lemon/max_matching.h
changeset 326 64ad48007fb2
child 327 91d63b8b1a4c
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/max_matching.h	Mon Oct 13 13:56:00 2008 +0200
     1.3 @@ -0,0 +1,3112 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_MAX_MATCHING_H
    1.23 +#define LEMON_MAX_MATCHING_H
    1.24 +
    1.25 +#include <vector>
    1.26 +#include <queue>
    1.27 +#include <set>
    1.28 +#include <limits>
    1.29 +
    1.30 +#include <lemon/core.h>
    1.31 +#include <lemon/unionfind.h>
    1.32 +#include <lemon/bin_heap.h>
    1.33 +#include <lemon/maps.h>
    1.34 +
    1.35 +///\ingroup matching
    1.36 +///\file
    1.37 +///\brief Maximum matching algorithms in graph.
    1.38 +
    1.39 +namespace lemon {
    1.40 +
    1.41 +  ///\ingroup matching
    1.42 +  ///
    1.43 +  ///\brief Edmonds' alternating forest maximum matching algorithm.
    1.44 +  ///
    1.45 +  ///This class provides Edmonds' alternating forest matching
    1.46 +  ///algorithm. The starting matching (if any) can be passed to the
    1.47 +  ///algorithm using some of init functions.
    1.48 +  ///
    1.49 +  ///The dual side of a matching is a map of the nodes to
    1.50 +  ///MaxMatching::DecompType, having values \c D, \c A and \c C
    1.51 +  ///showing the Gallai-Edmonds decomposition of the digraph. The nodes
    1.52 +  ///in \c D induce a digraph with factor-critical components, the nodes
    1.53 +  ///in \c A form the barrier, and the nodes in \c C induce a digraph
    1.54 +  ///having a perfect matching. This decomposition can be attained by
    1.55 +  ///calling \c decomposition() after running the algorithm.
    1.56 +  ///
    1.57 +  ///\param Digraph The graph type the algorithm runs on.
    1.58 +  template <typename Graph>
    1.59 +  class MaxMatching {
    1.60 +
    1.61 +  protected:
    1.62 +
    1.63 +    TEMPLATE_GRAPH_TYPEDEFS(Graph);
    1.64 +
    1.65 +    typedef typename Graph::template NodeMap<int> UFECrossRef;
    1.66 +    typedef UnionFindEnum<UFECrossRef> UFE;
    1.67 +    typedef std::vector<Node> NV;
    1.68 +
    1.69 +    typedef typename Graph::template NodeMap<int> EFECrossRef;
    1.70 +    typedef ExtendFindEnum<EFECrossRef> EFE;
    1.71 +
    1.72 +  public:
    1.73 +
    1.74 +    ///\brief Indicates the Gallai-Edmonds decomposition of the digraph.
    1.75 +    ///
    1.76 +    ///Indicates the Gallai-Edmonds decomposition of the digraph, which
    1.77 +    ///shows an upper bound on the size of a maximum matching. The
    1.78 +    ///nodes with DecompType \c D induce a digraph with factor-critical
    1.79 +    ///components, the nodes in \c A form the canonical barrier, and the
    1.80 +    ///nodes in \c C induce a digraph having a perfect matching.
    1.81 +    enum DecompType {
    1.82 +      D=0,
    1.83 +      A=1,
    1.84 +      C=2
    1.85 +    };
    1.86 +
    1.87 +  protected:
    1.88 +
    1.89 +    static const int HEUR_density=2;
    1.90 +    const Graph& g;
    1.91 +    typename Graph::template NodeMap<Node> _mate;
    1.92 +    typename Graph::template NodeMap<DecompType> position;
    1.93 +
    1.94 +  public:
    1.95 +
    1.96 +    MaxMatching(const Graph& _g)
    1.97 +      : g(_g), _mate(_g), position(_g) {}
    1.98 +
    1.99 +    ///\brief Sets the actual matching to the empty matching.
   1.100 +    ///
   1.101 +    ///Sets the actual matching to the empty matching.
   1.102 +    ///
   1.103 +    void init() {
   1.104 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.105 +        _mate.set(v,INVALID);
   1.106 +        position.set(v,C);
   1.107 +      }
   1.108 +    }
   1.109 +
   1.110 +    ///\brief Finds a greedy matching for initial matching.
   1.111 +    ///
   1.112 +    ///For initial matchig it finds a maximal greedy matching.
   1.113 +    void greedyInit() {
   1.114 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.115 +        _mate.set(v,INVALID);
   1.116 +        position.set(v,C);
   1.117 +      }
   1.118 +      for(NodeIt v(g); v!=INVALID; ++v)
   1.119 +        if ( _mate[v]==INVALID ) {
   1.120 +          for( IncEdgeIt e(g,v); e!=INVALID ; ++e ) {
   1.121 +            Node y=g.runningNode(e);
   1.122 +            if ( _mate[y]==INVALID && y!=v ) {
   1.123 +              _mate.set(v,y);
   1.124 +              _mate.set(y,v);
   1.125 +              break;
   1.126 +            }
   1.127 +          }
   1.128 +        }
   1.129 +    }
   1.130 +
   1.131 +    ///\brief Initialize the matching from each nodes' mate.
   1.132 +    ///
   1.133 +    ///Initialize the matching from a \c Node valued \c Node map. This
   1.134 +    ///map must be \e symmetric, i.e. if \c map[u]==v then \c
   1.135 +    ///map[v]==u must hold, and \c uv will be an arc of the initial
   1.136 +    ///matching.
   1.137 +    template <typename MateMap>
   1.138 +    void mateMapInit(MateMap& map) {
   1.139 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.140 +        _mate.set(v,map[v]);
   1.141 +        position.set(v,C);
   1.142 +      }
   1.143 +    }
   1.144 +
   1.145 +    ///\brief Initialize the matching from a node map with the
   1.146 +    ///incident matching arcs.
   1.147 +    ///
   1.148 +    ///Initialize the matching from an \c Edge valued \c Node map. \c
   1.149 +    ///map[v] must be an \c Edge incident to \c v. This map must have
   1.150 +    ///the property that if \c g.oppositeNode(u,map[u])==v then \c \c
   1.151 +    ///g.oppositeNode(v,map[v])==u holds, and now some arc joining \c
   1.152 +    ///u to \c v will be an arc of the matching.
   1.153 +    template<typename MatchingMap>
   1.154 +    void matchingMapInit(MatchingMap& map) {
   1.155 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.156 +        position.set(v,C);
   1.157 +        Edge e=map[v];
   1.158 +        if ( e!=INVALID )
   1.159 +          _mate.set(v,g.oppositeNode(v,e));
   1.160 +        else
   1.161 +          _mate.set(v,INVALID);
   1.162 +      }
   1.163 +    }
   1.164 +
   1.165 +    ///\brief Initialize the matching from the map containing the
   1.166 +    ///undirected matching arcs.
   1.167 +    ///
   1.168 +    ///Initialize the matching from a \c bool valued \c Edge map. This
   1.169 +    ///map must have the property that there are no two incident arcs
   1.170 +    ///\c e, \c f with \c map[e]==map[f]==true. The arcs \c e with \c
   1.171 +    ///map[e]==true form the matching.
   1.172 +    template <typename MatchingMap>
   1.173 +    void matchingInit(MatchingMap& map) {
   1.174 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.175 +        _mate.set(v,INVALID);
   1.176 +        position.set(v,C);
   1.177 +      }
   1.178 +      for(EdgeIt e(g); e!=INVALID; ++e) {
   1.179 +        if ( map[e] ) {
   1.180 +          Node u=g.u(e);
   1.181 +          Node v=g.v(e);
   1.182 +          _mate.set(u,v);
   1.183 +          _mate.set(v,u);
   1.184 +        }
   1.185 +      }
   1.186 +    }
   1.187 +
   1.188 +
   1.189 +    ///\brief Runs Edmonds' algorithm.
   1.190 +    ///
   1.191 +    ///Runs Edmonds' algorithm for sparse digraphs (number of arcs <
   1.192 +    ///2*number of nodes), and a heuristical Edmonds' algorithm with a
   1.193 +    ///heuristic of postponing shrinks for dense digraphs.
   1.194 +    void run() {
   1.195 +      if (countEdges(g) < HEUR_density * countNodes(g)) {
   1.196 +        greedyInit();
   1.197 +        startSparse();
   1.198 +      } else {
   1.199 +        init();
   1.200 +        startDense();
   1.201 +      }
   1.202 +    }
   1.203 +
   1.204 +
   1.205 +    ///\brief Starts Edmonds' algorithm.
   1.206 +    ///
   1.207 +    ///If runs the original Edmonds' algorithm.
   1.208 +    void startSparse() {
   1.209 +
   1.210 +      typename Graph::template NodeMap<Node> ear(g,INVALID);
   1.211 +      //undefined for the base nodes of the blossoms (i.e. for the
   1.212 +      //representative elements of UFE blossom) and for the nodes in C
   1.213 +
   1.214 +      UFECrossRef blossom_base(g);
   1.215 +      UFE blossom(blossom_base);
   1.216 +      NV rep(countNodes(g));
   1.217 +
   1.218 +      EFECrossRef tree_base(g);
   1.219 +      EFE tree(tree_base);
   1.220 +
   1.221 +      //If these UFE's would be members of the class then also
   1.222 +      //blossom_base and tree_base should be a member.
   1.223 +
   1.224 +      //We build only one tree and the other vertices uncovered by the
   1.225 +      //matching belong to C. (They can be considered as singleton
   1.226 +      //trees.) If this tree can be augmented or no more
   1.227 +      //grow/augmentation/shrink is possible then we return to this
   1.228 +      //"for" cycle.
   1.229 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.230 +        if (position[v]==C && _mate[v]==INVALID) {
   1.231 +          rep[blossom.insert(v)] = v;
   1.232 +          tree.insert(v);
   1.233 +          position.set(v,D);
   1.234 +          normShrink(v, ear, blossom, rep, tree);
   1.235 +        }
   1.236 +      }
   1.237 +    }
   1.238 +
   1.239 +    ///\brief Starts Edmonds' algorithm.
   1.240 +    ///
   1.241 +    ///It runs Edmonds' algorithm with a heuristic of postponing
   1.242 +    ///shrinks, giving a faster algorithm for dense digraphs.
   1.243 +    void startDense() {
   1.244 +
   1.245 +      typename Graph::template NodeMap<Node> ear(g,INVALID);
   1.246 +      //undefined for the base nodes of the blossoms (i.e. for the
   1.247 +      //representative elements of UFE blossom) and for the nodes in C
   1.248 +
   1.249 +      UFECrossRef blossom_base(g);
   1.250 +      UFE blossom(blossom_base);
   1.251 +      NV rep(countNodes(g));
   1.252 +
   1.253 +      EFECrossRef tree_base(g);
   1.254 +      EFE tree(tree_base);
   1.255 +
   1.256 +      //If these UFE's would be members of the class then also
   1.257 +      //blossom_base and tree_base should be a member.
   1.258 +
   1.259 +      //We build only one tree and the other vertices uncovered by the
   1.260 +      //matching belong to C. (They can be considered as singleton
   1.261 +      //trees.) If this tree can be augmented or no more
   1.262 +      //grow/augmentation/shrink is possible then we return to this
   1.263 +      //"for" cycle.
   1.264 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.265 +        if ( position[v]==C && _mate[v]==INVALID ) {
   1.266 +          rep[blossom.insert(v)] = v;
   1.267 +          tree.insert(v);
   1.268 +          position.set(v,D);
   1.269 +          lateShrink(v, ear, blossom, rep, tree);
   1.270 +        }
   1.271 +      }
   1.272 +    }
   1.273 +
   1.274 +
   1.275 +
   1.276 +    ///\brief Returns the size of the actual matching stored.
   1.277 +    ///
   1.278 +    ///Returns the size of the actual matching stored. After \ref
   1.279 +    ///run() it returns the size of a maximum matching in the digraph.
   1.280 +    int size() const {
   1.281 +      int s=0;
   1.282 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.283 +        if ( _mate[v]!=INVALID ) {
   1.284 +          ++s;
   1.285 +        }
   1.286 +      }
   1.287 +      return s/2;
   1.288 +    }
   1.289 +
   1.290 +
   1.291 +    ///\brief Returns the mate of a node in the actual matching.
   1.292 +    ///
   1.293 +    ///Returns the mate of a \c node in the actual matching.
   1.294 +    ///Returns INVALID if the \c node is not covered by the actual matching.
   1.295 +    Node mate(const Node& node) const {
   1.296 +      return _mate[node];
   1.297 +    }
   1.298 +
   1.299 +    ///\brief Returns the matching arc incident to the given node.
   1.300 +    ///
   1.301 +    ///Returns the matching arc of a \c node in the actual matching.
   1.302 +    ///Returns INVALID if the \c node is not covered by the actual matching.
   1.303 +    Edge matchingArc(const Node& node) const {
   1.304 +      if (_mate[node] == INVALID) return INVALID;
   1.305 +      Node n = node < _mate[node] ? node : _mate[node];
   1.306 +      for (IncEdgeIt e(g, n); e != INVALID; ++e) {
   1.307 +        if (g.oppositeNode(n, e) == _mate[n]) {
   1.308 +          return e;
   1.309 +        }
   1.310 +      }
   1.311 +      return INVALID;
   1.312 +    }
   1.313 +
   1.314 +    /// \brief Returns the class of the node in the Edmonds-Gallai
   1.315 +    /// decomposition.
   1.316 +    ///
   1.317 +    /// Returns the class of the node in the Edmonds-Gallai
   1.318 +    /// decomposition.
   1.319 +    DecompType decomposition(const Node& n) {
   1.320 +      return position[n] == A;
   1.321 +    }
   1.322 +
   1.323 +    /// \brief Returns true when the node is in the barrier.
   1.324 +    ///
   1.325 +    /// Returns true when the node is in the barrier.
   1.326 +    bool barrier(const Node& n) {
   1.327 +      return position[n] == A;
   1.328 +    }
   1.329 +
   1.330 +    ///\brief Gives back the matching in a \c Node of mates.
   1.331 +    ///
   1.332 +    ///Writes the stored matching to a \c Node valued \c Node map. The
   1.333 +    ///resulting map will be \e symmetric, i.e. if \c map[u]==v then \c
   1.334 +    ///map[v]==u will hold, and now \c uv is an arc of the matching.
   1.335 +    template <typename MateMap>
   1.336 +    void mateMap(MateMap& map) const {
   1.337 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.338 +        map.set(v,_mate[v]);
   1.339 +      }
   1.340 +    }
   1.341 +
   1.342 +    ///\brief Gives back the matching in an \c Edge valued \c Node
   1.343 +    ///map.
   1.344 +    ///
   1.345 +    ///Writes the stored matching to an \c Edge valued \c Node
   1.346 +    ///map. \c map[v] will be an \c Edge incident to \c v. This
   1.347 +    ///map will have the property that if \c g.oppositeNode(u,map[u])
   1.348 +    ///== v then \c map[u]==map[v] holds, and now this arc is an arc
   1.349 +    ///of the matching.
   1.350 +    template <typename MatchingMap>
   1.351 +    void matchingMap(MatchingMap& map)  const {
   1.352 +      typename Graph::template NodeMap<bool> todo(g,true);
   1.353 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.354 +        if (_mate[v]!=INVALID && v < _mate[v]) {
   1.355 +          Node u=_mate[v];
   1.356 +          for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   1.357 +            if ( g.runningNode(e) == u ) {
   1.358 +              map.set(u,e);
   1.359 +              map.set(v,e);
   1.360 +              todo.set(u,false);
   1.361 +              todo.set(v,false);
   1.362 +              break;
   1.363 +            }
   1.364 +          }
   1.365 +        }
   1.366 +      }
   1.367 +    }
   1.368 +
   1.369 +
   1.370 +    ///\brief Gives back the matching in a \c bool valued \c Edge
   1.371 +    ///map.
   1.372 +    ///
   1.373 +    ///Writes the matching stored to a \c bool valued \c Arc
   1.374 +    ///map. This map will have the property that there are no two
   1.375 +    ///incident arcs \c e, \c f with \c map[e]==map[f]==true. The
   1.376 +    ///arcs \c e with \c map[e]==true form the matching.
   1.377 +    template<typename MatchingMap>
   1.378 +    void matching(MatchingMap& map) const {
   1.379 +      for(EdgeIt e(g); e!=INVALID; ++e) map.set(e,false);
   1.380 +
   1.381 +      typename Graph::template NodeMap<bool> todo(g,true);
   1.382 +      for(NodeIt v(g); v!=INVALID; ++v) {
   1.383 +        if ( todo[v] && _mate[v]!=INVALID ) {
   1.384 +          Node u=_mate[v];
   1.385 +          for(IncEdgeIt e(g,v); e!=INVALID; ++e) {
   1.386 +            if ( g.runningNode(e) == u ) {
   1.387 +              map.set(e,true);
   1.388 +              todo.set(u,false);
   1.389 +              todo.set(v,false);
   1.390 +              break;
   1.391 +            }
   1.392 +          }
   1.393 +        }
   1.394 +      }
   1.395 +    }
   1.396 +
   1.397 +
   1.398 +    ///\brief Returns the canonical decomposition of the digraph after running
   1.399 +    ///the algorithm.
   1.400 +    ///
   1.401 +    ///After calling any run methods of the class, it writes the
   1.402 +    ///Gallai-Edmonds canonical decomposition of the digraph. \c map
   1.403 +    ///must be a node map of \ref DecompType 's.
   1.404 +    template <typename DecompositionMap>
   1.405 +    void decomposition(DecompositionMap& map) const {
   1.406 +      for(NodeIt v(g); v!=INVALID; ++v) map.set(v,position[v]);
   1.407 +    }
   1.408 +
   1.409 +    ///\brief Returns a barrier on the nodes.
   1.410 +    ///
   1.411 +    ///After calling any run methods of the class, it writes a
   1.412 +    ///canonical barrier on the nodes. The odd component number of the
   1.413 +    ///remaining digraph minus the barrier size is a lower bound for the
   1.414 +    ///uncovered nodes in the digraph. The \c map must be a node map of
   1.415 +    ///bools.
   1.416 +    template <typename BarrierMap>
   1.417 +    void barrier(BarrierMap& barrier) {
   1.418 +      for(NodeIt v(g); v!=INVALID; ++v) barrier.set(v,position[v] == A);
   1.419 +    }
   1.420 +
   1.421 +  private:
   1.422 +
   1.423 +
   1.424 +    void lateShrink(Node v, typename Graph::template NodeMap<Node>& ear,
   1.425 +                    UFE& blossom, NV& rep, EFE& tree) {
   1.426 +      //We have one tree which we grow, and also shrink but only if it
   1.427 +      //cannot be postponed. If we augment then we return to the "for"
   1.428 +      //cycle of runEdmonds().
   1.429 +
   1.430 +      std::queue<Node> Q;   //queue of the totally unscanned nodes
   1.431 +      Q.push(v);
   1.432 +      std::queue<Node> R;
   1.433 +      //queue of the nodes which must be scanned for a possible shrink
   1.434 +
   1.435 +      while ( !Q.empty() ) {
   1.436 +        Node x=Q.front();
   1.437 +        Q.pop();
   1.438 +        for( IncEdgeIt e(g,x); e!= INVALID; ++e ) {
   1.439 +          Node y=g.runningNode(e);
   1.440 +          //growOrAugment grows if y is covered by the matching and
   1.441 +          //augments if not. In this latter case it returns 1.
   1.442 +          if (position[y]==C &&
   1.443 +              growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
   1.444 +        }
   1.445 +        R.push(x);
   1.446 +      }
   1.447 +
   1.448 +      while ( !R.empty() ) {
   1.449 +        Node x=R.front();
   1.450 +        R.pop();
   1.451 +
   1.452 +        for( IncEdgeIt e(g,x); e!=INVALID ; ++e ) {
   1.453 +          Node y=g.runningNode(e);
   1.454 +
   1.455 +          if ( position[y] == D && blossom.find(x) != blossom.find(y) )
   1.456 +            //Recall that we have only one tree.
   1.457 +            shrink( x, y, ear, blossom, rep, tree, Q);
   1.458 +
   1.459 +          while ( !Q.empty() ) {
   1.460 +            Node z=Q.front();
   1.461 +            Q.pop();
   1.462 +            for( IncEdgeIt f(g,z); f!= INVALID; ++f ) {
   1.463 +              Node w=g.runningNode(f);
   1.464 +              //growOrAugment grows if y is covered by the matching and
   1.465 +              //augments if not. In this latter case it returns 1.
   1.466 +              if (position[w]==C &&
   1.467 +                  growOrAugment(w, z, ear, blossom, rep, tree, Q)) return;
   1.468 +            }
   1.469 +            R.push(z);
   1.470 +          }
   1.471 +        } //for e
   1.472 +      } // while ( !R.empty() )
   1.473 +    }
   1.474 +
   1.475 +    void normShrink(Node v, typename Graph::template NodeMap<Node>& ear,
   1.476 +                    UFE& blossom, NV& rep, EFE& tree) {
   1.477 +      //We have one tree, which we grow and shrink. If we augment then we
   1.478 +      //return to the "for" cycle of runEdmonds().
   1.479 +
   1.480 +      std::queue<Node> Q;   //queue of the unscanned nodes
   1.481 +      Q.push(v);
   1.482 +      while ( !Q.empty() ) {
   1.483 +
   1.484 +        Node x=Q.front();
   1.485 +        Q.pop();
   1.486 +
   1.487 +        for( IncEdgeIt e(g,x); e!=INVALID; ++e ) {
   1.488 +          Node y=g.runningNode(e);
   1.489 +
   1.490 +          switch ( position[y] ) {
   1.491 +          case D:          //x and y must be in the same tree
   1.492 +            if ( blossom.find(x) != blossom.find(y))
   1.493 +              //x and y are in the same tree
   1.494 +              shrink(x, y, ear, blossom, rep, tree, Q);
   1.495 +            break;
   1.496 +          case C:
   1.497 +            //growOrAugment grows if y is covered by the matching and
   1.498 +            //augments if not. In this latter case it returns 1.
   1.499 +            if (growOrAugment(y, x, ear, blossom, rep, tree, Q)) return;
   1.500 +            break;
   1.501 +          default: break;
   1.502 +          }
   1.503 +        }
   1.504 +      }
   1.505 +    }
   1.506 +
   1.507 +    void shrink(Node x,Node y, typename Graph::template NodeMap<Node>& ear,
   1.508 +                UFE& blossom, NV& rep, EFE& tree,std::queue<Node>& Q) {
   1.509 +      //x and y are the two adjacent vertices in two blossoms.
   1.510 +
   1.511 +      typename Graph::template NodeMap<bool> path(g,false);
   1.512 +
   1.513 +      Node b=rep[blossom.find(x)];
   1.514 +      path.set(b,true);
   1.515 +      b=_mate[b];
   1.516 +      while ( b!=INVALID ) {
   1.517 +        b=rep[blossom.find(ear[b])];
   1.518 +        path.set(b,true);
   1.519 +        b=_mate[b];
   1.520 +      } //we go until the root through bases of blossoms and odd vertices
   1.521 +
   1.522 +      Node top=y;
   1.523 +      Node middle=rep[blossom.find(top)];
   1.524 +      Node bottom=x;
   1.525 +      while ( !path[middle] )
   1.526 +        shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
   1.527 +      //Until we arrive to a node on the path, we update blossom, tree
   1.528 +      //and the positions of the odd nodes.
   1.529 +
   1.530 +      Node base=middle;
   1.531 +      top=x;
   1.532 +      middle=rep[blossom.find(top)];
   1.533 +      bottom=y;
   1.534 +      Node blossom_base=rep[blossom.find(base)];
   1.535 +      while ( middle!=blossom_base )
   1.536 +        shrinkStep(top, middle, bottom, ear, blossom, rep, tree, Q);
   1.537 +      //Until we arrive to a node on the path, we update blossom, tree
   1.538 +      //and the positions of the odd nodes.
   1.539 +
   1.540 +      rep[blossom.find(base)] = base;
   1.541 +    }
   1.542 +
   1.543 +    void shrinkStep(Node& top, Node& middle, Node& bottom,
   1.544 +                    typename Graph::template NodeMap<Node>& ear,
   1.545 +                    UFE& blossom, NV& rep, EFE& tree, std::queue<Node>& Q) {
   1.546 +      //We traverse a blossom and update everything.
   1.547 +
   1.548 +      ear.set(top,bottom);
   1.549 +      Node t=top;
   1.550 +      while ( t!=middle ) {
   1.551 +        Node u=_mate[t];
   1.552 +        t=ear[u];
   1.553 +        ear.set(t,u);
   1.554 +      }
   1.555 +      bottom=_mate[middle];
   1.556 +      position.set(bottom,D);
   1.557 +      Q.push(bottom);
   1.558 +      top=ear[bottom];
   1.559 +      Node oldmiddle=middle;
   1.560 +      middle=rep[blossom.find(top)];
   1.561 +      tree.erase(bottom);
   1.562 +      tree.erase(oldmiddle);
   1.563 +      blossom.insert(bottom);
   1.564 +      blossom.join(bottom, oldmiddle);
   1.565 +      blossom.join(top, oldmiddle);
   1.566 +    }
   1.567 +
   1.568 +
   1.569 +
   1.570 +    bool growOrAugment(Node& y, Node& x, typename Graph::template
   1.571 +                       NodeMap<Node>& ear, UFE& blossom, NV& rep, EFE& tree,
   1.572 +                       std::queue<Node>& Q) {
   1.573 +      //x is in a blossom in the tree, y is outside. If y is covered by
   1.574 +      //the matching we grow, otherwise we augment. In this case we
   1.575 +      //return 1.
   1.576 +
   1.577 +      if ( _mate[y]!=INVALID ) {       //grow
   1.578 +        ear.set(y,x);
   1.579 +        Node w=_mate[y];
   1.580 +        rep[blossom.insert(w)] = w;
   1.581 +        position.set(y,A);
   1.582 +        position.set(w,D);
   1.583 +        int t = tree.find(rep[blossom.find(x)]);
   1.584 +        tree.insert(y,t);
   1.585 +        tree.insert(w,t);
   1.586 +        Q.push(w);
   1.587 +      } else {                      //augment
   1.588 +        augment(x, ear, blossom, rep, tree);
   1.589 +        _mate.set(x,y);
   1.590 +        _mate.set(y,x);
   1.591 +        return true;
   1.592 +      }
   1.593 +      return false;
   1.594 +    }
   1.595 +
   1.596 +    void augment(Node x, typename Graph::template NodeMap<Node>& ear,
   1.597 +                 UFE& blossom, NV& rep, EFE& tree) {
   1.598 +      Node v=_mate[x];
   1.599 +      while ( v!=INVALID ) {
   1.600 +
   1.601 +        Node u=ear[v];
   1.602 +        _mate.set(v,u);
   1.603 +        Node tmp=v;
   1.604 +        v=_mate[u];
   1.605 +        _mate.set(u,tmp);
   1.606 +      }
   1.607 +      int y = tree.find(rep[blossom.find(x)]);
   1.608 +      for (typename EFE::ItemIt tit(tree, y); tit != INVALID; ++tit) {
   1.609 +        if ( position[tit] == D ) {
   1.610 +          int b = blossom.find(tit);
   1.611 +          for (typename UFE::ItemIt bit(blossom, b); bit != INVALID; ++bit) {
   1.612 +            position.set(bit, C);
   1.613 +          }
   1.614 +          blossom.eraseClass(b);
   1.615 +        } else position.set(tit, C);
   1.616 +      }
   1.617 +      tree.eraseClass(y);
   1.618 +
   1.619 +    }
   1.620 +
   1.621 +  };
   1.622 +
   1.623 +  /// \ingroup matching
   1.624 +  ///
   1.625 +  /// \brief Weighted matching in general graphs
   1.626 +  ///
   1.627 +  /// This class provides an efficient implementation of Edmond's
   1.628 +  /// maximum weighted matching algorithm. The implementation is based
   1.629 +  /// on extensive use of priority queues and provides
   1.630 +  /// \f$O(nm\log(n))\f$ time complexity.
   1.631 +  ///
   1.632 +  /// The maximum weighted matching problem is to find undirected
   1.633 +  /// arcs in the digraph with maximum overall weight and no two of
   1.634 +  /// them shares their endpoints. The problem can be formulated with
   1.635 +  /// the next linear program:
   1.636 +  /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
   1.637 +  ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f]
   1.638 +  /// \f[x_e \ge 0\quad \forall e\in E\f]
   1.639 +  /// \f[\max \sum_{e\in E}x_ew_e\f]
   1.640 +  /// where \f$\delta(X)\f$ is the set of arcs incident to a node in
   1.641 +  /// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in
   1.642 +  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
   1.643 +  /// the nodes.
   1.644 +  ///
   1.645 +  /// The algorithm calculates an optimal matching and a proof of the
   1.646 +  /// optimality. The solution of the dual problem can be used to check
   1.647 +  /// the result of the algorithm. The dual linear problem is the next:
   1.648 +  /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
   1.649 +  /// \f[y_u \ge 0 \quad \forall u \in V\f]
   1.650 +  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
   1.651 +  /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
   1.652 +  ///
   1.653 +  /// The algorithm can be executed with \c run() or the \c init() and
   1.654 +  /// then the \c start() member functions. After it the matching can
   1.655 +  /// be asked with \c matching() or mate() functions. The dual
   1.656 +  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
   1.657 +  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
   1.658 +  /// "BlossomIt" nested class which is able to iterate on the nodes
   1.659 +  /// of a blossom. If the value type is integral then the dual
   1.660 +  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
   1.661 +  template <typename _Graph,
   1.662 +            typename _WeightMap = typename _Graph::template EdgeMap<int> >
   1.663 +  class MaxWeightedMatching {
   1.664 +  public:
   1.665 +
   1.666 +    typedef _Graph Graph;
   1.667 +    typedef _WeightMap WeightMap;
   1.668 +    typedef typename WeightMap::Value Value;
   1.669 +
   1.670 +    /// \brief Scaling factor for dual solution
   1.671 +    ///
   1.672 +    /// Scaling factor for dual solution, it is equal to 4 or 1
   1.673 +    /// according to the value type.
   1.674 +    static const int dualScale =
   1.675 +      std::numeric_limits<Value>::is_integer ? 4 : 1;
   1.676 +
   1.677 +    typedef typename Graph::template NodeMap<typename Graph::Arc>
   1.678 +    MatchingMap;
   1.679 +
   1.680 +  private:
   1.681 +
   1.682 +    TEMPLATE_GRAPH_TYPEDEFS(Graph);
   1.683 +
   1.684 +    typedef typename Graph::template NodeMap<Value> NodePotential;
   1.685 +    typedef std::vector<Node> BlossomNodeList;
   1.686 +
   1.687 +    struct BlossomVariable {
   1.688 +      int begin, end;
   1.689 +      Value value;
   1.690 +
   1.691 +      BlossomVariable(int _begin, int _end, Value _value)
   1.692 +        : begin(_begin), end(_end), value(_value) {}
   1.693 +
   1.694 +    };
   1.695 +
   1.696 +    typedef std::vector<BlossomVariable> BlossomPotential;
   1.697 +
   1.698 +    const Graph& _graph;
   1.699 +    const WeightMap& _weight;
   1.700 +
   1.701 +    MatchingMap* _matching;
   1.702 +
   1.703 +    NodePotential* _node_potential;
   1.704 +
   1.705 +    BlossomPotential _blossom_potential;
   1.706 +    BlossomNodeList _blossom_node_list;
   1.707 +
   1.708 +    int _node_num;
   1.709 +    int _blossom_num;
   1.710 +
   1.711 +    typedef typename Graph::template NodeMap<int> NodeIntMap;
   1.712 +    typedef typename Graph::template ArcMap<int> ArcIntMap;
   1.713 +    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
   1.714 +    typedef RangeMap<int> IntIntMap;
   1.715 +
   1.716 +    enum Status {
   1.717 +      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
   1.718 +    };
   1.719 +
   1.720 +    typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
   1.721 +    struct BlossomData {
   1.722 +      int tree;
   1.723 +      Status status;
   1.724 +      Arc pred, next;
   1.725 +      Value pot, offset;
   1.726 +      Node base;
   1.727 +    };
   1.728 +
   1.729 +    NodeIntMap *_blossom_index;
   1.730 +    BlossomSet *_blossom_set;
   1.731 +    RangeMap<BlossomData>* _blossom_data;
   1.732 +
   1.733 +    NodeIntMap *_node_index;
   1.734 +    ArcIntMap *_node_heap_index;
   1.735 +
   1.736 +    struct NodeData {
   1.737 +
   1.738 +      NodeData(ArcIntMap& node_heap_index)
   1.739 +        : heap(node_heap_index) {}
   1.740 +
   1.741 +      int blossom;
   1.742 +      Value pot;
   1.743 +      BinHeap<Value, ArcIntMap> heap;
   1.744 +      std::map<int, Arc> heap_index;
   1.745 +
   1.746 +      int tree;
   1.747 +    };
   1.748 +
   1.749 +    RangeMap<NodeData>* _node_data;
   1.750 +
   1.751 +    typedef ExtendFindEnum<IntIntMap> TreeSet;
   1.752 +
   1.753 +    IntIntMap *_tree_set_index;
   1.754 +    TreeSet *_tree_set;
   1.755 +
   1.756 +    NodeIntMap *_delta1_index;
   1.757 +    BinHeap<Value, NodeIntMap> *_delta1;
   1.758 +
   1.759 +    IntIntMap *_delta2_index;
   1.760 +    BinHeap<Value, IntIntMap> *_delta2;
   1.761 +
   1.762 +    EdgeIntMap *_delta3_index;
   1.763 +    BinHeap<Value, EdgeIntMap> *_delta3;
   1.764 +
   1.765 +    IntIntMap *_delta4_index;
   1.766 +    BinHeap<Value, IntIntMap> *_delta4;
   1.767 +
   1.768 +    Value _delta_sum;
   1.769 +
   1.770 +    void createStructures() {
   1.771 +      _node_num = countNodes(_graph);
   1.772 +      _blossom_num = _node_num * 3 / 2;
   1.773 +
   1.774 +      if (!_matching) {
   1.775 +        _matching = new MatchingMap(_graph);
   1.776 +      }
   1.777 +      if (!_node_potential) {
   1.778 +        _node_potential = new NodePotential(_graph);
   1.779 +      }
   1.780 +      if (!_blossom_set) {
   1.781 +        _blossom_index = new NodeIntMap(_graph);
   1.782 +        _blossom_set = new BlossomSet(*_blossom_index);
   1.783 +        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
   1.784 +      }
   1.785 +
   1.786 +      if (!_node_index) {
   1.787 +        _node_index = new NodeIntMap(_graph);
   1.788 +        _node_heap_index = new ArcIntMap(_graph);
   1.789 +        _node_data = new RangeMap<NodeData>(_node_num,
   1.790 +                                              NodeData(*_node_heap_index));
   1.791 +      }
   1.792 +
   1.793 +      if (!_tree_set) {
   1.794 +        _tree_set_index = new IntIntMap(_blossom_num);
   1.795 +        _tree_set = new TreeSet(*_tree_set_index);
   1.796 +      }
   1.797 +      if (!_delta1) {
   1.798 +        _delta1_index = new NodeIntMap(_graph);
   1.799 +        _delta1 = new BinHeap<Value, NodeIntMap>(*_delta1_index);
   1.800 +      }
   1.801 +      if (!_delta2) {
   1.802 +        _delta2_index = new IntIntMap(_blossom_num);
   1.803 +        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
   1.804 +      }
   1.805 +      if (!_delta3) {
   1.806 +        _delta3_index = new EdgeIntMap(_graph);
   1.807 +        _delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index);
   1.808 +      }
   1.809 +      if (!_delta4) {
   1.810 +        _delta4_index = new IntIntMap(_blossom_num);
   1.811 +        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
   1.812 +      }
   1.813 +    }
   1.814 +
   1.815 +    void destroyStructures() {
   1.816 +      _node_num = countNodes(_graph);
   1.817 +      _blossom_num = _node_num * 3 / 2;
   1.818 +
   1.819 +      if (_matching) {
   1.820 +        delete _matching;
   1.821 +      }
   1.822 +      if (_node_potential) {
   1.823 +        delete _node_potential;
   1.824 +      }
   1.825 +      if (_blossom_set) {
   1.826 +        delete _blossom_index;
   1.827 +        delete _blossom_set;
   1.828 +        delete _blossom_data;
   1.829 +      }
   1.830 +
   1.831 +      if (_node_index) {
   1.832 +        delete _node_index;
   1.833 +        delete _node_heap_index;
   1.834 +        delete _node_data;
   1.835 +      }
   1.836 +
   1.837 +      if (_tree_set) {
   1.838 +        delete _tree_set_index;
   1.839 +        delete _tree_set;
   1.840 +      }
   1.841 +      if (_delta1) {
   1.842 +        delete _delta1_index;
   1.843 +        delete _delta1;
   1.844 +      }
   1.845 +      if (_delta2) {
   1.846 +        delete _delta2_index;
   1.847 +        delete _delta2;
   1.848 +      }
   1.849 +      if (_delta3) {
   1.850 +        delete _delta3_index;
   1.851 +        delete _delta3;
   1.852 +      }
   1.853 +      if (_delta4) {
   1.854 +        delete _delta4_index;
   1.855 +        delete _delta4;
   1.856 +      }
   1.857 +    }
   1.858 +
   1.859 +    void matchedToEven(int blossom, int tree) {
   1.860 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   1.861 +        _delta2->erase(blossom);
   1.862 +      }
   1.863 +
   1.864 +      if (!_blossom_set->trivial(blossom)) {
   1.865 +        (*_blossom_data)[blossom].pot -=
   1.866 +          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
   1.867 +      }
   1.868 +
   1.869 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   1.870 +           n != INVALID; ++n) {
   1.871 +
   1.872 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
   1.873 +        int ni = (*_node_index)[n];
   1.874 +
   1.875 +        (*_node_data)[ni].heap.clear();
   1.876 +        (*_node_data)[ni].heap_index.clear();
   1.877 +
   1.878 +        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
   1.879 +
   1.880 +        _delta1->push(n, (*_node_data)[ni].pot);
   1.881 +
   1.882 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.883 +          Node v = _graph.source(e);
   1.884 +          int vb = _blossom_set->find(v);
   1.885 +          int vi = (*_node_index)[v];
   1.886 +
   1.887 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   1.888 +            dualScale * _weight[e];
   1.889 +
   1.890 +          if ((*_blossom_data)[vb].status == EVEN) {
   1.891 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   1.892 +              _delta3->push(e, rw / 2);
   1.893 +            }
   1.894 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.895 +            if (_delta3->state(e) != _delta3->IN_HEAP) {
   1.896 +              _delta3->push(e, rw);
   1.897 +            }
   1.898 +          } else {
   1.899 +            typename std::map<int, Arc>::iterator it =
   1.900 +              (*_node_data)[vi].heap_index.find(tree);
   1.901 +
   1.902 +            if (it != (*_node_data)[vi].heap_index.end()) {
   1.903 +              if ((*_node_data)[vi].heap[it->second] > rw) {
   1.904 +                (*_node_data)[vi].heap.replace(it->second, e);
   1.905 +                (*_node_data)[vi].heap.decrease(e, rw);
   1.906 +                it->second = e;
   1.907 +              }
   1.908 +            } else {
   1.909 +              (*_node_data)[vi].heap.push(e, rw);
   1.910 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   1.911 +            }
   1.912 +
   1.913 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   1.914 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   1.915 +
   1.916 +              if ((*_blossom_data)[vb].status == MATCHED) {
   1.917 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
   1.918 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
   1.919 +                               (*_blossom_data)[vb].offset);
   1.920 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   1.921 +                           (*_blossom_data)[vb].offset){
   1.922 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   1.923 +                                   (*_blossom_data)[vb].offset);
   1.924 +                }
   1.925 +              }
   1.926 +            }
   1.927 +          }
   1.928 +        }
   1.929 +      }
   1.930 +      (*_blossom_data)[blossom].offset = 0;
   1.931 +    }
   1.932 +
   1.933 +    void matchedToOdd(int blossom) {
   1.934 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   1.935 +        _delta2->erase(blossom);
   1.936 +      }
   1.937 +      (*_blossom_data)[blossom].offset += _delta_sum;
   1.938 +      if (!_blossom_set->trivial(blossom)) {
   1.939 +        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
   1.940 +                     (*_blossom_data)[blossom].offset);
   1.941 +      }
   1.942 +    }
   1.943 +
   1.944 +    void evenToMatched(int blossom, int tree) {
   1.945 +      if (!_blossom_set->trivial(blossom)) {
   1.946 +        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
   1.947 +      }
   1.948 +
   1.949 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   1.950 +           n != INVALID; ++n) {
   1.951 +        int ni = (*_node_index)[n];
   1.952 +        (*_node_data)[ni].pot -= _delta_sum;
   1.953 +
   1.954 +        _delta1->erase(n);
   1.955 +
   1.956 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.957 +          Node v = _graph.source(e);
   1.958 +          int vb = _blossom_set->find(v);
   1.959 +          int vi = (*_node_index)[v];
   1.960 +
   1.961 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   1.962 +            dualScale * _weight[e];
   1.963 +
   1.964 +          if (vb == blossom) {
   1.965 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.966 +              _delta3->erase(e);
   1.967 +            }
   1.968 +          } else if ((*_blossom_data)[vb].status == EVEN) {
   1.969 +
   1.970 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.971 +              _delta3->erase(e);
   1.972 +            }
   1.973 +
   1.974 +            int vt = _tree_set->find(vb);
   1.975 +
   1.976 +            if (vt != tree) {
   1.977 +
   1.978 +              Arc r = _graph.oppositeArc(e);
   1.979 +
   1.980 +              typename std::map<int, Arc>::iterator it =
   1.981 +                (*_node_data)[ni].heap_index.find(vt);
   1.982 +
   1.983 +              if (it != (*_node_data)[ni].heap_index.end()) {
   1.984 +                if ((*_node_data)[ni].heap[it->second] > rw) {
   1.985 +                  (*_node_data)[ni].heap.replace(it->second, r);
   1.986 +                  (*_node_data)[ni].heap.decrease(r, rw);
   1.987 +                  it->second = r;
   1.988 +                }
   1.989 +              } else {
   1.990 +                (*_node_data)[ni].heap.push(r, rw);
   1.991 +                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
   1.992 +              }
   1.993 +
   1.994 +              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
   1.995 +                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
   1.996 +
   1.997 +                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
   1.998 +                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
   1.999 +                               (*_blossom_data)[blossom].offset);
  1.1000 +                } else if ((*_delta2)[blossom] >
  1.1001 +                           _blossom_set->classPrio(blossom) -
  1.1002 +                           (*_blossom_data)[blossom].offset){
  1.1003 +                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  1.1004 +                                   (*_blossom_data)[blossom].offset);
  1.1005 +                }
  1.1006 +              }
  1.1007 +            }
  1.1008 +
  1.1009 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  1.1010 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.1011 +              _delta3->erase(e);
  1.1012 +            }
  1.1013 +          } else {
  1.1014 +
  1.1015 +            typename std::map<int, Arc>::iterator it =
  1.1016 +              (*_node_data)[vi].heap_index.find(tree);
  1.1017 +
  1.1018 +            if (it != (*_node_data)[vi].heap_index.end()) {
  1.1019 +              (*_node_data)[vi].heap.erase(it->second);
  1.1020 +              (*_node_data)[vi].heap_index.erase(it);
  1.1021 +              if ((*_node_data)[vi].heap.empty()) {
  1.1022 +                _blossom_set->increase(v, std::numeric_limits<Value>::max());
  1.1023 +              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  1.1024 +                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  1.1025 +              }
  1.1026 +
  1.1027 +              if ((*_blossom_data)[vb].status == MATCHED) {
  1.1028 +                if (_blossom_set->classPrio(vb) ==
  1.1029 +                    std::numeric_limits<Value>::max()) {
  1.1030 +                  _delta2->erase(vb);
  1.1031 +                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  1.1032 +                           (*_blossom_data)[vb].offset) {
  1.1033 +                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  1.1034 +                                   (*_blossom_data)[vb].offset);
  1.1035 +                }
  1.1036 +              }
  1.1037 +            }
  1.1038 +          }
  1.1039 +        }
  1.1040 +      }
  1.1041 +    }
  1.1042 +
  1.1043 +    void oddToMatched(int blossom) {
  1.1044 +      (*_blossom_data)[blossom].offset -= _delta_sum;
  1.1045 +
  1.1046 +      if (_blossom_set->classPrio(blossom) !=
  1.1047 +          std::numeric_limits<Value>::max()) {
  1.1048 +        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  1.1049 +                       (*_blossom_data)[blossom].offset);
  1.1050 +      }
  1.1051 +
  1.1052 +      if (!_blossom_set->trivial(blossom)) {
  1.1053 +        _delta4->erase(blossom);
  1.1054 +      }
  1.1055 +    }
  1.1056 +
  1.1057 +    void oddToEven(int blossom, int tree) {
  1.1058 +      if (!_blossom_set->trivial(blossom)) {
  1.1059 +        _delta4->erase(blossom);
  1.1060 +        (*_blossom_data)[blossom].pot -=
  1.1061 +          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  1.1062 +      }
  1.1063 +
  1.1064 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.1065 +           n != INVALID; ++n) {
  1.1066 +        int ni = (*_node_index)[n];
  1.1067 +
  1.1068 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  1.1069 +
  1.1070 +        (*_node_data)[ni].heap.clear();
  1.1071 +        (*_node_data)[ni].heap_index.clear();
  1.1072 +        (*_node_data)[ni].pot +=
  1.1073 +          2 * _delta_sum - (*_blossom_data)[blossom].offset;
  1.1074 +
  1.1075 +        _delta1->push(n, (*_node_data)[ni].pot);
  1.1076 +
  1.1077 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1.1078 +          Node v = _graph.source(e);
  1.1079 +          int vb = _blossom_set->find(v);
  1.1080 +          int vi = (*_node_index)[v];
  1.1081 +
  1.1082 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.1083 +            dualScale * _weight[e];
  1.1084 +
  1.1085 +          if ((*_blossom_data)[vb].status == EVEN) {
  1.1086 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  1.1087 +              _delta3->push(e, rw / 2);
  1.1088 +            }
  1.1089 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  1.1090 +            if (_delta3->state(e) != _delta3->IN_HEAP) {
  1.1091 +              _delta3->push(e, rw);
  1.1092 +            }
  1.1093 +          } else {
  1.1094 +
  1.1095 +            typename std::map<int, Arc>::iterator it =
  1.1096 +              (*_node_data)[vi].heap_index.find(tree);
  1.1097 +
  1.1098 +            if (it != (*_node_data)[vi].heap_index.end()) {
  1.1099 +              if ((*_node_data)[vi].heap[it->second] > rw) {
  1.1100 +                (*_node_data)[vi].heap.replace(it->second, e);
  1.1101 +                (*_node_data)[vi].heap.decrease(e, rw);
  1.1102 +                it->second = e;
  1.1103 +              }
  1.1104 +            } else {
  1.1105 +              (*_node_data)[vi].heap.push(e, rw);
  1.1106 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  1.1107 +            }
  1.1108 +
  1.1109 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  1.1110 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  1.1111 +
  1.1112 +              if ((*_blossom_data)[vb].status == MATCHED) {
  1.1113 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  1.1114 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  1.1115 +                               (*_blossom_data)[vb].offset);
  1.1116 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  1.1117 +                           (*_blossom_data)[vb].offset) {
  1.1118 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  1.1119 +                                   (*_blossom_data)[vb].offset);
  1.1120 +                }
  1.1121 +              }
  1.1122 +            }
  1.1123 +          }
  1.1124 +        }
  1.1125 +      }
  1.1126 +      (*_blossom_data)[blossom].offset = 0;
  1.1127 +    }
  1.1128 +
  1.1129 +
  1.1130 +    void matchedToUnmatched(int blossom) {
  1.1131 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.1132 +        _delta2->erase(blossom);
  1.1133 +      }
  1.1134 +
  1.1135 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.1136 +           n != INVALID; ++n) {
  1.1137 +        int ni = (*_node_index)[n];
  1.1138 +
  1.1139 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  1.1140 +
  1.1141 +        (*_node_data)[ni].heap.clear();
  1.1142 +        (*_node_data)[ni].heap_index.clear();
  1.1143 +
  1.1144 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  1.1145 +          Node v = _graph.target(e);
  1.1146 +          int vb = _blossom_set->find(v);
  1.1147 +          int vi = (*_node_index)[v];
  1.1148 +
  1.1149 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.1150 +            dualScale * _weight[e];
  1.1151 +
  1.1152 +          if ((*_blossom_data)[vb].status == EVEN) {
  1.1153 +            if (_delta3->state(e) != _delta3->IN_HEAP) {
  1.1154 +              _delta3->push(e, rw);
  1.1155 +            }
  1.1156 +          }
  1.1157 +        }
  1.1158 +      }
  1.1159 +    }
  1.1160 +
  1.1161 +    void unmatchedToMatched(int blossom) {
  1.1162 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.1163 +           n != INVALID; ++n) {
  1.1164 +        int ni = (*_node_index)[n];
  1.1165 +
  1.1166 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1.1167 +          Node v = _graph.source(e);
  1.1168 +          int vb = _blossom_set->find(v);
  1.1169 +          int vi = (*_node_index)[v];
  1.1170 +
  1.1171 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.1172 +            dualScale * _weight[e];
  1.1173 +
  1.1174 +          if (vb == blossom) {
  1.1175 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.1176 +              _delta3->erase(e);
  1.1177 +            }
  1.1178 +          } else if ((*_blossom_data)[vb].status == EVEN) {
  1.1179 +
  1.1180 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.1181 +              _delta3->erase(e);
  1.1182 +            }
  1.1183 +
  1.1184 +            int vt = _tree_set->find(vb);
  1.1185 +
  1.1186 +            Arc r = _graph.oppositeArc(e);
  1.1187 +
  1.1188 +            typename std::map<int, Arc>::iterator it =
  1.1189 +              (*_node_data)[ni].heap_index.find(vt);
  1.1190 +
  1.1191 +            if (it != (*_node_data)[ni].heap_index.end()) {
  1.1192 +              if ((*_node_data)[ni].heap[it->second] > rw) {
  1.1193 +                (*_node_data)[ni].heap.replace(it->second, r);
  1.1194 +                (*_node_data)[ni].heap.decrease(r, rw);
  1.1195 +                it->second = r;
  1.1196 +              }
  1.1197 +            } else {
  1.1198 +              (*_node_data)[ni].heap.push(r, rw);
  1.1199 +              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  1.1200 +            }
  1.1201 +
  1.1202 +            if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  1.1203 +              _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  1.1204 +
  1.1205 +              if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  1.1206 +                _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  1.1207 +                             (*_blossom_data)[blossom].offset);
  1.1208 +              } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
  1.1209 +                         (*_blossom_data)[blossom].offset){
  1.1210 +                _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  1.1211 +                                 (*_blossom_data)[blossom].offset);
  1.1212 +              }
  1.1213 +            }
  1.1214 +
  1.1215 +          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
  1.1216 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.1217 +              _delta3->erase(e);
  1.1218 +            }
  1.1219 +          }
  1.1220 +        }
  1.1221 +      }
  1.1222 +    }
  1.1223 +
  1.1224 +    void alternatePath(int even, int tree) {
  1.1225 +      int odd;
  1.1226 +
  1.1227 +      evenToMatched(even, tree);
  1.1228 +      (*_blossom_data)[even].status = MATCHED;
  1.1229 +
  1.1230 +      while ((*_blossom_data)[even].pred != INVALID) {
  1.1231 +        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  1.1232 +        (*_blossom_data)[odd].status = MATCHED;
  1.1233 +        oddToMatched(odd);
  1.1234 +        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  1.1235 +
  1.1236 +        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  1.1237 +        (*_blossom_data)[even].status = MATCHED;
  1.1238 +        evenToMatched(even, tree);
  1.1239 +        (*_blossom_data)[even].next =
  1.1240 +          _graph.oppositeArc((*_blossom_data)[odd].pred);
  1.1241 +      }
  1.1242 +
  1.1243 +    }
  1.1244 +
  1.1245 +    void destroyTree(int tree) {
  1.1246 +      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  1.1247 +        if ((*_blossom_data)[b].status == EVEN) {
  1.1248 +          (*_blossom_data)[b].status = MATCHED;
  1.1249 +          evenToMatched(b, tree);
  1.1250 +        } else if ((*_blossom_data)[b].status == ODD) {
  1.1251 +          (*_blossom_data)[b].status = MATCHED;
  1.1252 +          oddToMatched(b);
  1.1253 +        }
  1.1254 +      }
  1.1255 +      _tree_set->eraseClass(tree);
  1.1256 +    }
  1.1257 +
  1.1258 +
  1.1259 +    void unmatchNode(const Node& node) {
  1.1260 +      int blossom = _blossom_set->find(node);
  1.1261 +      int tree = _tree_set->find(blossom);
  1.1262 +
  1.1263 +      alternatePath(blossom, tree);
  1.1264 +      destroyTree(tree);
  1.1265 +
  1.1266 +      (*_blossom_data)[blossom].status = UNMATCHED;
  1.1267 +      (*_blossom_data)[blossom].base = node;
  1.1268 +      matchedToUnmatched(blossom);
  1.1269 +    }
  1.1270 +
  1.1271 +
  1.1272 +    void augmentOnArc(const Edge& arc) {
  1.1273 +
  1.1274 +      int left = _blossom_set->find(_graph.u(arc));
  1.1275 +      int right = _blossom_set->find(_graph.v(arc));
  1.1276 +
  1.1277 +      if ((*_blossom_data)[left].status == EVEN) {
  1.1278 +        int left_tree = _tree_set->find(left);
  1.1279 +        alternatePath(left, left_tree);
  1.1280 +        destroyTree(left_tree);
  1.1281 +      } else {
  1.1282 +        (*_blossom_data)[left].status = MATCHED;
  1.1283 +        unmatchedToMatched(left);
  1.1284 +      }
  1.1285 +
  1.1286 +      if ((*_blossom_data)[right].status == EVEN) {
  1.1287 +        int right_tree = _tree_set->find(right);
  1.1288 +        alternatePath(right, right_tree);
  1.1289 +        destroyTree(right_tree);
  1.1290 +      } else {
  1.1291 +        (*_blossom_data)[right].status = MATCHED;
  1.1292 +        unmatchedToMatched(right);
  1.1293 +      }
  1.1294 +
  1.1295 +      (*_blossom_data)[left].next = _graph.direct(arc, true);
  1.1296 +      (*_blossom_data)[right].next = _graph.direct(arc, false);
  1.1297 +    }
  1.1298 +
  1.1299 +    void extendOnArc(const Arc& arc) {
  1.1300 +      int base = _blossom_set->find(_graph.target(arc));
  1.1301 +      int tree = _tree_set->find(base);
  1.1302 +
  1.1303 +      int odd = _blossom_set->find(_graph.source(arc));
  1.1304 +      _tree_set->insert(odd, tree);
  1.1305 +      (*_blossom_data)[odd].status = ODD;
  1.1306 +      matchedToOdd(odd);
  1.1307 +      (*_blossom_data)[odd].pred = arc;
  1.1308 +
  1.1309 +      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  1.1310 +      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  1.1311 +      _tree_set->insert(even, tree);
  1.1312 +      (*_blossom_data)[even].status = EVEN;
  1.1313 +      matchedToEven(even, tree);
  1.1314 +    }
  1.1315 +
  1.1316 +    void shrinkOnArc(const Edge& edge, int tree) {
  1.1317 +      int nca = -1;
  1.1318 +      std::vector<int> left_path, right_path;
  1.1319 +
  1.1320 +      {
  1.1321 +        std::set<int> left_set, right_set;
  1.1322 +        int left = _blossom_set->find(_graph.u(edge));
  1.1323 +        left_path.push_back(left);
  1.1324 +        left_set.insert(left);
  1.1325 +
  1.1326 +        int right = _blossom_set->find(_graph.v(edge));
  1.1327 +        right_path.push_back(right);
  1.1328 +        right_set.insert(right);
  1.1329 +
  1.1330 +        while (true) {
  1.1331 +
  1.1332 +          if ((*_blossom_data)[left].pred == INVALID) break;
  1.1333 +
  1.1334 +          left =
  1.1335 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  1.1336 +          left_path.push_back(left);
  1.1337 +          left =
  1.1338 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  1.1339 +          left_path.push_back(left);
  1.1340 +
  1.1341 +          left_set.insert(left);
  1.1342 +
  1.1343 +          if (right_set.find(left) != right_set.end()) {
  1.1344 +            nca = left;
  1.1345 +            break;
  1.1346 +          }
  1.1347 +
  1.1348 +          if ((*_blossom_data)[right].pred == INVALID) break;
  1.1349 +
  1.1350 +          right =
  1.1351 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  1.1352 +          right_path.push_back(right);
  1.1353 +          right =
  1.1354 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  1.1355 +          right_path.push_back(right);
  1.1356 +
  1.1357 +          right_set.insert(right);
  1.1358 +
  1.1359 +          if (left_set.find(right) != left_set.end()) {
  1.1360 +            nca = right;
  1.1361 +            break;
  1.1362 +          }
  1.1363 +
  1.1364 +        }
  1.1365 +
  1.1366 +        if (nca == -1) {
  1.1367 +          if ((*_blossom_data)[left].pred == INVALID) {
  1.1368 +            nca = right;
  1.1369 +            while (left_set.find(nca) == left_set.end()) {
  1.1370 +              nca =
  1.1371 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.1372 +              right_path.push_back(nca);
  1.1373 +              nca =
  1.1374 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.1375 +              right_path.push_back(nca);
  1.1376 +            }
  1.1377 +          } else {
  1.1378 +            nca = left;
  1.1379 +            while (right_set.find(nca) == right_set.end()) {
  1.1380 +              nca =
  1.1381 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.1382 +              left_path.push_back(nca);
  1.1383 +              nca =
  1.1384 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.1385 +              left_path.push_back(nca);
  1.1386 +            }
  1.1387 +          }
  1.1388 +        }
  1.1389 +      }
  1.1390 +
  1.1391 +      std::vector<int> subblossoms;
  1.1392 +      Arc prev;
  1.1393 +
  1.1394 +      prev = _graph.direct(edge, true);
  1.1395 +      for (int i = 0; left_path[i] != nca; i += 2) {
  1.1396 +        subblossoms.push_back(left_path[i]);
  1.1397 +        (*_blossom_data)[left_path[i]].next = prev;
  1.1398 +        _tree_set->erase(left_path[i]);
  1.1399 +
  1.1400 +        subblossoms.push_back(left_path[i + 1]);
  1.1401 +        (*_blossom_data)[left_path[i + 1]].status = EVEN;
  1.1402 +        oddToEven(left_path[i + 1], tree);
  1.1403 +        _tree_set->erase(left_path[i + 1]);
  1.1404 +        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  1.1405 +      }
  1.1406 +
  1.1407 +      int k = 0;
  1.1408 +      while (right_path[k] != nca) ++k;
  1.1409 +
  1.1410 +      subblossoms.push_back(nca);
  1.1411 +      (*_blossom_data)[nca].next = prev;
  1.1412 +
  1.1413 +      for (int i = k - 2; i >= 0; i -= 2) {
  1.1414 +        subblossoms.push_back(right_path[i + 1]);
  1.1415 +        (*_blossom_data)[right_path[i + 1]].status = EVEN;
  1.1416 +        oddToEven(right_path[i + 1], tree);
  1.1417 +        _tree_set->erase(right_path[i + 1]);
  1.1418 +
  1.1419 +        (*_blossom_data)[right_path[i + 1]].next =
  1.1420 +          (*_blossom_data)[right_path[i + 1]].pred;
  1.1421 +
  1.1422 +        subblossoms.push_back(right_path[i]);
  1.1423 +        _tree_set->erase(right_path[i]);
  1.1424 +      }
  1.1425 +
  1.1426 +      int surface =
  1.1427 +        _blossom_set->join(subblossoms.begin(), subblossoms.end());
  1.1428 +
  1.1429 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.1430 +        if (!_blossom_set->trivial(subblossoms[i])) {
  1.1431 +          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  1.1432 +        }
  1.1433 +        (*_blossom_data)[subblossoms[i]].status = MATCHED;
  1.1434 +      }
  1.1435 +
  1.1436 +      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  1.1437 +      (*_blossom_data)[surface].offset = 0;
  1.1438 +      (*_blossom_data)[surface].status = EVEN;
  1.1439 +      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  1.1440 +      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  1.1441 +
  1.1442 +      _tree_set->insert(surface, tree);
  1.1443 +      _tree_set->erase(nca);
  1.1444 +    }
  1.1445 +
  1.1446 +    void splitBlossom(int blossom) {
  1.1447 +      Arc next = (*_blossom_data)[blossom].next;
  1.1448 +      Arc pred = (*_blossom_data)[blossom].pred;
  1.1449 +
  1.1450 +      int tree = _tree_set->find(blossom);
  1.1451 +
  1.1452 +      (*_blossom_data)[blossom].status = MATCHED;
  1.1453 +      oddToMatched(blossom);
  1.1454 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.1455 +        _delta2->erase(blossom);
  1.1456 +      }
  1.1457 +
  1.1458 +      std::vector<int> subblossoms;
  1.1459 +      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1.1460 +
  1.1461 +      Value offset = (*_blossom_data)[blossom].offset;
  1.1462 +      int b = _blossom_set->find(_graph.source(pred));
  1.1463 +      int d = _blossom_set->find(_graph.source(next));
  1.1464 +
  1.1465 +      int ib = -1, id = -1;
  1.1466 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.1467 +        if (subblossoms[i] == b) ib = i;
  1.1468 +        if (subblossoms[i] == d) id = i;
  1.1469 +
  1.1470 +        (*_blossom_data)[subblossoms[i]].offset = offset;
  1.1471 +        if (!_blossom_set->trivial(subblossoms[i])) {
  1.1472 +          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  1.1473 +        }
  1.1474 +        if (_blossom_set->classPrio(subblossoms[i]) !=
  1.1475 +            std::numeric_limits<Value>::max()) {
  1.1476 +          _delta2->push(subblossoms[i],
  1.1477 +                        _blossom_set->classPrio(subblossoms[i]) -
  1.1478 +                        (*_blossom_data)[subblossoms[i]].offset);
  1.1479 +        }
  1.1480 +      }
  1.1481 +
  1.1482 +      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  1.1483 +        for (int i = (id + 1) % subblossoms.size();
  1.1484 +             i != ib; i = (i + 2) % subblossoms.size()) {
  1.1485 +          int sb = subblossoms[i];
  1.1486 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.1487 +          (*_blossom_data)[sb].next =
  1.1488 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.1489 +        }
  1.1490 +
  1.1491 +        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  1.1492 +          int sb = subblossoms[i];
  1.1493 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.1494 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  1.1495 +
  1.1496 +          (*_blossom_data)[sb].status = ODD;
  1.1497 +          matchedToOdd(sb);
  1.1498 +          _tree_set->insert(sb, tree);
  1.1499 +          (*_blossom_data)[sb].pred = pred;
  1.1500 +          (*_blossom_data)[sb].next =
  1.1501 +                           _graph.oppositeArc((*_blossom_data)[tb].next);
  1.1502 +
  1.1503 +          pred = (*_blossom_data)[ub].next;
  1.1504 +
  1.1505 +          (*_blossom_data)[tb].status = EVEN;
  1.1506 +          matchedToEven(tb, tree);
  1.1507 +          _tree_set->insert(tb, tree);
  1.1508 +          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  1.1509 +        }
  1.1510 +
  1.1511 +        (*_blossom_data)[subblossoms[id]].status = ODD;
  1.1512 +        matchedToOdd(subblossoms[id]);
  1.1513 +        _tree_set->insert(subblossoms[id], tree);
  1.1514 +        (*_blossom_data)[subblossoms[id]].next = next;
  1.1515 +        (*_blossom_data)[subblossoms[id]].pred = pred;
  1.1516 +
  1.1517 +      } else {
  1.1518 +
  1.1519 +        for (int i = (ib + 1) % subblossoms.size();
  1.1520 +             i != id; i = (i + 2) % subblossoms.size()) {
  1.1521 +          int sb = subblossoms[i];
  1.1522 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.1523 +          (*_blossom_data)[sb].next =
  1.1524 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.1525 +        }
  1.1526 +
  1.1527 +        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  1.1528 +          int sb = subblossoms[i];
  1.1529 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.1530 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  1.1531 +
  1.1532 +          (*_blossom_data)[sb].status = ODD;
  1.1533 +          matchedToOdd(sb);
  1.1534 +          _tree_set->insert(sb, tree);
  1.1535 +          (*_blossom_data)[sb].next = next;
  1.1536 +          (*_blossom_data)[sb].pred =
  1.1537 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.1538 +
  1.1539 +          (*_blossom_data)[tb].status = EVEN;
  1.1540 +          matchedToEven(tb, tree);
  1.1541 +          _tree_set->insert(tb, tree);
  1.1542 +          (*_blossom_data)[tb].pred =
  1.1543 +            (*_blossom_data)[tb].next =
  1.1544 +            _graph.oppositeArc((*_blossom_data)[ub].next);
  1.1545 +          next = (*_blossom_data)[ub].next;
  1.1546 +        }
  1.1547 +
  1.1548 +        (*_blossom_data)[subblossoms[ib]].status = ODD;
  1.1549 +        matchedToOdd(subblossoms[ib]);
  1.1550 +        _tree_set->insert(subblossoms[ib], tree);
  1.1551 +        (*_blossom_data)[subblossoms[ib]].next = next;
  1.1552 +        (*_blossom_data)[subblossoms[ib]].pred = pred;
  1.1553 +      }
  1.1554 +      _tree_set->erase(blossom);
  1.1555 +    }
  1.1556 +
  1.1557 +    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  1.1558 +      if (_blossom_set->trivial(blossom)) {
  1.1559 +        int bi = (*_node_index)[base];
  1.1560 +        Value pot = (*_node_data)[bi].pot;
  1.1561 +
  1.1562 +        _matching->set(base, matching);
  1.1563 +        _blossom_node_list.push_back(base);
  1.1564 +        _node_potential->set(base, pot);
  1.1565 +      } else {
  1.1566 +
  1.1567 +        Value pot = (*_blossom_data)[blossom].pot;
  1.1568 +        int bn = _blossom_node_list.size();
  1.1569 +
  1.1570 +        std::vector<int> subblossoms;
  1.1571 +        _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1.1572 +        int b = _blossom_set->find(base);
  1.1573 +        int ib = -1;
  1.1574 +        for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.1575 +          if (subblossoms[i] == b) { ib = i; break; }
  1.1576 +        }
  1.1577 +
  1.1578 +        for (int i = 1; i < int(subblossoms.size()); i += 2) {
  1.1579 +          int sb = subblossoms[(ib + i) % subblossoms.size()];
  1.1580 +          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  1.1581 +
  1.1582 +          Arc m = (*_blossom_data)[tb].next;
  1.1583 +          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  1.1584 +          extractBlossom(tb, _graph.source(m), m);
  1.1585 +        }
  1.1586 +        extractBlossom(subblossoms[ib], base, matching);
  1.1587 +
  1.1588 +        int en = _blossom_node_list.size();
  1.1589 +
  1.1590 +        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  1.1591 +      }
  1.1592 +    }
  1.1593 +
  1.1594 +    void extractMatching() {
  1.1595 +      std::vector<int> blossoms;
  1.1596 +      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  1.1597 +        blossoms.push_back(c);
  1.1598 +      }
  1.1599 +
  1.1600 +      for (int i = 0; i < int(blossoms.size()); ++i) {
  1.1601 +        if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
  1.1602 +
  1.1603 +          Value offset = (*_blossom_data)[blossoms[i]].offset;
  1.1604 +          (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  1.1605 +          for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  1.1606 +               n != INVALID; ++n) {
  1.1607 +            (*_node_data)[(*_node_index)[n]].pot -= offset;
  1.1608 +          }
  1.1609 +
  1.1610 +          Arc matching = (*_blossom_data)[blossoms[i]].next;
  1.1611 +          Node base = _graph.source(matching);
  1.1612 +          extractBlossom(blossoms[i], base, matching);
  1.1613 +        } else {
  1.1614 +          Node base = (*_blossom_data)[blossoms[i]].base;
  1.1615 +          extractBlossom(blossoms[i], base, INVALID);
  1.1616 +        }
  1.1617 +      }
  1.1618 +    }
  1.1619 +
  1.1620 +  public:
  1.1621 +
  1.1622 +    /// \brief Constructor
  1.1623 +    ///
  1.1624 +    /// Constructor.
  1.1625 +    MaxWeightedMatching(const Graph& graph, const WeightMap& weight)
  1.1626 +      : _graph(graph), _weight(weight), _matching(0),
  1.1627 +        _node_potential(0), _blossom_potential(), _blossom_node_list(),
  1.1628 +        _node_num(0), _blossom_num(0),
  1.1629 +
  1.1630 +        _blossom_index(0), _blossom_set(0), _blossom_data(0),
  1.1631 +        _node_index(0), _node_heap_index(0), _node_data(0),
  1.1632 +        _tree_set_index(0), _tree_set(0),
  1.1633 +
  1.1634 +        _delta1_index(0), _delta1(0),
  1.1635 +        _delta2_index(0), _delta2(0),
  1.1636 +        _delta3_index(0), _delta3(0),
  1.1637 +        _delta4_index(0), _delta4(0),
  1.1638 +
  1.1639 +        _delta_sum() {}
  1.1640 +
  1.1641 +    ~MaxWeightedMatching() {
  1.1642 +      destroyStructures();
  1.1643 +    }
  1.1644 +
  1.1645 +    /// \name Execution control
  1.1646 +    /// The simplest way to execute the algorithm is to use the member
  1.1647 +    /// \c run() member function.
  1.1648 +
  1.1649 +    ///@{
  1.1650 +
  1.1651 +    /// \brief Initialize the algorithm
  1.1652 +    ///
  1.1653 +    /// Initialize the algorithm
  1.1654 +    void init() {
  1.1655 +      createStructures();
  1.1656 +
  1.1657 +      for (ArcIt e(_graph); e != INVALID; ++e) {
  1.1658 +        _node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP);
  1.1659 +      }
  1.1660 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1661 +        _delta1_index->set(n, _delta1->PRE_HEAP);
  1.1662 +      }
  1.1663 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  1.1664 +        _delta3_index->set(e, _delta3->PRE_HEAP);
  1.1665 +      }
  1.1666 +      for (int i = 0; i < _blossom_num; ++i) {
  1.1667 +        _delta2_index->set(i, _delta2->PRE_HEAP);
  1.1668 +        _delta4_index->set(i, _delta4->PRE_HEAP);
  1.1669 +      }
  1.1670 +
  1.1671 +      int index = 0;
  1.1672 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1673 +        Value max = 0;
  1.1674 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  1.1675 +          if (_graph.target(e) == n) continue;
  1.1676 +          if ((dualScale * _weight[e]) / 2 > max) {
  1.1677 +            max = (dualScale * _weight[e]) / 2;
  1.1678 +          }
  1.1679 +        }
  1.1680 +        _node_index->set(n, index);
  1.1681 +        (*_node_data)[index].pot = max;
  1.1682 +        _delta1->push(n, max);
  1.1683 +        int blossom =
  1.1684 +          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  1.1685 +
  1.1686 +        _tree_set->insert(blossom);
  1.1687 +
  1.1688 +        (*_blossom_data)[blossom].status = EVEN;
  1.1689 +        (*_blossom_data)[blossom].pred = INVALID;
  1.1690 +        (*_blossom_data)[blossom].next = INVALID;
  1.1691 +        (*_blossom_data)[blossom].pot = 0;
  1.1692 +        (*_blossom_data)[blossom].offset = 0;
  1.1693 +        ++index;
  1.1694 +      }
  1.1695 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  1.1696 +        int si = (*_node_index)[_graph.u(e)];
  1.1697 +        int ti = (*_node_index)[_graph.v(e)];
  1.1698 +        if (_graph.u(e) != _graph.v(e)) {
  1.1699 +          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  1.1700 +                            dualScale * _weight[e]) / 2);
  1.1701 +        }
  1.1702 +      }
  1.1703 +    }
  1.1704 +
  1.1705 +    /// \brief Starts the algorithm
  1.1706 +    ///
  1.1707 +    /// Starts the algorithm
  1.1708 +    void start() {
  1.1709 +      enum OpType {
  1.1710 +        D1, D2, D3, D4
  1.1711 +      };
  1.1712 +
  1.1713 +      int unmatched = _node_num;
  1.1714 +      while (unmatched > 0) {
  1.1715 +        Value d1 = !_delta1->empty() ?
  1.1716 +          _delta1->prio() : std::numeric_limits<Value>::max();
  1.1717 +
  1.1718 +        Value d2 = !_delta2->empty() ?
  1.1719 +          _delta2->prio() : std::numeric_limits<Value>::max();
  1.1720 +
  1.1721 +        Value d3 = !_delta3->empty() ?
  1.1722 +          _delta3->prio() : std::numeric_limits<Value>::max();
  1.1723 +
  1.1724 +        Value d4 = !_delta4->empty() ?
  1.1725 +          _delta4->prio() : std::numeric_limits<Value>::max();
  1.1726 +
  1.1727 +        _delta_sum = d1; OpType ot = D1;
  1.1728 +        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
  1.1729 +        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  1.1730 +        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  1.1731 +
  1.1732 +
  1.1733 +        switch (ot) {
  1.1734 +        case D1:
  1.1735 +          {
  1.1736 +            Node n = _delta1->top();
  1.1737 +            unmatchNode(n);
  1.1738 +            --unmatched;
  1.1739 +          }
  1.1740 +          break;
  1.1741 +        case D2:
  1.1742 +          {
  1.1743 +            int blossom = _delta2->top();
  1.1744 +            Node n = _blossom_set->classTop(blossom);
  1.1745 +            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  1.1746 +            extendOnArc(e);
  1.1747 +          }
  1.1748 +          break;
  1.1749 +        case D3:
  1.1750 +          {
  1.1751 +            Edge e = _delta3->top();
  1.1752 +
  1.1753 +            int left_blossom = _blossom_set->find(_graph.u(e));
  1.1754 +            int right_blossom = _blossom_set->find(_graph.v(e));
  1.1755 +
  1.1756 +            if (left_blossom == right_blossom) {
  1.1757 +              _delta3->pop();
  1.1758 +            } else {
  1.1759 +              int left_tree;
  1.1760 +              if ((*_blossom_data)[left_blossom].status == EVEN) {
  1.1761 +                left_tree = _tree_set->find(left_blossom);
  1.1762 +              } else {
  1.1763 +                left_tree = -1;
  1.1764 +                ++unmatched;
  1.1765 +              }
  1.1766 +              int right_tree;
  1.1767 +              if ((*_blossom_data)[right_blossom].status == EVEN) {
  1.1768 +                right_tree = _tree_set->find(right_blossom);
  1.1769 +              } else {
  1.1770 +                right_tree = -1;
  1.1771 +                ++unmatched;
  1.1772 +              }
  1.1773 +
  1.1774 +              if (left_tree == right_tree) {
  1.1775 +                shrinkOnArc(e, left_tree);
  1.1776 +              } else {
  1.1777 +                augmentOnArc(e);
  1.1778 +                unmatched -= 2;
  1.1779 +              }
  1.1780 +            }
  1.1781 +          } break;
  1.1782 +        case D4:
  1.1783 +          splitBlossom(_delta4->top());
  1.1784 +          break;
  1.1785 +        }
  1.1786 +      }
  1.1787 +      extractMatching();
  1.1788 +    }
  1.1789 +
  1.1790 +    /// \brief Runs %MaxWeightedMatching algorithm.
  1.1791 +    ///
  1.1792 +    /// This method runs the %MaxWeightedMatching algorithm.
  1.1793 +    ///
  1.1794 +    /// \note mwm.run() is just a shortcut of the following code.
  1.1795 +    /// \code
  1.1796 +    ///   mwm.init();
  1.1797 +    ///   mwm.start();
  1.1798 +    /// \endcode
  1.1799 +    void run() {
  1.1800 +      init();
  1.1801 +      start();
  1.1802 +    }
  1.1803 +
  1.1804 +    /// @}
  1.1805 +
  1.1806 +    /// \name Primal solution
  1.1807 +    /// Functions for get the primal solution, ie. the matching.
  1.1808 +
  1.1809 +    /// @{
  1.1810 +
  1.1811 +    /// \brief Returns the matching value.
  1.1812 +    ///
  1.1813 +    /// Returns the matching value.
  1.1814 +    Value matchingValue() const {
  1.1815 +      Value sum = 0;
  1.1816 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1817 +        if ((*_matching)[n] != INVALID) {
  1.1818 +          sum += _weight[(*_matching)[n]];
  1.1819 +        }
  1.1820 +      }
  1.1821 +      return sum /= 2;
  1.1822 +    }
  1.1823 +
  1.1824 +    /// \brief Returns true when the arc is in the matching.
  1.1825 +    ///
  1.1826 +    /// Returns true when the arc is in the matching.
  1.1827 +    bool matching(const Edge& arc) const {
  1.1828 +      return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true);
  1.1829 +    }
  1.1830 +
  1.1831 +    /// \brief Returns the incident matching arc.
  1.1832 +    ///
  1.1833 +    /// Returns the incident matching arc from given node. If the
  1.1834 +    /// node is not matched then it gives back \c INVALID.
  1.1835 +    Arc matching(const Node& node) const {
  1.1836 +      return (*_matching)[node];
  1.1837 +    }
  1.1838 +
  1.1839 +    /// \brief Returns the mate of the node.
  1.1840 +    ///
  1.1841 +    /// Returns the adjancent node in a mathcing arc. If the node is
  1.1842 +    /// not matched then it gives back \c INVALID.
  1.1843 +    Node mate(const Node& node) const {
  1.1844 +      return (*_matching)[node] != INVALID ?
  1.1845 +        _graph.target((*_matching)[node]) : INVALID;
  1.1846 +    }
  1.1847 +
  1.1848 +    /// @}
  1.1849 +
  1.1850 +    /// \name Dual solution
  1.1851 +    /// Functions for get the dual solution.
  1.1852 +
  1.1853 +    /// @{
  1.1854 +
  1.1855 +    /// \brief Returns the value of the dual solution.
  1.1856 +    ///
  1.1857 +    /// Returns the value of the dual solution. It should be equal to
  1.1858 +    /// the primal value scaled by \ref dualScale "dual scale".
  1.1859 +    Value dualValue() const {
  1.1860 +      Value sum = 0;
  1.1861 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1862 +        sum += nodeValue(n);
  1.1863 +      }
  1.1864 +      for (int i = 0; i < blossomNum(); ++i) {
  1.1865 +        sum += blossomValue(i) * (blossomSize(i) / 2);
  1.1866 +      }
  1.1867 +      return sum;
  1.1868 +    }
  1.1869 +
  1.1870 +    /// \brief Returns the value of the node.
  1.1871 +    ///
  1.1872 +    /// Returns the the value of the node.
  1.1873 +    Value nodeValue(const Node& n) const {
  1.1874 +      return (*_node_potential)[n];
  1.1875 +    }
  1.1876 +
  1.1877 +    /// \brief Returns the number of the blossoms in the basis.
  1.1878 +    ///
  1.1879 +    /// Returns the number of the blossoms in the basis.
  1.1880 +    /// \see BlossomIt
  1.1881 +    int blossomNum() const {
  1.1882 +      return _blossom_potential.size();
  1.1883 +    }
  1.1884 +
  1.1885 +
  1.1886 +    /// \brief Returns the number of the nodes in the blossom.
  1.1887 +    ///
  1.1888 +    /// Returns the number of the nodes in the blossom.
  1.1889 +    int blossomSize(int k) const {
  1.1890 +      return _blossom_potential[k].end - _blossom_potential[k].begin;
  1.1891 +    }
  1.1892 +
  1.1893 +    /// \brief Returns the value of the blossom.
  1.1894 +    ///
  1.1895 +    /// Returns the the value of the blossom.
  1.1896 +    /// \see BlossomIt
  1.1897 +    Value blossomValue(int k) const {
  1.1898 +      return _blossom_potential[k].value;
  1.1899 +    }
  1.1900 +
  1.1901 +    /// \brief Lemon iterator for get the items of the blossom.
  1.1902 +    ///
  1.1903 +    /// Lemon iterator for get the nodes of the blossom. This class
  1.1904 +    /// provides a common style lemon iterator which gives back a
  1.1905 +    /// subset of the nodes.
  1.1906 +    class BlossomIt {
  1.1907 +    public:
  1.1908 +
  1.1909 +      /// \brief Constructor.
  1.1910 +      ///
  1.1911 +      /// Constructor for get the nodes of the variable.
  1.1912 +      BlossomIt(const MaxWeightedMatching& algorithm, int variable)
  1.1913 +        : _algorithm(&algorithm)
  1.1914 +      {
  1.1915 +        _index = _algorithm->_blossom_potential[variable].begin;
  1.1916 +        _last = _algorithm->_blossom_potential[variable].end;
  1.1917 +      }
  1.1918 +
  1.1919 +      /// \brief Invalid constructor.
  1.1920 +      ///
  1.1921 +      /// Invalid constructor.
  1.1922 +      BlossomIt(Invalid) : _index(-1) {}
  1.1923 +
  1.1924 +      /// \brief Conversion to node.
  1.1925 +      ///
  1.1926 +      /// Conversion to node.
  1.1927 +      operator Node() const {
  1.1928 +        return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
  1.1929 +      }
  1.1930 +
  1.1931 +      /// \brief Increment operator.
  1.1932 +      ///
  1.1933 +      /// Increment operator.
  1.1934 +      BlossomIt& operator++() {
  1.1935 +        ++_index;
  1.1936 +        if (_index == _last) {
  1.1937 +          _index = -1;
  1.1938 +        }
  1.1939 +        return *this;
  1.1940 +      }
  1.1941 +
  1.1942 +      bool operator==(const BlossomIt& it) const {
  1.1943 +        return _index == it._index;
  1.1944 +      }
  1.1945 +      bool operator!=(const BlossomIt& it) const {
  1.1946 +        return _index != it._index;
  1.1947 +      }
  1.1948 +
  1.1949 +    private:
  1.1950 +      const MaxWeightedMatching* _algorithm;
  1.1951 +      int _last;
  1.1952 +      int _index;
  1.1953 +    };
  1.1954 +
  1.1955 +    /// @}
  1.1956 +
  1.1957 +  };
  1.1958 +
  1.1959 +  /// \ingroup matching
  1.1960 +  ///
  1.1961 +  /// \brief Weighted perfect matching in general graphs
  1.1962 +  ///
  1.1963 +  /// This class provides an efficient implementation of Edmond's
  1.1964 +  /// maximum weighted perfecr matching algorithm. The implementation
  1.1965 +  /// is based on extensive use of priority queues and provides
  1.1966 +  /// \f$O(nm\log(n))\f$ time complexity.
  1.1967 +  ///
  1.1968 +  /// The maximum weighted matching problem is to find undirected
  1.1969 +  /// arcs in the digraph with maximum overall weight and no two of
  1.1970 +  /// them shares their endpoints and covers all nodes. The problem
  1.1971 +  /// can be formulated with the next linear program:
  1.1972 +  /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  1.1973 +  ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f]
  1.1974 +  /// \f[x_e \ge 0\quad \forall e\in E\f]
  1.1975 +  /// \f[\max \sum_{e\in E}x_ew_e\f]
  1.1976 +  /// where \f$\delta(X)\f$ is the set of arcs incident to a node in
  1.1977 +  /// \f$X\f$, \f$\gamma(X)\f$ is the set of arcs with both endpoints in
  1.1978 +  /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of
  1.1979 +  /// the nodes.
  1.1980 +  ///
  1.1981 +  /// The algorithm calculates an optimal matching and a proof of the
  1.1982 +  /// optimality. The solution of the dual problem can be used to check
  1.1983 +  /// the result of the algorithm. The dual linear problem is the next:
  1.1984 +  /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f]
  1.1985 +  /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f]
  1.1986 +  /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f]
  1.1987 +  ///
  1.1988 +  /// The algorithm can be executed with \c run() or the \c init() and
  1.1989 +  /// then the \c start() member functions. After it the matching can
  1.1990 +  /// be asked with \c matching() or mate() functions. The dual
  1.1991 +  /// solution can be get with \c nodeValue(), \c blossomNum() and \c
  1.1992 +  /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt
  1.1993 +  /// "BlossomIt" nested class which is able to iterate on the nodes
  1.1994 +  /// of a blossom. If the value type is integral then the dual
  1.1995 +  /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4".
  1.1996 +  template <typename _Graph,
  1.1997 +            typename _WeightMap = typename _Graph::template EdgeMap<int> >
  1.1998 +  class MaxWeightedPerfectMatching {
  1.1999 +  public:
  1.2000 +
  1.2001 +    typedef _Graph Graph;
  1.2002 +    typedef _WeightMap WeightMap;
  1.2003 +    typedef typename WeightMap::Value Value;
  1.2004 +
  1.2005 +    /// \brief Scaling factor for dual solution
  1.2006 +    ///
  1.2007 +    /// Scaling factor for dual solution, it is equal to 4 or 1
  1.2008 +    /// according to the value type.
  1.2009 +    static const int dualScale =
  1.2010 +      std::numeric_limits<Value>::is_integer ? 4 : 1;
  1.2011 +
  1.2012 +    typedef typename Graph::template NodeMap<typename Graph::Arc>
  1.2013 +    MatchingMap;
  1.2014 +
  1.2015 +  private:
  1.2016 +
  1.2017 +    TEMPLATE_GRAPH_TYPEDEFS(Graph);
  1.2018 +
  1.2019 +    typedef typename Graph::template NodeMap<Value> NodePotential;
  1.2020 +    typedef std::vector<Node> BlossomNodeList;
  1.2021 +
  1.2022 +    struct BlossomVariable {
  1.2023 +      int begin, end;
  1.2024 +      Value value;
  1.2025 +
  1.2026 +      BlossomVariable(int _begin, int _end, Value _value)
  1.2027 +        : begin(_begin), end(_end), value(_value) {}
  1.2028 +
  1.2029 +    };
  1.2030 +
  1.2031 +    typedef std::vector<BlossomVariable> BlossomPotential;
  1.2032 +
  1.2033 +    const Graph& _graph;
  1.2034 +    const WeightMap& _weight;
  1.2035 +
  1.2036 +    MatchingMap* _matching;
  1.2037 +
  1.2038 +    NodePotential* _node_potential;
  1.2039 +
  1.2040 +    BlossomPotential _blossom_potential;
  1.2041 +    BlossomNodeList _blossom_node_list;
  1.2042 +
  1.2043 +    int _node_num;
  1.2044 +    int _blossom_num;
  1.2045 +
  1.2046 +    typedef typename Graph::template NodeMap<int> NodeIntMap;
  1.2047 +    typedef typename Graph::template ArcMap<int> ArcIntMap;
  1.2048 +    typedef typename Graph::template EdgeMap<int> EdgeIntMap;
  1.2049 +    typedef RangeMap<int> IntIntMap;
  1.2050 +
  1.2051 +    enum Status {
  1.2052 +      EVEN = -1, MATCHED = 0, ODD = 1
  1.2053 +    };
  1.2054 +
  1.2055 +    typedef HeapUnionFind<Value, NodeIntMap> BlossomSet;
  1.2056 +    struct BlossomData {
  1.2057 +      int tree;
  1.2058 +      Status status;
  1.2059 +      Arc pred, next;
  1.2060 +      Value pot, offset;
  1.2061 +    };
  1.2062 +
  1.2063 +    NodeIntMap *_blossom_index;
  1.2064 +    BlossomSet *_blossom_set;
  1.2065 +    RangeMap<BlossomData>* _blossom_data;
  1.2066 +
  1.2067 +    NodeIntMap *_node_index;
  1.2068 +    ArcIntMap *_node_heap_index;
  1.2069 +
  1.2070 +    struct NodeData {
  1.2071 +
  1.2072 +      NodeData(ArcIntMap& node_heap_index)
  1.2073 +        : heap(node_heap_index) {}
  1.2074 +
  1.2075 +      int blossom;
  1.2076 +      Value pot;
  1.2077 +      BinHeap<Value, ArcIntMap> heap;
  1.2078 +      std::map<int, Arc> heap_index;
  1.2079 +
  1.2080 +      int tree;
  1.2081 +    };
  1.2082 +
  1.2083 +    RangeMap<NodeData>* _node_data;
  1.2084 +
  1.2085 +    typedef ExtendFindEnum<IntIntMap> TreeSet;
  1.2086 +
  1.2087 +    IntIntMap *_tree_set_index;
  1.2088 +    TreeSet *_tree_set;
  1.2089 +
  1.2090 +    IntIntMap *_delta2_index;
  1.2091 +    BinHeap<Value, IntIntMap> *_delta2;
  1.2092 +
  1.2093 +    EdgeIntMap *_delta3_index;
  1.2094 +    BinHeap<Value, EdgeIntMap> *_delta3;
  1.2095 +
  1.2096 +    IntIntMap *_delta4_index;
  1.2097 +    BinHeap<Value, IntIntMap> *_delta4;
  1.2098 +
  1.2099 +    Value _delta_sum;
  1.2100 +
  1.2101 +    void createStructures() {
  1.2102 +      _node_num = countNodes(_graph);
  1.2103 +      _blossom_num = _node_num * 3 / 2;
  1.2104 +
  1.2105 +      if (!_matching) {
  1.2106 +        _matching = new MatchingMap(_graph);
  1.2107 +      }
  1.2108 +      if (!_node_potential) {
  1.2109 +        _node_potential = new NodePotential(_graph);
  1.2110 +      }
  1.2111 +      if (!_blossom_set) {
  1.2112 +        _blossom_index = new NodeIntMap(_graph);
  1.2113 +        _blossom_set = new BlossomSet(*_blossom_index);
  1.2114 +        _blossom_data = new RangeMap<BlossomData>(_blossom_num);
  1.2115 +      }
  1.2116 +
  1.2117 +      if (!_node_index) {
  1.2118 +        _node_index = new NodeIntMap(_graph);
  1.2119 +        _node_heap_index = new ArcIntMap(_graph);
  1.2120 +        _node_data = new RangeMap<NodeData>(_node_num,
  1.2121 +                                              NodeData(*_node_heap_index));
  1.2122 +      }
  1.2123 +
  1.2124 +      if (!_tree_set) {
  1.2125 +        _tree_set_index = new IntIntMap(_blossom_num);
  1.2126 +        _tree_set = new TreeSet(*_tree_set_index);
  1.2127 +      }
  1.2128 +      if (!_delta2) {
  1.2129 +        _delta2_index = new IntIntMap(_blossom_num);
  1.2130 +        _delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index);
  1.2131 +      }
  1.2132 +      if (!_delta3) {
  1.2133 +        _delta3_index = new EdgeIntMap(_graph);
  1.2134 +        _delta3 = new BinHeap<Value, EdgeIntMap>(*_delta3_index);
  1.2135 +      }
  1.2136 +      if (!_delta4) {
  1.2137 +        _delta4_index = new IntIntMap(_blossom_num);
  1.2138 +        _delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index);
  1.2139 +      }
  1.2140 +    }
  1.2141 +
  1.2142 +    void destroyStructures() {
  1.2143 +      _node_num = countNodes(_graph);
  1.2144 +      _blossom_num = _node_num * 3 / 2;
  1.2145 +
  1.2146 +      if (_matching) {
  1.2147 +        delete _matching;
  1.2148 +      }
  1.2149 +      if (_node_potential) {
  1.2150 +        delete _node_potential;
  1.2151 +      }
  1.2152 +      if (_blossom_set) {
  1.2153 +        delete _blossom_index;
  1.2154 +        delete _blossom_set;
  1.2155 +        delete _blossom_data;
  1.2156 +      }
  1.2157 +
  1.2158 +      if (_node_index) {
  1.2159 +        delete _node_index;
  1.2160 +        delete _node_heap_index;
  1.2161 +        delete _node_data;
  1.2162 +      }
  1.2163 +
  1.2164 +      if (_tree_set) {
  1.2165 +        delete _tree_set_index;
  1.2166 +        delete _tree_set;
  1.2167 +      }
  1.2168 +      if (_delta2) {
  1.2169 +        delete _delta2_index;
  1.2170 +        delete _delta2;
  1.2171 +      }
  1.2172 +      if (_delta3) {
  1.2173 +        delete _delta3_index;
  1.2174 +        delete _delta3;
  1.2175 +      }
  1.2176 +      if (_delta4) {
  1.2177 +        delete _delta4_index;
  1.2178 +        delete _delta4;
  1.2179 +      }
  1.2180 +    }
  1.2181 +
  1.2182 +    void matchedToEven(int blossom, int tree) {
  1.2183 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.2184 +        _delta2->erase(blossom);
  1.2185 +      }
  1.2186 +
  1.2187 +      if (!_blossom_set->trivial(blossom)) {
  1.2188 +        (*_blossom_data)[blossom].pot -=
  1.2189 +          2 * (_delta_sum - (*_blossom_data)[blossom].offset);
  1.2190 +      }
  1.2191 +
  1.2192 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.2193 +           n != INVALID; ++n) {
  1.2194 +
  1.2195 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  1.2196 +        int ni = (*_node_index)[n];
  1.2197 +
  1.2198 +        (*_node_data)[ni].heap.clear();
  1.2199 +        (*_node_data)[ni].heap_index.clear();
  1.2200 +
  1.2201 +        (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset;
  1.2202 +
  1.2203 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1.2204 +          Node v = _graph.source(e);
  1.2205 +          int vb = _blossom_set->find(v);
  1.2206 +          int vi = (*_node_index)[v];
  1.2207 +
  1.2208 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.2209 +            dualScale * _weight[e];
  1.2210 +
  1.2211 +          if ((*_blossom_data)[vb].status == EVEN) {
  1.2212 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  1.2213 +              _delta3->push(e, rw / 2);
  1.2214 +            }
  1.2215 +          } else {
  1.2216 +            typename std::map<int, Arc>::iterator it =
  1.2217 +              (*_node_data)[vi].heap_index.find(tree);
  1.2218 +
  1.2219 +            if (it != (*_node_data)[vi].heap_index.end()) {
  1.2220 +              if ((*_node_data)[vi].heap[it->second] > rw) {
  1.2221 +                (*_node_data)[vi].heap.replace(it->second, e);
  1.2222 +                (*_node_data)[vi].heap.decrease(e, rw);
  1.2223 +                it->second = e;
  1.2224 +              }
  1.2225 +            } else {
  1.2226 +              (*_node_data)[vi].heap.push(e, rw);
  1.2227 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  1.2228 +            }
  1.2229 +
  1.2230 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  1.2231 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  1.2232 +
  1.2233 +              if ((*_blossom_data)[vb].status == MATCHED) {
  1.2234 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  1.2235 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  1.2236 +                               (*_blossom_data)[vb].offset);
  1.2237 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  1.2238 +                           (*_blossom_data)[vb].offset){
  1.2239 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  1.2240 +                                   (*_blossom_data)[vb].offset);
  1.2241 +                }
  1.2242 +              }
  1.2243 +            }
  1.2244 +          }
  1.2245 +        }
  1.2246 +      }
  1.2247 +      (*_blossom_data)[blossom].offset = 0;
  1.2248 +    }
  1.2249 +
  1.2250 +    void matchedToOdd(int blossom) {
  1.2251 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.2252 +        _delta2->erase(blossom);
  1.2253 +      }
  1.2254 +      (*_blossom_data)[blossom].offset += _delta_sum;
  1.2255 +      if (!_blossom_set->trivial(blossom)) {
  1.2256 +        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
  1.2257 +                     (*_blossom_data)[blossom].offset);
  1.2258 +      }
  1.2259 +    }
  1.2260 +
  1.2261 +    void evenToMatched(int blossom, int tree) {
  1.2262 +      if (!_blossom_set->trivial(blossom)) {
  1.2263 +        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
  1.2264 +      }
  1.2265 +
  1.2266 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.2267 +           n != INVALID; ++n) {
  1.2268 +        int ni = (*_node_index)[n];
  1.2269 +        (*_node_data)[ni].pot -= _delta_sum;
  1.2270 +
  1.2271 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1.2272 +          Node v = _graph.source(e);
  1.2273 +          int vb = _blossom_set->find(v);
  1.2274 +          int vi = (*_node_index)[v];
  1.2275 +
  1.2276 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.2277 +            dualScale * _weight[e];
  1.2278 +
  1.2279 +          if (vb == blossom) {
  1.2280 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.2281 +              _delta3->erase(e);
  1.2282 +            }
  1.2283 +          } else if ((*_blossom_data)[vb].status == EVEN) {
  1.2284 +
  1.2285 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
  1.2286 +              _delta3->erase(e);
  1.2287 +            }
  1.2288 +
  1.2289 +            int vt = _tree_set->find(vb);
  1.2290 +
  1.2291 +            if (vt != tree) {
  1.2292 +
  1.2293 +              Arc r = _graph.oppositeArc(e);
  1.2294 +
  1.2295 +              typename std::map<int, Arc>::iterator it =
  1.2296 +                (*_node_data)[ni].heap_index.find(vt);
  1.2297 +
  1.2298 +              if (it != (*_node_data)[ni].heap_index.end()) {
  1.2299 +                if ((*_node_data)[ni].heap[it->second] > rw) {
  1.2300 +                  (*_node_data)[ni].heap.replace(it->second, r);
  1.2301 +                  (*_node_data)[ni].heap.decrease(r, rw);
  1.2302 +                  it->second = r;
  1.2303 +                }
  1.2304 +              } else {
  1.2305 +                (*_node_data)[ni].heap.push(r, rw);
  1.2306 +                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
  1.2307 +              }
  1.2308 +
  1.2309 +              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
  1.2310 +                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  1.2311 +
  1.2312 +                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
  1.2313 +                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  1.2314 +                               (*_blossom_data)[blossom].offset);
  1.2315 +                } else if ((*_delta2)[blossom] >
  1.2316 +                           _blossom_set->classPrio(blossom) -
  1.2317 +                           (*_blossom_data)[blossom].offset){
  1.2318 +                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
  1.2319 +                                   (*_blossom_data)[blossom].offset);
  1.2320 +                }
  1.2321 +              }
  1.2322 +            }
  1.2323 +          } else {
  1.2324 +
  1.2325 +            typename std::map<int, Arc>::iterator it =
  1.2326 +              (*_node_data)[vi].heap_index.find(tree);
  1.2327 +
  1.2328 +            if (it != (*_node_data)[vi].heap_index.end()) {
  1.2329 +              (*_node_data)[vi].heap.erase(it->second);
  1.2330 +              (*_node_data)[vi].heap_index.erase(it);
  1.2331 +              if ((*_node_data)[vi].heap.empty()) {
  1.2332 +                _blossom_set->increase(v, std::numeric_limits<Value>::max());
  1.2333 +              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
  1.2334 +                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
  1.2335 +              }
  1.2336 +
  1.2337 +              if ((*_blossom_data)[vb].status == MATCHED) {
  1.2338 +                if (_blossom_set->classPrio(vb) ==
  1.2339 +                    std::numeric_limits<Value>::max()) {
  1.2340 +                  _delta2->erase(vb);
  1.2341 +                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
  1.2342 +                           (*_blossom_data)[vb].offset) {
  1.2343 +                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
  1.2344 +                                   (*_blossom_data)[vb].offset);
  1.2345 +                }
  1.2346 +              }
  1.2347 +            }
  1.2348 +          }
  1.2349 +        }
  1.2350 +      }
  1.2351 +    }
  1.2352 +
  1.2353 +    void oddToMatched(int blossom) {
  1.2354 +      (*_blossom_data)[blossom].offset -= _delta_sum;
  1.2355 +
  1.2356 +      if (_blossom_set->classPrio(blossom) !=
  1.2357 +          std::numeric_limits<Value>::max()) {
  1.2358 +        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
  1.2359 +                       (*_blossom_data)[blossom].offset);
  1.2360 +      }
  1.2361 +
  1.2362 +      if (!_blossom_set->trivial(blossom)) {
  1.2363 +        _delta4->erase(blossom);
  1.2364 +      }
  1.2365 +    }
  1.2366 +
  1.2367 +    void oddToEven(int blossom, int tree) {
  1.2368 +      if (!_blossom_set->trivial(blossom)) {
  1.2369 +        _delta4->erase(blossom);
  1.2370 +        (*_blossom_data)[blossom].pot -=
  1.2371 +          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
  1.2372 +      }
  1.2373 +
  1.2374 +      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
  1.2375 +           n != INVALID; ++n) {
  1.2376 +        int ni = (*_node_index)[n];
  1.2377 +
  1.2378 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
  1.2379 +
  1.2380 +        (*_node_data)[ni].heap.clear();
  1.2381 +        (*_node_data)[ni].heap_index.clear();
  1.2382 +        (*_node_data)[ni].pot +=
  1.2383 +          2 * _delta_sum - (*_blossom_data)[blossom].offset;
  1.2384 +
  1.2385 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
  1.2386 +          Node v = _graph.source(e);
  1.2387 +          int vb = _blossom_set->find(v);
  1.2388 +          int vi = (*_node_index)[v];
  1.2389 +
  1.2390 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.2391 +            dualScale * _weight[e];
  1.2392 +
  1.2393 +          if ((*_blossom_data)[vb].status == EVEN) {
  1.2394 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
  1.2395 +              _delta3->push(e, rw / 2);
  1.2396 +            }
  1.2397 +          } else {
  1.2398 +
  1.2399 +            typename std::map<int, Arc>::iterator it =
  1.2400 +              (*_node_data)[vi].heap_index.find(tree);
  1.2401 +
  1.2402 +            if (it != (*_node_data)[vi].heap_index.end()) {
  1.2403 +              if ((*_node_data)[vi].heap[it->second] > rw) {
  1.2404 +                (*_node_data)[vi].heap.replace(it->second, e);
  1.2405 +                (*_node_data)[vi].heap.decrease(e, rw);
  1.2406 +                it->second = e;
  1.2407 +              }
  1.2408 +            } else {
  1.2409 +              (*_node_data)[vi].heap.push(e, rw);
  1.2410 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
  1.2411 +            }
  1.2412 +
  1.2413 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
  1.2414 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
  1.2415 +
  1.2416 +              if ((*_blossom_data)[vb].status == MATCHED) {
  1.2417 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
  1.2418 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
  1.2419 +                               (*_blossom_data)[vb].offset);
  1.2420 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
  1.2421 +                           (*_blossom_data)[vb].offset) {
  1.2422 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
  1.2423 +                                   (*_blossom_data)[vb].offset);
  1.2424 +                }
  1.2425 +              }
  1.2426 +            }
  1.2427 +          }
  1.2428 +        }
  1.2429 +      }
  1.2430 +      (*_blossom_data)[blossom].offset = 0;
  1.2431 +    }
  1.2432 +
  1.2433 +    void alternatePath(int even, int tree) {
  1.2434 +      int odd;
  1.2435 +
  1.2436 +      evenToMatched(even, tree);
  1.2437 +      (*_blossom_data)[even].status = MATCHED;
  1.2438 +
  1.2439 +      while ((*_blossom_data)[even].pred != INVALID) {
  1.2440 +        odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred));
  1.2441 +        (*_blossom_data)[odd].status = MATCHED;
  1.2442 +        oddToMatched(odd);
  1.2443 +        (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred;
  1.2444 +
  1.2445 +        even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred));
  1.2446 +        (*_blossom_data)[even].status = MATCHED;
  1.2447 +        evenToMatched(even, tree);
  1.2448 +        (*_blossom_data)[even].next =
  1.2449 +          _graph.oppositeArc((*_blossom_data)[odd].pred);
  1.2450 +      }
  1.2451 +
  1.2452 +    }
  1.2453 +
  1.2454 +    void destroyTree(int tree) {
  1.2455 +      for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) {
  1.2456 +        if ((*_blossom_data)[b].status == EVEN) {
  1.2457 +          (*_blossom_data)[b].status = MATCHED;
  1.2458 +          evenToMatched(b, tree);
  1.2459 +        } else if ((*_blossom_data)[b].status == ODD) {
  1.2460 +          (*_blossom_data)[b].status = MATCHED;
  1.2461 +          oddToMatched(b);
  1.2462 +        }
  1.2463 +      }
  1.2464 +      _tree_set->eraseClass(tree);
  1.2465 +    }
  1.2466 +
  1.2467 +    void augmentOnArc(const Edge& arc) {
  1.2468 +
  1.2469 +      int left = _blossom_set->find(_graph.u(arc));
  1.2470 +      int right = _blossom_set->find(_graph.v(arc));
  1.2471 +
  1.2472 +      int left_tree = _tree_set->find(left);
  1.2473 +      alternatePath(left, left_tree);
  1.2474 +      destroyTree(left_tree);
  1.2475 +
  1.2476 +      int right_tree = _tree_set->find(right);
  1.2477 +      alternatePath(right, right_tree);
  1.2478 +      destroyTree(right_tree);
  1.2479 +
  1.2480 +      (*_blossom_data)[left].next = _graph.direct(arc, true);
  1.2481 +      (*_blossom_data)[right].next = _graph.direct(arc, false);
  1.2482 +    }
  1.2483 +
  1.2484 +    void extendOnArc(const Arc& arc) {
  1.2485 +      int base = _blossom_set->find(_graph.target(arc));
  1.2486 +      int tree = _tree_set->find(base);
  1.2487 +
  1.2488 +      int odd = _blossom_set->find(_graph.source(arc));
  1.2489 +      _tree_set->insert(odd, tree);
  1.2490 +      (*_blossom_data)[odd].status = ODD;
  1.2491 +      matchedToOdd(odd);
  1.2492 +      (*_blossom_data)[odd].pred = arc;
  1.2493 +
  1.2494 +      int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next));
  1.2495 +      (*_blossom_data)[even].pred = (*_blossom_data)[even].next;
  1.2496 +      _tree_set->insert(even, tree);
  1.2497 +      (*_blossom_data)[even].status = EVEN;
  1.2498 +      matchedToEven(even, tree);
  1.2499 +    }
  1.2500 +
  1.2501 +    void shrinkOnArc(const Edge& edge, int tree) {
  1.2502 +      int nca = -1;
  1.2503 +      std::vector<int> left_path, right_path;
  1.2504 +
  1.2505 +      {
  1.2506 +        std::set<int> left_set, right_set;
  1.2507 +        int left = _blossom_set->find(_graph.u(edge));
  1.2508 +        left_path.push_back(left);
  1.2509 +        left_set.insert(left);
  1.2510 +
  1.2511 +        int right = _blossom_set->find(_graph.v(edge));
  1.2512 +        right_path.push_back(right);
  1.2513 +        right_set.insert(right);
  1.2514 +
  1.2515 +        while (true) {
  1.2516 +
  1.2517 +          if ((*_blossom_data)[left].pred == INVALID) break;
  1.2518 +
  1.2519 +          left =
  1.2520 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  1.2521 +          left_path.push_back(left);
  1.2522 +          left =
  1.2523 +            _blossom_set->find(_graph.target((*_blossom_data)[left].pred));
  1.2524 +          left_path.push_back(left);
  1.2525 +
  1.2526 +          left_set.insert(left);
  1.2527 +
  1.2528 +          if (right_set.find(left) != right_set.end()) {
  1.2529 +            nca = left;
  1.2530 +            break;
  1.2531 +          }
  1.2532 +
  1.2533 +          if ((*_blossom_data)[right].pred == INVALID) break;
  1.2534 +
  1.2535 +          right =
  1.2536 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  1.2537 +          right_path.push_back(right);
  1.2538 +          right =
  1.2539 +            _blossom_set->find(_graph.target((*_blossom_data)[right].pred));
  1.2540 +          right_path.push_back(right);
  1.2541 +
  1.2542 +          right_set.insert(right);
  1.2543 +
  1.2544 +          if (left_set.find(right) != left_set.end()) {
  1.2545 +            nca = right;
  1.2546 +            break;
  1.2547 +          }
  1.2548 +
  1.2549 +        }
  1.2550 +
  1.2551 +        if (nca == -1) {
  1.2552 +          if ((*_blossom_data)[left].pred == INVALID) {
  1.2553 +            nca = right;
  1.2554 +            while (left_set.find(nca) == left_set.end()) {
  1.2555 +              nca =
  1.2556 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.2557 +              right_path.push_back(nca);
  1.2558 +              nca =
  1.2559 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.2560 +              right_path.push_back(nca);
  1.2561 +            }
  1.2562 +          } else {
  1.2563 +            nca = left;
  1.2564 +            while (right_set.find(nca) == right_set.end()) {
  1.2565 +              nca =
  1.2566 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.2567 +              left_path.push_back(nca);
  1.2568 +              nca =
  1.2569 +                _blossom_set->find(_graph.target((*_blossom_data)[nca].pred));
  1.2570 +              left_path.push_back(nca);
  1.2571 +            }
  1.2572 +          }
  1.2573 +        }
  1.2574 +      }
  1.2575 +
  1.2576 +      std::vector<int> subblossoms;
  1.2577 +      Arc prev;
  1.2578 +
  1.2579 +      prev = _graph.direct(edge, true);
  1.2580 +      for (int i = 0; left_path[i] != nca; i += 2) {
  1.2581 +        subblossoms.push_back(left_path[i]);
  1.2582 +        (*_blossom_data)[left_path[i]].next = prev;
  1.2583 +        _tree_set->erase(left_path[i]);
  1.2584 +
  1.2585 +        subblossoms.push_back(left_path[i + 1]);
  1.2586 +        (*_blossom_data)[left_path[i + 1]].status = EVEN;
  1.2587 +        oddToEven(left_path[i + 1], tree);
  1.2588 +        _tree_set->erase(left_path[i + 1]);
  1.2589 +        prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred);
  1.2590 +      }
  1.2591 +
  1.2592 +      int k = 0;
  1.2593 +      while (right_path[k] != nca) ++k;
  1.2594 +
  1.2595 +      subblossoms.push_back(nca);
  1.2596 +      (*_blossom_data)[nca].next = prev;
  1.2597 +
  1.2598 +      for (int i = k - 2; i >= 0; i -= 2) {
  1.2599 +        subblossoms.push_back(right_path[i + 1]);
  1.2600 +        (*_blossom_data)[right_path[i + 1]].status = EVEN;
  1.2601 +        oddToEven(right_path[i + 1], tree);
  1.2602 +        _tree_set->erase(right_path[i + 1]);
  1.2603 +
  1.2604 +        (*_blossom_data)[right_path[i + 1]].next =
  1.2605 +          (*_blossom_data)[right_path[i + 1]].pred;
  1.2606 +
  1.2607 +        subblossoms.push_back(right_path[i]);
  1.2608 +        _tree_set->erase(right_path[i]);
  1.2609 +      }
  1.2610 +
  1.2611 +      int surface =
  1.2612 +        _blossom_set->join(subblossoms.begin(), subblossoms.end());
  1.2613 +
  1.2614 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.2615 +        if (!_blossom_set->trivial(subblossoms[i])) {
  1.2616 +          (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum;
  1.2617 +        }
  1.2618 +        (*_blossom_data)[subblossoms[i]].status = MATCHED;
  1.2619 +      }
  1.2620 +
  1.2621 +      (*_blossom_data)[surface].pot = -2 * _delta_sum;
  1.2622 +      (*_blossom_data)[surface].offset = 0;
  1.2623 +      (*_blossom_data)[surface].status = EVEN;
  1.2624 +      (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred;
  1.2625 +      (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred;
  1.2626 +
  1.2627 +      _tree_set->insert(surface, tree);
  1.2628 +      _tree_set->erase(nca);
  1.2629 +    }
  1.2630 +
  1.2631 +    void splitBlossom(int blossom) {
  1.2632 +      Arc next = (*_blossom_data)[blossom].next;
  1.2633 +      Arc pred = (*_blossom_data)[blossom].pred;
  1.2634 +
  1.2635 +      int tree = _tree_set->find(blossom);
  1.2636 +
  1.2637 +      (*_blossom_data)[blossom].status = MATCHED;
  1.2638 +      oddToMatched(blossom);
  1.2639 +      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
  1.2640 +        _delta2->erase(blossom);
  1.2641 +      }
  1.2642 +
  1.2643 +      std::vector<int> subblossoms;
  1.2644 +      _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1.2645 +
  1.2646 +      Value offset = (*_blossom_data)[blossom].offset;
  1.2647 +      int b = _blossom_set->find(_graph.source(pred));
  1.2648 +      int d = _blossom_set->find(_graph.source(next));
  1.2649 +
  1.2650 +      int ib = -1, id = -1;
  1.2651 +      for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.2652 +        if (subblossoms[i] == b) ib = i;
  1.2653 +        if (subblossoms[i] == d) id = i;
  1.2654 +
  1.2655 +        (*_blossom_data)[subblossoms[i]].offset = offset;
  1.2656 +        if (!_blossom_set->trivial(subblossoms[i])) {
  1.2657 +          (*_blossom_data)[subblossoms[i]].pot -= 2 * offset;
  1.2658 +        }
  1.2659 +        if (_blossom_set->classPrio(subblossoms[i]) !=
  1.2660 +            std::numeric_limits<Value>::max()) {
  1.2661 +          _delta2->push(subblossoms[i],
  1.2662 +                        _blossom_set->classPrio(subblossoms[i]) -
  1.2663 +                        (*_blossom_data)[subblossoms[i]].offset);
  1.2664 +        }
  1.2665 +      }
  1.2666 +
  1.2667 +      if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) {
  1.2668 +        for (int i = (id + 1) % subblossoms.size();
  1.2669 +             i != ib; i = (i + 2) % subblossoms.size()) {
  1.2670 +          int sb = subblossoms[i];
  1.2671 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2672 +          (*_blossom_data)[sb].next =
  1.2673 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.2674 +        }
  1.2675 +
  1.2676 +        for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) {
  1.2677 +          int sb = subblossoms[i];
  1.2678 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2679 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  1.2680 +
  1.2681 +          (*_blossom_data)[sb].status = ODD;
  1.2682 +          matchedToOdd(sb);
  1.2683 +          _tree_set->insert(sb, tree);
  1.2684 +          (*_blossom_data)[sb].pred = pred;
  1.2685 +          (*_blossom_data)[sb].next =
  1.2686 +                           _graph.oppositeArc((*_blossom_data)[tb].next);
  1.2687 +
  1.2688 +          pred = (*_blossom_data)[ub].next;
  1.2689 +
  1.2690 +          (*_blossom_data)[tb].status = EVEN;
  1.2691 +          matchedToEven(tb, tree);
  1.2692 +          _tree_set->insert(tb, tree);
  1.2693 +          (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next;
  1.2694 +        }
  1.2695 +
  1.2696 +        (*_blossom_data)[subblossoms[id]].status = ODD;
  1.2697 +        matchedToOdd(subblossoms[id]);
  1.2698 +        _tree_set->insert(subblossoms[id], tree);
  1.2699 +        (*_blossom_data)[subblossoms[id]].next = next;
  1.2700 +        (*_blossom_data)[subblossoms[id]].pred = pred;
  1.2701 +
  1.2702 +      } else {
  1.2703 +
  1.2704 +        for (int i = (ib + 1) % subblossoms.size();
  1.2705 +             i != id; i = (i + 2) % subblossoms.size()) {
  1.2706 +          int sb = subblossoms[i];
  1.2707 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2708 +          (*_blossom_data)[sb].next =
  1.2709 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.2710 +        }
  1.2711 +
  1.2712 +        for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) {
  1.2713 +          int sb = subblossoms[i];
  1.2714 +          int tb = subblossoms[(i + 1) % subblossoms.size()];
  1.2715 +          int ub = subblossoms[(i + 2) % subblossoms.size()];
  1.2716 +
  1.2717 +          (*_blossom_data)[sb].status = ODD;
  1.2718 +          matchedToOdd(sb);
  1.2719 +          _tree_set->insert(sb, tree);
  1.2720 +          (*_blossom_data)[sb].next = next;
  1.2721 +          (*_blossom_data)[sb].pred =
  1.2722 +            _graph.oppositeArc((*_blossom_data)[tb].next);
  1.2723 +
  1.2724 +          (*_blossom_data)[tb].status = EVEN;
  1.2725 +          matchedToEven(tb, tree);
  1.2726 +          _tree_set->insert(tb, tree);
  1.2727 +          (*_blossom_data)[tb].pred =
  1.2728 +            (*_blossom_data)[tb].next =
  1.2729 +            _graph.oppositeArc((*_blossom_data)[ub].next);
  1.2730 +          next = (*_blossom_data)[ub].next;
  1.2731 +        }
  1.2732 +
  1.2733 +        (*_blossom_data)[subblossoms[ib]].status = ODD;
  1.2734 +        matchedToOdd(subblossoms[ib]);
  1.2735 +        _tree_set->insert(subblossoms[ib], tree);
  1.2736 +        (*_blossom_data)[subblossoms[ib]].next = next;
  1.2737 +        (*_blossom_data)[subblossoms[ib]].pred = pred;
  1.2738 +      }
  1.2739 +      _tree_set->erase(blossom);
  1.2740 +    }
  1.2741 +
  1.2742 +    void extractBlossom(int blossom, const Node& base, const Arc& matching) {
  1.2743 +      if (_blossom_set->trivial(blossom)) {
  1.2744 +        int bi = (*_node_index)[base];
  1.2745 +        Value pot = (*_node_data)[bi].pot;
  1.2746 +
  1.2747 +        _matching->set(base, matching);
  1.2748 +        _blossom_node_list.push_back(base);
  1.2749 +        _node_potential->set(base, pot);
  1.2750 +      } else {
  1.2751 +
  1.2752 +        Value pot = (*_blossom_data)[blossom].pot;
  1.2753 +        int bn = _blossom_node_list.size();
  1.2754 +
  1.2755 +        std::vector<int> subblossoms;
  1.2756 +        _blossom_set->split(blossom, std::back_inserter(subblossoms));
  1.2757 +        int b = _blossom_set->find(base);
  1.2758 +        int ib = -1;
  1.2759 +        for (int i = 0; i < int(subblossoms.size()); ++i) {
  1.2760 +          if (subblossoms[i] == b) { ib = i; break; }
  1.2761 +        }
  1.2762 +
  1.2763 +        for (int i = 1; i < int(subblossoms.size()); i += 2) {
  1.2764 +          int sb = subblossoms[(ib + i) % subblossoms.size()];
  1.2765 +          int tb = subblossoms[(ib + i + 1) % subblossoms.size()];
  1.2766 +
  1.2767 +          Arc m = (*_blossom_data)[tb].next;
  1.2768 +          extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m));
  1.2769 +          extractBlossom(tb, _graph.source(m), m);
  1.2770 +        }
  1.2771 +        extractBlossom(subblossoms[ib], base, matching);
  1.2772 +
  1.2773 +        int en = _blossom_node_list.size();
  1.2774 +
  1.2775 +        _blossom_potential.push_back(BlossomVariable(bn, en, pot));
  1.2776 +      }
  1.2777 +    }
  1.2778 +
  1.2779 +    void extractMatching() {
  1.2780 +      std::vector<int> blossoms;
  1.2781 +      for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) {
  1.2782 +        blossoms.push_back(c);
  1.2783 +      }
  1.2784 +
  1.2785 +      for (int i = 0; i < int(blossoms.size()); ++i) {
  1.2786 +
  1.2787 +        Value offset = (*_blossom_data)[blossoms[i]].offset;
  1.2788 +        (*_blossom_data)[blossoms[i]].pot += 2 * offset;
  1.2789 +        for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]);
  1.2790 +             n != INVALID; ++n) {
  1.2791 +          (*_node_data)[(*_node_index)[n]].pot -= offset;
  1.2792 +        }
  1.2793 +
  1.2794 +        Arc matching = (*_blossom_data)[blossoms[i]].next;
  1.2795 +        Node base = _graph.source(matching);
  1.2796 +        extractBlossom(blossoms[i], base, matching);
  1.2797 +      }
  1.2798 +    }
  1.2799 +
  1.2800 +  public:
  1.2801 +
  1.2802 +    /// \brief Constructor
  1.2803 +    ///
  1.2804 +    /// Constructor.
  1.2805 +    MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight)
  1.2806 +      : _graph(graph), _weight(weight), _matching(0),
  1.2807 +        _node_potential(0), _blossom_potential(), _blossom_node_list(),
  1.2808 +        _node_num(0), _blossom_num(0),
  1.2809 +
  1.2810 +        _blossom_index(0), _blossom_set(0), _blossom_data(0),
  1.2811 +        _node_index(0), _node_heap_index(0), _node_data(0),
  1.2812 +        _tree_set_index(0), _tree_set(0),
  1.2813 +
  1.2814 +        _delta2_index(0), _delta2(0),
  1.2815 +        _delta3_index(0), _delta3(0),
  1.2816 +        _delta4_index(0), _delta4(0),
  1.2817 +
  1.2818 +        _delta_sum() {}
  1.2819 +
  1.2820 +    ~MaxWeightedPerfectMatching() {
  1.2821 +      destroyStructures();
  1.2822 +    }
  1.2823 +
  1.2824 +    /// \name Execution control
  1.2825 +    /// The simplest way to execute the algorithm is to use the member
  1.2826 +    /// \c run() member function.
  1.2827 +
  1.2828 +    ///@{
  1.2829 +
  1.2830 +    /// \brief Initialize the algorithm
  1.2831 +    ///
  1.2832 +    /// Initialize the algorithm
  1.2833 +    void init() {
  1.2834 +      createStructures();
  1.2835 +
  1.2836 +      for (ArcIt e(_graph); e != INVALID; ++e) {
  1.2837 +        _node_heap_index->set(e, BinHeap<Value, ArcIntMap>::PRE_HEAP);
  1.2838 +      }
  1.2839 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  1.2840 +        _delta3_index->set(e, _delta3->PRE_HEAP);
  1.2841 +      }
  1.2842 +      for (int i = 0; i < _blossom_num; ++i) {
  1.2843 +        _delta2_index->set(i, _delta2->PRE_HEAP);
  1.2844 +        _delta4_index->set(i, _delta4->PRE_HEAP);
  1.2845 +      }
  1.2846 +
  1.2847 +      int index = 0;
  1.2848 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.2849 +        Value max = - std::numeric_limits<Value>::max();
  1.2850 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  1.2851 +          if (_graph.target(e) == n) continue;
  1.2852 +          if ((dualScale * _weight[e]) / 2 > max) {
  1.2853 +            max = (dualScale * _weight[e]) / 2;
  1.2854 +          }
  1.2855 +        }
  1.2856 +        _node_index->set(n, index);
  1.2857 +        (*_node_data)[index].pot = max;
  1.2858 +        int blossom =
  1.2859 +          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  1.2860 +
  1.2861 +        _tree_set->insert(blossom);
  1.2862 +
  1.2863 +        (*_blossom_data)[blossom].status = EVEN;
  1.2864 +        (*_blossom_data)[blossom].pred = INVALID;
  1.2865 +        (*_blossom_data)[blossom].next = INVALID;
  1.2866 +        (*_blossom_data)[blossom].pot = 0;
  1.2867 +        (*_blossom_data)[blossom].offset = 0;
  1.2868 +        ++index;
  1.2869 +      }
  1.2870 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  1.2871 +        int si = (*_node_index)[_graph.u(e)];
  1.2872 +        int ti = (*_node_index)[_graph.v(e)];
  1.2873 +        if (_graph.u(e) != _graph.v(e)) {
  1.2874 +          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  1.2875 +                            dualScale * _weight[e]) / 2);
  1.2876 +        }
  1.2877 +      }
  1.2878 +    }
  1.2879 +
  1.2880 +    /// \brief Starts the algorithm
  1.2881 +    ///
  1.2882 +    /// Starts the algorithm
  1.2883 +    bool start() {
  1.2884 +      enum OpType {
  1.2885 +        D2, D3, D4
  1.2886 +      };
  1.2887 +
  1.2888 +      int unmatched = _node_num;
  1.2889 +      while (unmatched > 0) {
  1.2890 +        Value d2 = !_delta2->empty() ?
  1.2891 +          _delta2->prio() : std::numeric_limits<Value>::max();
  1.2892 +
  1.2893 +        Value d3 = !_delta3->empty() ?
  1.2894 +          _delta3->prio() : std::numeric_limits<Value>::max();
  1.2895 +
  1.2896 +        Value d4 = !_delta4->empty() ?
  1.2897 +          _delta4->prio() : std::numeric_limits<Value>::max();
  1.2898 +
  1.2899 +        _delta_sum = d2; OpType ot = D2;
  1.2900 +        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  1.2901 +        if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  1.2902 +
  1.2903 +        if (_delta_sum == std::numeric_limits<Value>::max()) {
  1.2904 +          return false;
  1.2905 +        }
  1.2906 +
  1.2907 +        switch (ot) {
  1.2908 +        case D2:
  1.2909 +          {
  1.2910 +            int blossom = _delta2->top();
  1.2911 +            Node n = _blossom_set->classTop(blossom);
  1.2912 +            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
  1.2913 +            extendOnArc(e);
  1.2914 +          }
  1.2915 +          break;
  1.2916 +        case D3:
  1.2917 +          {
  1.2918 +            Edge e = _delta3->top();
  1.2919 +
  1.2920 +            int left_blossom = _blossom_set->find(_graph.u(e));
  1.2921 +            int right_blossom = _blossom_set->find(_graph.v(e));
  1.2922 +
  1.2923 +            if (left_blossom == right_blossom) {
  1.2924 +              _delta3->pop();
  1.2925 +            } else {
  1.2926 +              int left_tree = _tree_set->find(left_blossom);
  1.2927 +              int right_tree = _tree_set->find(right_blossom);
  1.2928 +
  1.2929 +              if (left_tree == right_tree) {
  1.2930 +                shrinkOnArc(e, left_tree);
  1.2931 +              } else {
  1.2932 +                augmentOnArc(e);
  1.2933 +                unmatched -= 2;
  1.2934 +              }
  1.2935 +            }
  1.2936 +          } break;
  1.2937 +        case D4:
  1.2938 +          splitBlossom(_delta4->top());
  1.2939 +          break;
  1.2940 +        }
  1.2941 +      }
  1.2942 +      extractMatching();
  1.2943 +      return true;
  1.2944 +    }
  1.2945 +
  1.2946 +    /// \brief Runs %MaxWeightedPerfectMatching algorithm.
  1.2947 +    ///
  1.2948 +    /// This method runs the %MaxWeightedPerfectMatching algorithm.
  1.2949 +    ///
  1.2950 +    /// \note mwm.run() is just a shortcut of the following code.
  1.2951 +    /// \code
  1.2952 +    ///   mwm.init();
  1.2953 +    ///   mwm.start();
  1.2954 +    /// \endcode
  1.2955 +    bool run() {
  1.2956 +      init();
  1.2957 +      return start();
  1.2958 +    }
  1.2959 +
  1.2960 +    /// @}
  1.2961 +
  1.2962 +    /// \name Primal solution
  1.2963 +    /// Functions for get the primal solution, ie. the matching.
  1.2964 +
  1.2965 +    /// @{
  1.2966 +
  1.2967 +    /// \brief Returns the matching value.
  1.2968 +    ///
  1.2969 +    /// Returns the matching value.
  1.2970 +    Value matchingValue() const {
  1.2971 +      Value sum = 0;
  1.2972 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.2973 +        if ((*_matching)[n] != INVALID) {
  1.2974 +          sum += _weight[(*_matching)[n]];
  1.2975 +        }
  1.2976 +      }
  1.2977 +      return sum /= 2;
  1.2978 +    }
  1.2979 +
  1.2980 +    /// \brief Returns true when the arc is in the matching.
  1.2981 +    ///
  1.2982 +    /// Returns true when the arc is in the matching.
  1.2983 +    bool matching(const Edge& arc) const {
  1.2984 +      return (*_matching)[_graph.u(arc)] == _graph.direct(arc, true);
  1.2985 +    }
  1.2986 +
  1.2987 +    /// \brief Returns the incident matching arc.
  1.2988 +    ///
  1.2989 +    /// Returns the incident matching arc from given node.
  1.2990 +    Arc matching(const Node& node) const {
  1.2991 +      return (*_matching)[node];
  1.2992 +    }
  1.2993 +
  1.2994 +    /// \brief Returns the mate of the node.
  1.2995 +    ///
  1.2996 +    /// Returns the adjancent node in a mathcing arc.
  1.2997 +    Node mate(const Node& node) const {
  1.2998 +      return _graph.target((*_matching)[node]);
  1.2999 +    }
  1.3000 +
  1.3001 +    /// @}
  1.3002 +
  1.3003 +    /// \name Dual solution
  1.3004 +    /// Functions for get the dual solution.
  1.3005 +
  1.3006 +    /// @{
  1.3007 +
  1.3008 +    /// \brief Returns the value of the dual solution.
  1.3009 +    ///
  1.3010 +    /// Returns the value of the dual solution. It should be equal to
  1.3011 +    /// the primal value scaled by \ref dualScale "dual scale".
  1.3012 +    Value dualValue() const {
  1.3013 +      Value sum = 0;
  1.3014 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.3015 +        sum += nodeValue(n);
  1.3016 +      }
  1.3017 +      for (int i = 0; i < blossomNum(); ++i) {
  1.3018 +        sum += blossomValue(i) * (blossomSize(i) / 2);
  1.3019 +      }
  1.3020 +      return sum;
  1.3021 +    }
  1.3022 +
  1.3023 +    /// \brief Returns the value of the node.
  1.3024 +    ///
  1.3025 +    /// Returns the the value of the node.
  1.3026 +    Value nodeValue(const Node& n) const {
  1.3027 +      return (*_node_potential)[n];
  1.3028 +    }
  1.3029 +
  1.3030 +    /// \brief Returns the number of the blossoms in the basis.
  1.3031 +    ///
  1.3032 +    /// Returns the number of the blossoms in the basis.
  1.3033 +    /// \see BlossomIt
  1.3034 +    int blossomNum() const {
  1.3035 +      return _blossom_potential.size();
  1.3036 +    }
  1.3037 +
  1.3038 +
  1.3039 +    /// \brief Returns the number of the nodes in the blossom.
  1.3040 +    ///
  1.3041 +    /// Returns the number of the nodes in the blossom.
  1.3042 +    int blossomSize(int k) const {
  1.3043 +      return _blossom_potential[k].end - _blossom_potential[k].begin;
  1.3044 +    }
  1.3045 +
  1.3046 +    /// \brief Returns the value of the blossom.
  1.3047 +    ///
  1.3048 +    /// Returns the the value of the blossom.
  1.3049 +    /// \see BlossomIt
  1.3050 +    Value blossomValue(int k) const {
  1.3051 +      return _blossom_potential[k].value;
  1.3052 +    }
  1.3053 +
  1.3054 +    /// \brief Lemon iterator for get the items of the blossom.
  1.3055 +    ///
  1.3056 +    /// Lemon iterator for get the nodes of the blossom. This class
  1.3057 +    /// provides a common style lemon iterator which gives back a
  1.3058 +    /// subset of the nodes.
  1.3059 +    class BlossomIt {
  1.3060 +    public:
  1.3061 +
  1.3062 +      /// \brief Constructor.
  1.3063 +      ///
  1.3064 +      /// Constructor for get the nodes of the variable.
  1.3065 +      BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
  1.3066 +        : _algorithm(&algorithm)
  1.3067 +      {
  1.3068 +        _index = _algorithm->_blossom_potential[variable].begin;
  1.3069 +        _last = _algorithm->_blossom_potential[variable].end;
  1.3070 +      }
  1.3071 +
  1.3072 +      /// \brief Invalid constructor.
  1.3073 +      ///
  1.3074 +      /// Invalid constructor.
  1.3075 +      BlossomIt(Invalid) : _index(-1) {}
  1.3076 +
  1.3077 +      /// \brief Conversion to node.
  1.3078 +      ///
  1.3079 +      /// Conversion to node.
  1.3080 +      operator Node() const {
  1.3081 +        return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID;
  1.3082 +      }
  1.3083 +
  1.3084 +      /// \brief Increment operator.
  1.3085 +      ///
  1.3086 +      /// Increment operator.
  1.3087 +      BlossomIt& operator++() {
  1.3088 +        ++_index;
  1.3089 +        if (_index == _last) {
  1.3090 +          _index = -1;
  1.3091 +        }
  1.3092 +        return *this;
  1.3093 +      }
  1.3094 +
  1.3095 +      bool operator==(const BlossomIt& it) const {
  1.3096 +        return _index == it._index;
  1.3097 +      }
  1.3098 +      bool operator!=(const BlossomIt& it) const {
  1.3099 +        return _index != it._index;
  1.3100 +      }
  1.3101 +
  1.3102 +    private:
  1.3103 +      const MaxWeightedPerfectMatching* _algorithm;
  1.3104 +      int _last;
  1.3105 +      int _index;
  1.3106 +    };
  1.3107 +
  1.3108 +    /// @}
  1.3109 +
  1.3110 +  };
  1.3111 +
  1.3112 +
  1.3113 +} //END OF NAMESPACE LEMON
  1.3114 +
  1.3115 +#endif //LEMON_MAX_MATCHING_H