lemon/binom_heap.h
changeset 859 ac5f72c48367
parent 858 9f6ed854d409
parent 855 65a0521e744e
child 861 ab21ca093745
     1.1 --- a/lemon/binom_heap.h	Tue Mar 02 10:27:47 2010 +0100
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,445 +0,0 @@
     1.4 -/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 - *
     1.6 - * This file is a part of LEMON, a generic C++ optimization library.
     1.7 - *
     1.8 - * Copyright (C) 2003-2009
     1.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 - *
    1.12 - * Permission to use, modify and distribute this software is granted
    1.13 - * provided that this copyright notice appears in all copies. For
    1.14 - * precise terms see the accompanying LICENSE file.
    1.15 - *
    1.16 - * This software is provided "AS IS" with no warranty of any kind,
    1.17 - * express or implied, and with no claim as to its suitability for any
    1.18 - * purpose.
    1.19 - *
    1.20 - */
    1.21 -
    1.22 -#ifndef LEMON_BINOM_HEAP_H
    1.23 -#define LEMON_BINOM_HEAP_H
    1.24 -
    1.25 -///\file
    1.26 -///\ingroup heaps
    1.27 -///\brief Binomial Heap implementation.
    1.28 -
    1.29 -#include <vector>
    1.30 -#include <utility>
    1.31 -#include <functional>
    1.32 -#include <lemon/math.h>
    1.33 -#include <lemon/counter.h>
    1.34 -
    1.35 -namespace lemon {
    1.36 -
    1.37 -  /// \ingroup heaps
    1.38 -  ///
    1.39 -  ///\brief Binomial heap data structure.
    1.40 -  ///
    1.41 -  /// This class implements the \e binomial \e heap data structure.
    1.42 -  /// It fully conforms to the \ref concepts::Heap "heap concept".
    1.43 -  ///
    1.44 -  /// The methods \ref increase() and \ref erase() are not efficient
    1.45 -  /// in a binomial heap. In case of many calls of these operations,
    1.46 -  /// it is better to use other heap structure, e.g. \ref BinHeap
    1.47 -  /// "binary heap".
    1.48 -  ///
    1.49 -  /// \tparam PR Type of the priorities of the items.
    1.50 -  /// \tparam IM A read-writable item map with \c int values, used
    1.51 -  /// internally to handle the cross references.
    1.52 -  /// \tparam CMP A functor class for comparing the priorities.
    1.53 -  /// The default is \c std::less<PR>.
    1.54 -#ifdef DOXYGEN
    1.55 -  template <typename PR, typename IM, typename CMP>
    1.56 -#else
    1.57 -  template <typename PR, typename IM, typename CMP = std::less<PR> >
    1.58 -#endif
    1.59 -  class BinomHeap {
    1.60 -  public:
    1.61 -    /// Type of the item-int map.
    1.62 -    typedef IM ItemIntMap;
    1.63 -    /// Type of the priorities.
    1.64 -    typedef PR Prio;
    1.65 -    /// Type of the items stored in the heap.
    1.66 -    typedef typename ItemIntMap::Key Item;
    1.67 -    /// Functor type for comparing the priorities.
    1.68 -    typedef CMP Compare;
    1.69 -
    1.70 -    /// \brief Type to represent the states of the items.
    1.71 -    ///
    1.72 -    /// Each item has a state associated to it. It can be "in heap",
    1.73 -    /// "pre-heap" or "post-heap". The latter two are indifferent from the
    1.74 -    /// heap's point of view, but may be useful to the user.
    1.75 -    ///
    1.76 -    /// The item-int map must be initialized in such way that it assigns
    1.77 -    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    1.78 -    enum State {
    1.79 -      IN_HEAP = 0,    ///< = 0.
    1.80 -      PRE_HEAP = -1,  ///< = -1.
    1.81 -      POST_HEAP = -2  ///< = -2.
    1.82 -    };
    1.83 -
    1.84 -  private:
    1.85 -    class Store;
    1.86 -
    1.87 -    std::vector<Store> _data;
    1.88 -    int _min, _head;
    1.89 -    ItemIntMap &_iim;
    1.90 -    Compare _comp;
    1.91 -    int _num_items;
    1.92 -
    1.93 -  public:
    1.94 -    /// \brief Constructor.
    1.95 -    ///
    1.96 -    /// Constructor.
    1.97 -    /// \param map A map that assigns \c int values to the items.
    1.98 -    /// It is used internally to handle the cross references.
    1.99 -    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   1.100 -    explicit BinomHeap(ItemIntMap &map)
   1.101 -      : _min(0), _head(-1), _iim(map), _num_items(0) {}
   1.102 -
   1.103 -    /// \brief Constructor.
   1.104 -    ///
   1.105 -    /// Constructor.
   1.106 -    /// \param map A map that assigns \c int values to the items.
   1.107 -    /// It is used internally to handle the cross references.
   1.108 -    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   1.109 -    /// \param comp The function object used for comparing the priorities.
   1.110 -    BinomHeap(ItemIntMap &map, const Compare &comp)
   1.111 -      : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {}
   1.112 -
   1.113 -    /// \brief The number of items stored in the heap.
   1.114 -    ///
   1.115 -    /// This function returns the number of items stored in the heap.
   1.116 -    int size() const { return _num_items; }
   1.117 -
   1.118 -    /// \brief Check if the heap is empty.
   1.119 -    ///
   1.120 -    /// This function returns \c true if the heap is empty.
   1.121 -    bool empty() const { return _num_items==0; }
   1.122 -
   1.123 -    /// \brief Make the heap empty.
   1.124 -    ///
   1.125 -    /// This functon makes the heap empty.
   1.126 -    /// It does not change the cross reference map. If you want to reuse
   1.127 -    /// a heap that is not surely empty, you should first clear it and
   1.128 -    /// then you should set the cross reference map to \c PRE_HEAP
   1.129 -    /// for each item.
   1.130 -    void clear() {
   1.131 -      _data.clear(); _min=0; _num_items=0; _head=-1;
   1.132 -    }
   1.133 -
   1.134 -    /// \brief Set the priority of an item or insert it, if it is
   1.135 -    /// not stored in the heap.
   1.136 -    ///
   1.137 -    /// This method sets the priority of the given item if it is
   1.138 -    /// already stored in the heap. Otherwise it inserts the given
   1.139 -    /// item into the heap with the given priority.
   1.140 -    /// \param item The item.
   1.141 -    /// \param value The priority.
   1.142 -    void set (const Item& item, const Prio& value) {
   1.143 -      int i=_iim[item];
   1.144 -      if ( i >= 0 && _data[i].in ) {
   1.145 -        if ( _comp(value, _data[i].prio) ) decrease(item, value);
   1.146 -        if ( _comp(_data[i].prio, value) ) increase(item, value);
   1.147 -      } else push(item, value);
   1.148 -    }
   1.149 -
   1.150 -    /// \brief Insert an item into the heap with the given priority.
   1.151 -    ///
   1.152 -    /// This function inserts the given item into the heap with the
   1.153 -    /// given priority.
   1.154 -    /// \param item The item to insert.
   1.155 -    /// \param value The priority of the item.
   1.156 -    /// \pre \e item must not be stored in the heap.
   1.157 -    void push (const Item& item, const Prio& value) {
   1.158 -      int i=_iim[item];
   1.159 -      if ( i<0 ) {
   1.160 -        int s=_data.size();
   1.161 -        _iim.set( item,s );
   1.162 -        Store st;
   1.163 -        st.name=item;
   1.164 -        st.prio=value;
   1.165 -        _data.push_back(st);
   1.166 -        i=s;
   1.167 -      }
   1.168 -      else {
   1.169 -        _data[i].parent=_data[i].right_neighbor=_data[i].child=-1;
   1.170 -        _data[i].degree=0;
   1.171 -        _data[i].in=true;
   1.172 -        _data[i].prio=value;
   1.173 -      }
   1.174 -
   1.175 -      if( 0==_num_items ) {
   1.176 -        _head=i;
   1.177 -        _min=i;
   1.178 -      } else {
   1.179 -        merge(i);
   1.180 -        if( _comp(_data[i].prio, _data[_min].prio) ) _min=i;
   1.181 -      }
   1.182 -      ++_num_items;
   1.183 -    }
   1.184 -
   1.185 -    /// \brief Return the item having minimum priority.
   1.186 -    ///
   1.187 -    /// This function returns the item having minimum priority.
   1.188 -    /// \pre The heap must be non-empty.
   1.189 -    Item top() const { return _data[_min].name; }
   1.190 -
   1.191 -    /// \brief The minimum priority.
   1.192 -    ///
   1.193 -    /// This function returns the minimum priority.
   1.194 -    /// \pre The heap must be non-empty.
   1.195 -    Prio prio() const { return _data[_min].prio; }
   1.196 -
   1.197 -    /// \brief The priority of the given item.
   1.198 -    ///
   1.199 -    /// This function returns the priority of the given item.
   1.200 -    /// \param item The item.
   1.201 -    /// \pre \e item must be in the heap.
   1.202 -    const Prio& operator[](const Item& item) const {
   1.203 -      return _data[_iim[item]].prio;
   1.204 -    }
   1.205 -
   1.206 -    /// \brief Remove the item having minimum priority.
   1.207 -    ///
   1.208 -    /// This function removes the item having minimum priority.
   1.209 -    /// \pre The heap must be non-empty.
   1.210 -    void pop() {
   1.211 -      _data[_min].in=false;
   1.212 -
   1.213 -      int head_child=-1;
   1.214 -      if ( _data[_min].child!=-1 ) {
   1.215 -        int child=_data[_min].child;
   1.216 -        int neighb;
   1.217 -        while( child!=-1 ) {
   1.218 -          neighb=_data[child].right_neighbor;
   1.219 -          _data[child].parent=-1;
   1.220 -          _data[child].right_neighbor=head_child;
   1.221 -          head_child=child;
   1.222 -          child=neighb;
   1.223 -        }
   1.224 -      }
   1.225 -
   1.226 -      if ( _data[_head].right_neighbor==-1 ) {
   1.227 -        // there was only one root
   1.228 -        _head=head_child;
   1.229 -      }
   1.230 -      else {
   1.231 -        // there were more roots
   1.232 -        if( _head!=_min )  { unlace(_min); }
   1.233 -        else { _head=_data[_head].right_neighbor; }
   1.234 -        merge(head_child);
   1.235 -      }
   1.236 -      _min=findMin();
   1.237 -      --_num_items;
   1.238 -    }
   1.239 -
   1.240 -    /// \brief Remove the given item from the heap.
   1.241 -    ///
   1.242 -    /// This function removes the given item from the heap if it is
   1.243 -    /// already stored.
   1.244 -    /// \param item The item to delete.
   1.245 -    /// \pre \e item must be in the heap.
   1.246 -    void erase (const Item& item) {
   1.247 -      int i=_iim[item];
   1.248 -      if ( i >= 0 && _data[i].in ) {
   1.249 -        decrease( item, _data[_min].prio-1 );
   1.250 -        pop();
   1.251 -      }
   1.252 -    }
   1.253 -
   1.254 -    /// \brief Decrease the priority of an item to the given value.
   1.255 -    ///
   1.256 -    /// This function decreases the priority of an item to the given value.
   1.257 -    /// \param item The item.
   1.258 -    /// \param value The priority.
   1.259 -    /// \pre \e item must be stored in the heap with priority at least \e value.
   1.260 -    void decrease (Item item, const Prio& value) {
   1.261 -      int i=_iim[item];
   1.262 -      int p=_data[i].parent;
   1.263 -      _data[i].prio=value;
   1.264 -      
   1.265 -      while( p!=-1 && _comp(value, _data[p].prio) ) {
   1.266 -        _data[i].name=_data[p].name;
   1.267 -        _data[i].prio=_data[p].prio;
   1.268 -        _data[p].name=item;
   1.269 -        _data[p].prio=value;
   1.270 -        _iim[_data[i].name]=i;
   1.271 -        i=p;
   1.272 -        p=_data[p].parent;
   1.273 -      }
   1.274 -      _iim[item]=i;
   1.275 -      if ( _comp(value, _data[_min].prio) ) _min=i;
   1.276 -    }
   1.277 -
   1.278 -    /// \brief Increase the priority of an item to the given value.
   1.279 -    ///
   1.280 -    /// This function increases the priority of an item to the given value.
   1.281 -    /// \param item The item.
   1.282 -    /// \param value The priority.
   1.283 -    /// \pre \e item must be stored in the heap with priority at most \e value.
   1.284 -    void increase (Item item, const Prio& value) {
   1.285 -      erase(item);
   1.286 -      push(item, value);
   1.287 -    }
   1.288 -
   1.289 -    /// \brief Return the state of an item.
   1.290 -    ///
   1.291 -    /// This method returns \c PRE_HEAP if the given item has never
   1.292 -    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   1.293 -    /// and \c POST_HEAP otherwise.
   1.294 -    /// In the latter case it is possible that the item will get back
   1.295 -    /// to the heap again.
   1.296 -    /// \param item The item.
   1.297 -    State state(const Item &item) const {
   1.298 -      int i=_iim[item];
   1.299 -      if( i>=0 ) {
   1.300 -        if ( _data[i].in ) i=0;
   1.301 -        else i=-2;
   1.302 -      }
   1.303 -      return State(i);
   1.304 -    }
   1.305 -
   1.306 -    /// \brief Set the state of an item in the heap.
   1.307 -    ///
   1.308 -    /// This function sets the state of the given item in the heap.
   1.309 -    /// It can be used to manually clear the heap when it is important
   1.310 -    /// to achive better time complexity.
   1.311 -    /// \param i The item.
   1.312 -    /// \param st The state. It should not be \c IN_HEAP.
   1.313 -    void state(const Item& i, State st) {
   1.314 -      switch (st) {
   1.315 -      case POST_HEAP:
   1.316 -      case PRE_HEAP:
   1.317 -        if (state(i) == IN_HEAP) {
   1.318 -          erase(i);
   1.319 -        }
   1.320 -        _iim[i] = st;
   1.321 -        break;
   1.322 -      case IN_HEAP:
   1.323 -        break;
   1.324 -      }
   1.325 -    }
   1.326 -
   1.327 -  private:
   1.328 -    
   1.329 -    // Find the minimum of the roots
   1.330 -    int findMin() {
   1.331 -      if( _head!=-1 ) {
   1.332 -        int min_loc=_head, min_val=_data[_head].prio;
   1.333 -        for( int x=_data[_head].right_neighbor; x!=-1;
   1.334 -             x=_data[x].right_neighbor ) {
   1.335 -          if( _comp( _data[x].prio,min_val ) ) {
   1.336 -            min_val=_data[x].prio;
   1.337 -            min_loc=x;
   1.338 -          }
   1.339 -        }
   1.340 -        return min_loc;
   1.341 -      }
   1.342 -      else return -1;
   1.343 -    }
   1.344 -
   1.345 -    // Merge the heap with another heap starting at the given position
   1.346 -    void merge(int a) {
   1.347 -      if( _head==-1 || a==-1 ) return;
   1.348 -      if( _data[a].right_neighbor==-1 &&
   1.349 -          _data[a].degree<=_data[_head].degree ) {
   1.350 -        _data[a].right_neighbor=_head;
   1.351 -        _head=a;
   1.352 -      } else {
   1.353 -        interleave(a);
   1.354 -      }
   1.355 -      if( _data[_head].right_neighbor==-1 ) return;
   1.356 -      
   1.357 -      int x=_head;
   1.358 -      int x_prev=-1, x_next=_data[x].right_neighbor;
   1.359 -      while( x_next!=-1 ) {
   1.360 -        if( _data[x].degree!=_data[x_next].degree ||
   1.361 -            ( _data[x_next].right_neighbor!=-1 &&
   1.362 -              _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
   1.363 -          x_prev=x;
   1.364 -          x=x_next;
   1.365 -        }
   1.366 -        else {
   1.367 -          if( _comp(_data[x_next].prio,_data[x].prio) ) {
   1.368 -            if( x_prev==-1 ) {
   1.369 -              _head=x_next;
   1.370 -            } else {
   1.371 -              _data[x_prev].right_neighbor=x_next;
   1.372 -            }
   1.373 -            fuse(x,x_next);
   1.374 -            x=x_next;
   1.375 -          }
   1.376 -          else {
   1.377 -            _data[x].right_neighbor=_data[x_next].right_neighbor;
   1.378 -            fuse(x_next,x);
   1.379 -          }
   1.380 -        }
   1.381 -        x_next=_data[x].right_neighbor;
   1.382 -      }
   1.383 -    }
   1.384 -
   1.385 -    // Interleave the elements of the given list into the list of the roots
   1.386 -    void interleave(int a) {
   1.387 -      int p=_head, q=a;
   1.388 -      int curr=_data.size();
   1.389 -      _data.push_back(Store());
   1.390 -      
   1.391 -      while( p!=-1 || q!=-1 ) {
   1.392 -        if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
   1.393 -          _data[curr].right_neighbor=p;
   1.394 -          curr=p;
   1.395 -          p=_data[p].right_neighbor;
   1.396 -        }
   1.397 -        else {
   1.398 -          _data[curr].right_neighbor=q;
   1.399 -          curr=q;
   1.400 -          q=_data[q].right_neighbor;
   1.401 -        }
   1.402 -      }
   1.403 -      
   1.404 -      _head=_data.back().right_neighbor;
   1.405 -      _data.pop_back();
   1.406 -    }
   1.407 -
   1.408 -    // Lace node a under node b
   1.409 -    void fuse(int a, int b) {
   1.410 -      _data[a].parent=b;
   1.411 -      _data[a].right_neighbor=_data[b].child;
   1.412 -      _data[b].child=a;
   1.413 -
   1.414 -      ++_data[b].degree;
   1.415 -    }
   1.416 -
   1.417 -    // Unlace node a (if it has siblings)
   1.418 -    void unlace(int a) {
   1.419 -      int neighb=_data[a].right_neighbor;
   1.420 -      int other=_head;
   1.421 -
   1.422 -      while( _data[other].right_neighbor!=a )
   1.423 -        other=_data[other].right_neighbor;
   1.424 -      _data[other].right_neighbor=neighb;
   1.425 -    }
   1.426 -
   1.427 -  private:
   1.428 -
   1.429 -    class Store {
   1.430 -      friend class BinomHeap;
   1.431 -
   1.432 -      Item name;
   1.433 -      int parent;
   1.434 -      int right_neighbor;
   1.435 -      int child;
   1.436 -      int degree;
   1.437 -      bool in;
   1.438 -      Prio prio;
   1.439 -
   1.440 -      Store() : parent(-1), right_neighbor(-1), child(-1), degree(0),
   1.441 -        in(true) {}
   1.442 -    };
   1.443 -  };
   1.444 -
   1.445 -} //namespace lemon
   1.446 -
   1.447 -#endif //LEMON_BINOM_HEAP_H
   1.448 -