lemon/karp.h
changeset 864 d3ea191c3412
parent 841 aa8c9008b3de
equal deleted inserted replaced
8:79d9de9c39b4 -1:000000000000
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2008
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_KARP_H
       
    20 #define LEMON_KARP_H
       
    21 
       
    22 /// \ingroup min_mean_cycle
       
    23 ///
       
    24 /// \file
       
    25 /// \brief Karp's algorithm for finding a minimum mean cycle.
       
    26 
       
    27 #include <vector>
       
    28 #include <limits>
       
    29 #include <lemon/core.h>
       
    30 #include <lemon/path.h>
       
    31 #include <lemon/tolerance.h>
       
    32 #include <lemon/connectivity.h>
       
    33 
       
    34 namespace lemon {
       
    35 
       
    36   /// \brief Default traits class of Karp algorithm.
       
    37   ///
       
    38   /// Default traits class of Karp algorithm.
       
    39   /// \tparam GR The type of the digraph.
       
    40   /// \tparam LEN The type of the length map.
       
    41   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
       
    42 #ifdef DOXYGEN
       
    43   template <typename GR, typename LEN>
       
    44 #else
       
    45   template <typename GR, typename LEN,
       
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
       
    47 #endif
       
    48   struct KarpDefaultTraits
       
    49   {
       
    50     /// The type of the digraph
       
    51     typedef GR Digraph;
       
    52     /// The type of the length map
       
    53     typedef LEN LengthMap;
       
    54     /// The type of the arc lengths
       
    55     typedef typename LengthMap::Value Value;
       
    56 
       
    57     /// \brief The large value type used for internal computations
       
    58     ///
       
    59     /// The large value type used for internal computations.
       
    60     /// It is \c long \c long if the \c Value type is integer,
       
    61     /// otherwise it is \c double.
       
    62     /// \c Value must be convertible to \c LargeValue.
       
    63     typedef double LargeValue;
       
    64 
       
    65     /// The tolerance type used for internal computations
       
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
       
    67 
       
    68     /// \brief The path type of the found cycles
       
    69     ///
       
    70     /// The path type of the found cycles.
       
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
       
    72     /// and it must have an \c addFront() function.
       
    73     typedef lemon::Path<Digraph> Path;
       
    74   };
       
    75 
       
    76   // Default traits class for integer value types
       
    77   template <typename GR, typename LEN>
       
    78   struct KarpDefaultTraits<GR, LEN, true>
       
    79   {
       
    80     typedef GR Digraph;
       
    81     typedef LEN LengthMap;
       
    82     typedef typename LengthMap::Value Value;
       
    83 #ifdef LEMON_HAVE_LONG_LONG
       
    84     typedef long long LargeValue;
       
    85 #else
       
    86     typedef long LargeValue;
       
    87 #endif
       
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
       
    89     typedef lemon::Path<Digraph> Path;
       
    90   };
       
    91 
       
    92 
       
    93   /// \addtogroup min_mean_cycle
       
    94   /// @{
       
    95 
       
    96   /// \brief Implementation of Karp's algorithm for finding a minimum
       
    97   /// mean cycle.
       
    98   ///
       
    99   /// This class implements Karp's algorithm for finding a directed
       
   100   /// cycle of minimum mean length (cost) in a digraph
       
   101   /// \ref amo93networkflows, \ref dasdan98minmeancycle.
       
   102   /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
       
   103   ///
       
   104   /// \tparam GR The type of the digraph the algorithm runs on.
       
   105   /// \tparam LEN The type of the length map. The default
       
   106   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
       
   107   /// \tparam TR The traits class that defines various types used by the
       
   108   /// algorithm. By default, it is \ref KarpDefaultTraits
       
   109   /// "KarpDefaultTraits<GR, LEN>".
       
   110   /// In most cases, this parameter should not be set directly,
       
   111   /// consider to use the named template parameters instead.
       
   112 #ifdef DOXYGEN
       
   113   template <typename GR, typename LEN, typename TR>
       
   114 #else
       
   115   template < typename GR,
       
   116              typename LEN = typename GR::template ArcMap<int>,
       
   117              typename TR = KarpDefaultTraits<GR, LEN> >
       
   118 #endif
       
   119   class Karp
       
   120   {
       
   121   public:
       
   122 
       
   123     /// The type of the digraph
       
   124     typedef typename TR::Digraph Digraph;
       
   125     /// The type of the length map
       
   126     typedef typename TR::LengthMap LengthMap;
       
   127     /// The type of the arc lengths
       
   128     typedef typename TR::Value Value;
       
   129 
       
   130     /// \brief The large value type
       
   131     ///
       
   132     /// The large value type used for internal computations.
       
   133     /// By default, it is \c long \c long if the \c Value type is integer,
       
   134     /// otherwise it is \c double.
       
   135     typedef typename TR::LargeValue LargeValue;
       
   136 
       
   137     /// The tolerance type
       
   138     typedef typename TR::Tolerance Tolerance;
       
   139 
       
   140     /// \brief The path type of the found cycles
       
   141     ///
       
   142     /// The path type of the found cycles.
       
   143     /// Using the \ref KarpDefaultTraits "default traits class",
       
   144     /// it is \ref lemon::Path "Path<Digraph>".
       
   145     typedef typename TR::Path Path;
       
   146 
       
   147     /// The \ref KarpDefaultTraits "traits class" of the algorithm
       
   148     typedef TR Traits;
       
   149 
       
   150   private:
       
   151 
       
   152     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
       
   153 
       
   154     // Data sturcture for path data
       
   155     struct PathData
       
   156     {
       
   157       LargeValue dist;
       
   158       Arc pred;
       
   159       PathData(LargeValue d, Arc p = INVALID) :
       
   160         dist(d), pred(p) {}
       
   161     };
       
   162 
       
   163     typedef typename Digraph::template NodeMap<std::vector<PathData> >
       
   164       PathDataNodeMap;
       
   165 
       
   166   private:
       
   167 
       
   168     // The digraph the algorithm runs on
       
   169     const Digraph &_gr;
       
   170     // The length of the arcs
       
   171     const LengthMap &_length;
       
   172 
       
   173     // Data for storing the strongly connected components
       
   174     int _comp_num;
       
   175     typename Digraph::template NodeMap<int> _comp;
       
   176     std::vector<std::vector<Node> > _comp_nodes;
       
   177     std::vector<Node>* _nodes;
       
   178     typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
       
   179 
       
   180     // Data for the found cycle
       
   181     LargeValue _cycle_length;
       
   182     int _cycle_size;
       
   183     Node _cycle_node;
       
   184 
       
   185     Path *_cycle_path;
       
   186     bool _local_path;
       
   187 
       
   188     // Node map for storing path data
       
   189     PathDataNodeMap _data;
       
   190     // The processed nodes in the last round
       
   191     std::vector<Node> _process;
       
   192 
       
   193     Tolerance _tolerance;
       
   194     
       
   195     // Infinite constant
       
   196     const LargeValue INF;
       
   197 
       
   198   public:
       
   199 
       
   200     /// \name Named Template Parameters
       
   201     /// @{
       
   202 
       
   203     template <typename T>
       
   204     struct SetLargeValueTraits : public Traits {
       
   205       typedef T LargeValue;
       
   206       typedef lemon::Tolerance<T> Tolerance;
       
   207     };
       
   208 
       
   209     /// \brief \ref named-templ-param "Named parameter" for setting
       
   210     /// \c LargeValue type.
       
   211     ///
       
   212     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
       
   213     /// type. It is used for internal computations in the algorithm.
       
   214     template <typename T>
       
   215     struct SetLargeValue
       
   216       : public Karp<GR, LEN, SetLargeValueTraits<T> > {
       
   217       typedef Karp<GR, LEN, SetLargeValueTraits<T> > Create;
       
   218     };
       
   219 
       
   220     template <typename T>
       
   221     struct SetPathTraits : public Traits {
       
   222       typedef T Path;
       
   223     };
       
   224 
       
   225     /// \brief \ref named-templ-param "Named parameter" for setting
       
   226     /// \c %Path type.
       
   227     ///
       
   228     /// \ref named-templ-param "Named parameter" for setting the \c %Path
       
   229     /// type of the found cycles.
       
   230     /// It must conform to the \ref lemon::concepts::Path "Path" concept
       
   231     /// and it must have an \c addFront() function.
       
   232     template <typename T>
       
   233     struct SetPath
       
   234       : public Karp<GR, LEN, SetPathTraits<T> > {
       
   235       typedef Karp<GR, LEN, SetPathTraits<T> > Create;
       
   236     };
       
   237 
       
   238     /// @}
       
   239 
       
   240   protected:
       
   241 
       
   242     Karp() {}
       
   243 
       
   244   public:
       
   245 
       
   246     /// \brief Constructor.
       
   247     ///
       
   248     /// The constructor of the class.
       
   249     ///
       
   250     /// \param digraph The digraph the algorithm runs on.
       
   251     /// \param length The lengths (costs) of the arcs.
       
   252     Karp( const Digraph &digraph,
       
   253           const LengthMap &length ) :
       
   254       _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
       
   255       _cycle_length(0), _cycle_size(1), _cycle_node(INVALID),
       
   256       _cycle_path(NULL), _local_path(false), _data(digraph),
       
   257       INF(std::numeric_limits<LargeValue>::has_infinity ?
       
   258           std::numeric_limits<LargeValue>::infinity() :
       
   259           std::numeric_limits<LargeValue>::max())
       
   260     {}
       
   261 
       
   262     /// Destructor.
       
   263     ~Karp() {
       
   264       if (_local_path) delete _cycle_path;
       
   265     }
       
   266 
       
   267     /// \brief Set the path structure for storing the found cycle.
       
   268     ///
       
   269     /// This function sets an external path structure for storing the
       
   270     /// found cycle.
       
   271     ///
       
   272     /// If you don't call this function before calling \ref run() or
       
   273     /// \ref findMinMean(), it will allocate a local \ref Path "path"
       
   274     /// structure. The destuctor deallocates this automatically
       
   275     /// allocated object, of course.
       
   276     ///
       
   277     /// \note The algorithm calls only the \ref lemon::Path::addFront()
       
   278     /// "addFront()" function of the given path structure.
       
   279     ///
       
   280     /// \return <tt>(*this)</tt>
       
   281     Karp& cycle(Path &path) {
       
   282       if (_local_path) {
       
   283         delete _cycle_path;
       
   284         _local_path = false;
       
   285       }
       
   286       _cycle_path = &path;
       
   287       return *this;
       
   288     }
       
   289 
       
   290     /// \brief Set the tolerance used by the algorithm.
       
   291     ///
       
   292     /// This function sets the tolerance object used by the algorithm.
       
   293     ///
       
   294     /// \return <tt>(*this)</tt>
       
   295     Karp& tolerance(const Tolerance& tolerance) {
       
   296       _tolerance = tolerance;
       
   297       return *this;
       
   298     }
       
   299 
       
   300     /// \brief Return a const reference to the tolerance.
       
   301     ///
       
   302     /// This function returns a const reference to the tolerance object
       
   303     /// used by the algorithm.
       
   304     const Tolerance& tolerance() const {
       
   305       return _tolerance;
       
   306     }
       
   307 
       
   308     /// \name Execution control
       
   309     /// The simplest way to execute the algorithm is to call the \ref run()
       
   310     /// function.\n
       
   311     /// If you only need the minimum mean length, you may call
       
   312     /// \ref findMinMean().
       
   313 
       
   314     /// @{
       
   315 
       
   316     /// \brief Run the algorithm.
       
   317     ///
       
   318     /// This function runs the algorithm.
       
   319     /// It can be called more than once (e.g. if the underlying digraph
       
   320     /// and/or the arc lengths have been modified).
       
   321     ///
       
   322     /// \return \c true if a directed cycle exists in the digraph.
       
   323     ///
       
   324     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
       
   325     /// \code
       
   326     ///   return mmc.findMinMean() && mmc.findCycle();
       
   327     /// \endcode
       
   328     bool run() {
       
   329       return findMinMean() && findCycle();
       
   330     }
       
   331 
       
   332     /// \brief Find the minimum cycle mean.
       
   333     ///
       
   334     /// This function finds the minimum mean length of the directed
       
   335     /// cycles in the digraph.
       
   336     ///
       
   337     /// \return \c true if a directed cycle exists in the digraph.
       
   338     bool findMinMean() {
       
   339       // Initialization and find strongly connected components
       
   340       init();
       
   341       findComponents();
       
   342       
       
   343       // Find the minimum cycle mean in the components
       
   344       for (int comp = 0; comp < _comp_num; ++comp) {
       
   345         if (!initComponent(comp)) continue;
       
   346         processRounds();
       
   347         updateMinMean();
       
   348       }
       
   349       return (_cycle_node != INVALID);
       
   350     }
       
   351 
       
   352     /// \brief Find a minimum mean directed cycle.
       
   353     ///
       
   354     /// This function finds a directed cycle of minimum mean length
       
   355     /// in the digraph using the data computed by findMinMean().
       
   356     ///
       
   357     /// \return \c true if a directed cycle exists in the digraph.
       
   358     ///
       
   359     /// \pre \ref findMinMean() must be called before using this function.
       
   360     bool findCycle() {
       
   361       if (_cycle_node == INVALID) return false;
       
   362       IntNodeMap reached(_gr, -1);
       
   363       int r = _data[_cycle_node].size();
       
   364       Node u = _cycle_node;
       
   365       while (reached[u] < 0) {
       
   366         reached[u] = --r;
       
   367         u = _gr.source(_data[u][r].pred);
       
   368       }
       
   369       r = reached[u];
       
   370       Arc e = _data[u][r].pred;
       
   371       _cycle_path->addFront(e);
       
   372       _cycle_length = _length[e];
       
   373       _cycle_size = 1;
       
   374       Node v;
       
   375       while ((v = _gr.source(e)) != u) {
       
   376         e = _data[v][--r].pred;
       
   377         _cycle_path->addFront(e);
       
   378         _cycle_length += _length[e];
       
   379         ++_cycle_size;
       
   380       }
       
   381       return true;
       
   382     }
       
   383 
       
   384     /// @}
       
   385 
       
   386     /// \name Query Functions
       
   387     /// The results of the algorithm can be obtained using these
       
   388     /// functions.\n
       
   389     /// The algorithm should be executed before using them.
       
   390 
       
   391     /// @{
       
   392 
       
   393     /// \brief Return the total length of the found cycle.
       
   394     ///
       
   395     /// This function returns the total length of the found cycle.
       
   396     ///
       
   397     /// \pre \ref run() or \ref findMinMean() must be called before
       
   398     /// using this function.
       
   399     Value cycleLength() const {
       
   400       return static_cast<Value>(_cycle_length);
       
   401     }
       
   402 
       
   403     /// \brief Return the number of arcs on the found cycle.
       
   404     ///
       
   405     /// This function returns the number of arcs on the found cycle.
       
   406     ///
       
   407     /// \pre \ref run() or \ref findMinMean() must be called before
       
   408     /// using this function.
       
   409     int cycleArcNum() const {
       
   410       return _cycle_size;
       
   411     }
       
   412 
       
   413     /// \brief Return the mean length of the found cycle.
       
   414     ///
       
   415     /// This function returns the mean length of the found cycle.
       
   416     ///
       
   417     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
       
   418     /// following code.
       
   419     /// \code
       
   420     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
       
   421     /// \endcode
       
   422     ///
       
   423     /// \pre \ref run() or \ref findMinMean() must be called before
       
   424     /// using this function.
       
   425     double cycleMean() const {
       
   426       return static_cast<double>(_cycle_length) / _cycle_size;
       
   427     }
       
   428 
       
   429     /// \brief Return the found cycle.
       
   430     ///
       
   431     /// This function returns a const reference to the path structure
       
   432     /// storing the found cycle.
       
   433     ///
       
   434     /// \pre \ref run() or \ref findCycle() must be called before using
       
   435     /// this function.
       
   436     const Path& cycle() const {
       
   437       return *_cycle_path;
       
   438     }
       
   439 
       
   440     ///@}
       
   441 
       
   442   private:
       
   443 
       
   444     // Initialization
       
   445     void init() {
       
   446       if (!_cycle_path) {
       
   447         _local_path = true;
       
   448         _cycle_path = new Path;
       
   449       }
       
   450       _cycle_path->clear();
       
   451       _cycle_length = 0;
       
   452       _cycle_size = 1;
       
   453       _cycle_node = INVALID;
       
   454       for (NodeIt u(_gr); u != INVALID; ++u)
       
   455         _data[u].clear();
       
   456     }
       
   457 
       
   458     // Find strongly connected components and initialize _comp_nodes
       
   459     // and _out_arcs
       
   460     void findComponents() {
       
   461       _comp_num = stronglyConnectedComponents(_gr, _comp);
       
   462       _comp_nodes.resize(_comp_num);
       
   463       if (_comp_num == 1) {
       
   464         _comp_nodes[0].clear();
       
   465         for (NodeIt n(_gr); n != INVALID; ++n) {
       
   466           _comp_nodes[0].push_back(n);
       
   467           _out_arcs[n].clear();
       
   468           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
       
   469             _out_arcs[n].push_back(a);
       
   470           }
       
   471         }
       
   472       } else {
       
   473         for (int i = 0; i < _comp_num; ++i)
       
   474           _comp_nodes[i].clear();
       
   475         for (NodeIt n(_gr); n != INVALID; ++n) {
       
   476           int k = _comp[n];
       
   477           _comp_nodes[k].push_back(n);
       
   478           _out_arcs[n].clear();
       
   479           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
       
   480             if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
       
   481           }
       
   482         }
       
   483       }
       
   484     }
       
   485 
       
   486     // Initialize path data for the current component
       
   487     bool initComponent(int comp) {
       
   488       _nodes = &(_comp_nodes[comp]);
       
   489       int n = _nodes->size();
       
   490       if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
       
   491         return false;
       
   492       }      
       
   493       for (int i = 0; i < n; ++i) {
       
   494         _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
       
   495       }
       
   496       return true;
       
   497     }
       
   498 
       
   499     // Process all rounds of computing path data for the current component.
       
   500     // _data[v][k] is the length of a shortest directed walk from the root
       
   501     // node to node v containing exactly k arcs.
       
   502     void processRounds() {
       
   503       Node start = (*_nodes)[0];
       
   504       _data[start][0] = PathData(0);
       
   505       _process.clear();
       
   506       _process.push_back(start);
       
   507 
       
   508       int k, n = _nodes->size();
       
   509       for (k = 1; k <= n && int(_process.size()) < n; ++k) {
       
   510         processNextBuildRound(k);
       
   511       }
       
   512       for ( ; k <= n; ++k) {
       
   513         processNextFullRound(k);
       
   514       }
       
   515     }
       
   516 
       
   517     // Process one round and rebuild _process
       
   518     void processNextBuildRound(int k) {
       
   519       std::vector<Node> next;
       
   520       Node u, v;
       
   521       Arc e;
       
   522       LargeValue d;
       
   523       for (int i = 0; i < int(_process.size()); ++i) {
       
   524         u = _process[i];
       
   525         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
       
   526           e = _out_arcs[u][j];
       
   527           v = _gr.target(e);
       
   528           d = _data[u][k-1].dist + _length[e];
       
   529           if (_tolerance.less(d, _data[v][k].dist)) {
       
   530             if (_data[v][k].dist == INF) next.push_back(v);
       
   531             _data[v][k] = PathData(d, e);
       
   532           }
       
   533         }
       
   534       }
       
   535       _process.swap(next);
       
   536     }
       
   537 
       
   538     // Process one round using _nodes instead of _process
       
   539     void processNextFullRound(int k) {
       
   540       Node u, v;
       
   541       Arc e;
       
   542       LargeValue d;
       
   543       for (int i = 0; i < int(_nodes->size()); ++i) {
       
   544         u = (*_nodes)[i];
       
   545         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
       
   546           e = _out_arcs[u][j];
       
   547           v = _gr.target(e);
       
   548           d = _data[u][k-1].dist + _length[e];
       
   549           if (_tolerance.less(d, _data[v][k].dist)) {
       
   550             _data[v][k] = PathData(d, e);
       
   551           }
       
   552         }
       
   553       }
       
   554     }
       
   555 
       
   556     // Update the minimum cycle mean
       
   557     void updateMinMean() {
       
   558       int n = _nodes->size();
       
   559       for (int i = 0; i < n; ++i) {
       
   560         Node u = (*_nodes)[i];
       
   561         if (_data[u][n].dist == INF) continue;
       
   562         LargeValue length, max_length = 0;
       
   563         int size, max_size = 1;
       
   564         bool found_curr = false;
       
   565         for (int k = 0; k < n; ++k) {
       
   566           if (_data[u][k].dist == INF) continue;
       
   567           length = _data[u][n].dist - _data[u][k].dist;
       
   568           size = n - k;
       
   569           if (!found_curr || length * max_size > max_length * size) {
       
   570             found_curr = true;
       
   571             max_length = length;
       
   572             max_size = size;
       
   573           }
       
   574         }
       
   575         if ( found_curr && (_cycle_node == INVALID ||
       
   576              max_length * _cycle_size < _cycle_length * max_size) ) {
       
   577           _cycle_length = max_length;
       
   578           _cycle_size = max_size;
       
   579           _cycle_node = u;
       
   580         }
       
   581       }
       
   582     }
       
   583 
       
   584   }; //class Karp
       
   585 
       
   586   ///@}
       
   587 
       
   588 } //namespace lemon
       
   589 
       
   590 #endif //LEMON_KARP_H