priority relative to \c
       
   209     /// Compare.
       
   210     /// \pre The heap must be nonempty.
       
   211     Item top() const { return data[0].first; }
       
   212 
       
   213     /// \brief Returns the minimum priority relative to \c Compare.
       
   214     ///
       
   215     /// It returns the minimum priority relative to \c Compare.
       
   216     /// \pre The heap must be nonempty.
       
   217     Prio prio() const { return data[0].second; }
       
   218 
       
   219     /// \brief Deletes the item with minimum priority relative to \c Compare.
       
   220     ///
       
   221     /// This method deletes the item with minimum priority relative to \c
       
   222     /// Compare from the heap.
       
   223     /// \pre The heap must be non-empty.
       
   224     void pop() {
       
   225       int n = data.size()-1;
       
   226       iim.set(data[0].first, POST_HEAP);
       
   227       if (n>0) bubble_down(0, data[n], n);
       
   228       data.pop_back();
       
   229     }
       
   230 
       
   231     /// \brief Deletes \c i from the heap.
       
   232     ///
       
   233     /// This method deletes item \c i from the heap.
       
   234     /// \param i The item to erase.
       
   235     /// \pre The item should be in the heap.
       
   236     void erase(const Item &i) {
       
   237       int h = iim[i];
       
   238       int n = data.size()-1;
       
   239       iim.set(data[h].first, POST_HEAP);
       
   240       if( h<n ) {
       
   241         if( less(data[parent(h)], data[n]) )
       
   242           bubble_down(h, data[n], n);
       
   243         else
       
   244           bubble_up(h, data[n]);
       
   245       }
       
   246       data.pop_back();
       
   247     }
       
   248 
       
   249     /// \brief Returns the priority of \c i.
       
   250     ///
       
   251     /// This function returns the priority of item \c i.
       
   252     /// \pre \c i must be in the heap.
       
   253     /// \param i The item.
       
   254     Prio operator[](const Item &i) const {
       
   255       int idx = iim[i];
       
   256       return data[idx].second;
       
   257     }
       
   258 
       
   259     /// \brief \c i gets to the heap with priority \c p independently
       
   260     /// if \c i was already there.
       
   261     ///
       
   262     /// This method calls \ref push(\c i, \c p) if \c i is not stored
       
   263     /// in the heap and sets the priority of \c i to \c p otherwise.
       
   264     /// \param i The item.
       
   265     /// \param p The priority.
       
   266     void set(const Item &i, const Prio &p) {
       
   267       int idx = iim[i];
       
   268       if( idx < 0 )
       
   269         push(i,p);
       
   270       else if( comp(p, data[idx].second) )
       
   271         bubble_up(idx, Pair(i,p));
       
   272       else
       
   273         bubble_down(idx, Pair(i,p), data.size());
       
   274     }
       
   275 
       
   276     /// \brief Decreases the priority of \c i to \c p.
       
   277     ///
       
   278     /// This method decreases the priority of item \c i to \c p.
       
   279     /// \pre \c i must be stored in the heap with priority at least \c
       
   280     /// p relative to \c Compare.
       
   281     /// \param i The item.
       
   282     /// \param p The priority.
       
   283     void decrease(const Item &i, const Prio &p) {
       
   284       int idx = iim[i];
       
   285       bubble_up(idx, Pair(i,p));
       
   286     }
       
   287 
       
   288     /// \brief Increases the priority of \c i to \c p.
       
   289     ///
       
   290     /// This method sets the priority of item \c i to \c p.
       
   291     /// \pre \c i must be stored in the heap with priority at most \c
       
   292     /// p relative to \c Compare.
       
   293     /// \param i The item.
       
   294     /// \param p The priority.
       
   295     void increase(const Item &i, const Prio &p) {
       
   296       int idx = iim[i];
       
   297       bubble_down(idx, Pair(i,p), data.size());
       
   298     }
       
   299 
       
   300     /// \brief Returns if \c item is in, has already been in, or has
       
   301     /// never been in the heap.
       
   302     ///
       
   303     /// This method returns PRE_HEAP if \c item has never been in the
       
   304     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
       
   305     /// otherwise. In the latter case it is possible that \c item will
       
   306     /// get back to the heap again.
       
   307     /// \param i The item.
       
   308     State state(const Item &i) const {
       
   309       int s = iim[i];
       
   310       if (s>=0) s=0;
       
   311       return State(s);
       
   312     }
       
   313 
       
   314     /// \brief Sets the state of the \c item in the heap.
       
   315     ///
       
   316     /// Sets the state of the \c item in the heap. It can be used to
       
   317     /// manually clear the heap when it is important to achive the
       
   318     /// better time complexity.
       
   319     /// \param i The item.
       
   320     /// \param st The state. It should not be \c IN_HEAP.
       
   321     void state(const Item& i, State st) {
       
   322       switch (st) {
       
   323         case POST_HEAP:
       
   324         case PRE_HEAP:
       
   325           if (state(i) == IN_HEAP) erase(i);
       
   326           iim[i] = st;
       
   327           break;
       
   328         case IN_HEAP:
       
   329           break;
       
   330       }
       
   331     }
       
   332 
       
   333     /// \brief Replaces an item in the heap.
       
   334     ///
       
   335     /// The \c i item is replaced with \c j item. The \c i item should
       
   336     /// be in the heap, while the \c j should be out of the heap. The
       
   337     /// \c i item will out of the heap and \c j will be in the heap
       
   338     /// with the same prioriority as prevoiusly the \c i item.
       
   339     void replace(const Item& i, const Item& j) {
       
   340       int idx = iim[i];
       
   341       iim.set(i, iim[j]);
       
   342       iim.set(j, idx);
       
   343       data[idx].first = j;
       
   344     }
       
   345 
       
   346   }; // class FouraryHeap
       
   347 
       
   348 } // namespace lemon
       
   349 
       
   350 #endif // LEMON_FOURARY_HEAP_H