lemon/cycle_canceling.h
changeset 993 ad40f7d32846
parent 864 d3ea191c3412
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/cycle_canceling.h	Sun Aug 11 15:28:12 2013 +0200
     1.3 @@ -0,0 +1,1170 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2010
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_CYCLE_CANCELING_H
    1.23 +#define LEMON_CYCLE_CANCELING_H
    1.24 +
    1.25 +/// \ingroup min_cost_flow_algs
    1.26 +/// \file
    1.27 +/// \brief Cycle-canceling algorithms for finding a minimum cost flow.
    1.28 +
    1.29 +#include <vector>
    1.30 +#include <limits>
    1.31 +
    1.32 +#include <lemon/core.h>
    1.33 +#include <lemon/maps.h>
    1.34 +#include <lemon/path.h>
    1.35 +#include <lemon/math.h>
    1.36 +#include <lemon/static_graph.h>
    1.37 +#include <lemon/adaptors.h>
    1.38 +#include <lemon/circulation.h>
    1.39 +#include <lemon/bellman_ford.h>
    1.40 +#include <lemon/howard_mmc.h>
    1.41 +
    1.42 +namespace lemon {
    1.43 +
    1.44 +  /// \addtogroup min_cost_flow_algs
    1.45 +  /// @{
    1.46 +
    1.47 +  /// \brief Implementation of cycle-canceling algorithms for
    1.48 +  /// finding a \ref min_cost_flow "minimum cost flow".
    1.49 +  ///
    1.50 +  /// \ref CycleCanceling implements three different cycle-canceling
    1.51 +  /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
    1.52 +  /// \ref amo93networkflows, \ref klein67primal,
    1.53 +  /// \ref goldberg89cyclecanceling.
    1.54 +  /// The most efficent one (both theoretically and practically)
    1.55 +  /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm,
    1.56 +  /// thus it is the default method.
    1.57 +  /// It is strongly polynomial, but in practice, it is typically much
    1.58 +  /// slower than the scaling algorithms and NetworkSimplex.
    1.59 +  ///
    1.60 +  /// Most of the parameters of the problem (except for the digraph)
    1.61 +  /// can be given using separate functions, and the algorithm can be
    1.62 +  /// executed using the \ref run() function. If some parameters are not
    1.63 +  /// specified, then default values will be used.
    1.64 +  ///
    1.65 +  /// \tparam GR The digraph type the algorithm runs on.
    1.66 +  /// \tparam V The number type used for flow amounts, capacity bounds
    1.67 +  /// and supply values in the algorithm. By default, it is \c int.
    1.68 +  /// \tparam C The number type used for costs and potentials in the
    1.69 +  /// algorithm. By default, it is the same as \c V.
    1.70 +  ///
    1.71 +  /// \warning Both number types must be signed and all input data must
    1.72 +  /// be integer.
    1.73 +  /// \warning This algorithm does not support negative costs for such
    1.74 +  /// arcs that have infinite upper bound.
    1.75 +  ///
    1.76 +  /// \note For more information about the three available methods,
    1.77 +  /// see \ref Method.
    1.78 +#ifdef DOXYGEN
    1.79 +  template <typename GR, typename V, typename C>
    1.80 +#else
    1.81 +  template <typename GR, typename V = int, typename C = V>
    1.82 +#endif
    1.83 +  class CycleCanceling
    1.84 +  {
    1.85 +  public:
    1.86 +
    1.87 +    /// The type of the digraph
    1.88 +    typedef GR Digraph;
    1.89 +    /// The type of the flow amounts, capacity bounds and supply values
    1.90 +    typedef V Value;
    1.91 +    /// The type of the arc costs
    1.92 +    typedef C Cost;
    1.93 +
    1.94 +  public:
    1.95 +
    1.96 +    /// \brief Problem type constants for the \c run() function.
    1.97 +    ///
    1.98 +    /// Enum type containing the problem type constants that can be
    1.99 +    /// returned by the \ref run() function of the algorithm.
   1.100 +    enum ProblemType {
   1.101 +      /// The problem has no feasible solution (flow).
   1.102 +      INFEASIBLE,
   1.103 +      /// The problem has optimal solution (i.e. it is feasible and
   1.104 +      /// bounded), and the algorithm has found optimal flow and node
   1.105 +      /// potentials (primal and dual solutions).
   1.106 +      OPTIMAL,
   1.107 +      /// The digraph contains an arc of negative cost and infinite
   1.108 +      /// upper bound. It means that the objective function is unbounded
   1.109 +      /// on that arc, however, note that it could actually be bounded
   1.110 +      /// over the feasible flows, but this algroithm cannot handle
   1.111 +      /// these cases.
   1.112 +      UNBOUNDED
   1.113 +    };
   1.114 +
   1.115 +    /// \brief Constants for selecting the used method.
   1.116 +    ///
   1.117 +    /// Enum type containing constants for selecting the used method
   1.118 +    /// for the \ref run() function.
   1.119 +    ///
   1.120 +    /// \ref CycleCanceling provides three different cycle-canceling
   1.121 +    /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
   1.122 +    /// is used, which proved to be the most efficient and the most robust
   1.123 +    /// on various test inputs.
   1.124 +    /// However, the other methods can be selected using the \ref run()
   1.125 +    /// function with the proper parameter.
   1.126 +    enum Method {
   1.127 +      /// A simple cycle-canceling method, which uses the
   1.128 +      /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
   1.129 +      /// number for detecting negative cycles in the residual network.
   1.130 +      SIMPLE_CYCLE_CANCELING,
   1.131 +      /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
   1.132 +      /// well-known strongly polynomial method
   1.133 +      /// \ref goldberg89cyclecanceling. It improves along a
   1.134 +      /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
   1.135 +      /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
   1.136 +      MINIMUM_MEAN_CYCLE_CANCELING,
   1.137 +      /// The "Cancel And Tighten" algorithm, which can be viewed as an
   1.138 +      /// improved version of the previous method
   1.139 +      /// \ref goldberg89cyclecanceling.
   1.140 +      /// It is faster both in theory and in practice, its running time
   1.141 +      /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
   1.142 +      CANCEL_AND_TIGHTEN
   1.143 +    };
   1.144 +
   1.145 +  private:
   1.146 +
   1.147 +    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   1.148 +
   1.149 +    typedef std::vector<int> IntVector;
   1.150 +    typedef std::vector<double> DoubleVector;
   1.151 +    typedef std::vector<Value> ValueVector;
   1.152 +    typedef std::vector<Cost> CostVector;
   1.153 +    typedef std::vector<char> BoolVector;
   1.154 +    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   1.155 +
   1.156 +  private:
   1.157 +
   1.158 +    template <typename KT, typename VT>
   1.159 +    class StaticVectorMap {
   1.160 +    public:
   1.161 +      typedef KT Key;
   1.162 +      typedef VT Value;
   1.163 +
   1.164 +      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   1.165 +
   1.166 +      const Value& operator[](const Key& key) const {
   1.167 +        return _v[StaticDigraph::id(key)];
   1.168 +      }
   1.169 +
   1.170 +      Value& operator[](const Key& key) {
   1.171 +        return _v[StaticDigraph::id(key)];
   1.172 +      }
   1.173 +
   1.174 +      void set(const Key& key, const Value& val) {
   1.175 +        _v[StaticDigraph::id(key)] = val;
   1.176 +      }
   1.177 +
   1.178 +    private:
   1.179 +      std::vector<Value>& _v;
   1.180 +    };
   1.181 +
   1.182 +    typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
   1.183 +    typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
   1.184 +
   1.185 +  private:
   1.186 +
   1.187 +
   1.188 +    // Data related to the underlying digraph
   1.189 +    const GR &_graph;
   1.190 +    int _node_num;
   1.191 +    int _arc_num;
   1.192 +    int _res_node_num;
   1.193 +    int _res_arc_num;
   1.194 +    int _root;
   1.195 +
   1.196 +    // Parameters of the problem
   1.197 +    bool _have_lower;
   1.198 +    Value _sum_supply;
   1.199 +
   1.200 +    // Data structures for storing the digraph
   1.201 +    IntNodeMap _node_id;
   1.202 +    IntArcMap _arc_idf;
   1.203 +    IntArcMap _arc_idb;
   1.204 +    IntVector _first_out;
   1.205 +    BoolVector _forward;
   1.206 +    IntVector _source;
   1.207 +    IntVector _target;
   1.208 +    IntVector _reverse;
   1.209 +
   1.210 +    // Node and arc data
   1.211 +    ValueVector _lower;
   1.212 +    ValueVector _upper;
   1.213 +    CostVector _cost;
   1.214 +    ValueVector _supply;
   1.215 +
   1.216 +    ValueVector _res_cap;
   1.217 +    CostVector _pi;
   1.218 +
   1.219 +    // Data for a StaticDigraph structure
   1.220 +    typedef std::pair<int, int> IntPair;
   1.221 +    StaticDigraph _sgr;
   1.222 +    std::vector<IntPair> _arc_vec;
   1.223 +    std::vector<Cost> _cost_vec;
   1.224 +    IntVector _id_vec;
   1.225 +    CostArcMap _cost_map;
   1.226 +    CostNodeMap _pi_map;
   1.227 +
   1.228 +  public:
   1.229 +
   1.230 +    /// \brief Constant for infinite upper bounds (capacities).
   1.231 +    ///
   1.232 +    /// Constant for infinite upper bounds (capacities).
   1.233 +    /// It is \c std::numeric_limits<Value>::infinity() if available,
   1.234 +    /// \c std::numeric_limits<Value>::max() otherwise.
   1.235 +    const Value INF;
   1.236 +
   1.237 +  public:
   1.238 +
   1.239 +    /// \brief Constructor.
   1.240 +    ///
   1.241 +    /// The constructor of the class.
   1.242 +    ///
   1.243 +    /// \param graph The digraph the algorithm runs on.
   1.244 +    CycleCanceling(const GR& graph) :
   1.245 +      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   1.246 +      _cost_map(_cost_vec), _pi_map(_pi),
   1.247 +      INF(std::numeric_limits<Value>::has_infinity ?
   1.248 +          std::numeric_limits<Value>::infinity() :
   1.249 +          std::numeric_limits<Value>::max())
   1.250 +    {
   1.251 +      // Check the number types
   1.252 +      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   1.253 +        "The flow type of CycleCanceling must be signed");
   1.254 +      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   1.255 +        "The cost type of CycleCanceling must be signed");
   1.256 +
   1.257 +      // Reset data structures
   1.258 +      reset();
   1.259 +    }
   1.260 +
   1.261 +    /// \name Parameters
   1.262 +    /// The parameters of the algorithm can be specified using these
   1.263 +    /// functions.
   1.264 +
   1.265 +    /// @{
   1.266 +
   1.267 +    /// \brief Set the lower bounds on the arcs.
   1.268 +    ///
   1.269 +    /// This function sets the lower bounds on the arcs.
   1.270 +    /// If it is not used before calling \ref run(), the lower bounds
   1.271 +    /// will be set to zero on all arcs.
   1.272 +    ///
   1.273 +    /// \param map An arc map storing the lower bounds.
   1.274 +    /// Its \c Value type must be convertible to the \c Value type
   1.275 +    /// of the algorithm.
   1.276 +    ///
   1.277 +    /// \return <tt>(*this)</tt>
   1.278 +    template <typename LowerMap>
   1.279 +    CycleCanceling& lowerMap(const LowerMap& map) {
   1.280 +      _have_lower = true;
   1.281 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.282 +        _lower[_arc_idf[a]] = map[a];
   1.283 +        _lower[_arc_idb[a]] = map[a];
   1.284 +      }
   1.285 +      return *this;
   1.286 +    }
   1.287 +
   1.288 +    /// \brief Set the upper bounds (capacities) on the arcs.
   1.289 +    ///
   1.290 +    /// This function sets the upper bounds (capacities) on the arcs.
   1.291 +    /// If it is not used before calling \ref run(), the upper bounds
   1.292 +    /// will be set to \ref INF on all arcs (i.e. the flow value will be
   1.293 +    /// unbounded from above).
   1.294 +    ///
   1.295 +    /// \param map An arc map storing the upper bounds.
   1.296 +    /// Its \c Value type must be convertible to the \c Value type
   1.297 +    /// of the algorithm.
   1.298 +    ///
   1.299 +    /// \return <tt>(*this)</tt>
   1.300 +    template<typename UpperMap>
   1.301 +    CycleCanceling& upperMap(const UpperMap& map) {
   1.302 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.303 +        _upper[_arc_idf[a]] = map[a];
   1.304 +      }
   1.305 +      return *this;
   1.306 +    }
   1.307 +
   1.308 +    /// \brief Set the costs of the arcs.
   1.309 +    ///
   1.310 +    /// This function sets the costs of the arcs.
   1.311 +    /// If it is not used before calling \ref run(), the costs
   1.312 +    /// will be set to \c 1 on all arcs.
   1.313 +    ///
   1.314 +    /// \param map An arc map storing the costs.
   1.315 +    /// Its \c Value type must be convertible to the \c Cost type
   1.316 +    /// of the algorithm.
   1.317 +    ///
   1.318 +    /// \return <tt>(*this)</tt>
   1.319 +    template<typename CostMap>
   1.320 +    CycleCanceling& costMap(const CostMap& map) {
   1.321 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.322 +        _cost[_arc_idf[a]] =  map[a];
   1.323 +        _cost[_arc_idb[a]] = -map[a];
   1.324 +      }
   1.325 +      return *this;
   1.326 +    }
   1.327 +
   1.328 +    /// \brief Set the supply values of the nodes.
   1.329 +    ///
   1.330 +    /// This function sets the supply values of the nodes.
   1.331 +    /// If neither this function nor \ref stSupply() is used before
   1.332 +    /// calling \ref run(), the supply of each node will be set to zero.
   1.333 +    ///
   1.334 +    /// \param map A node map storing the supply values.
   1.335 +    /// Its \c Value type must be convertible to the \c Value type
   1.336 +    /// of the algorithm.
   1.337 +    ///
   1.338 +    /// \return <tt>(*this)</tt>
   1.339 +    template<typename SupplyMap>
   1.340 +    CycleCanceling& supplyMap(const SupplyMap& map) {
   1.341 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.342 +        _supply[_node_id[n]] = map[n];
   1.343 +      }
   1.344 +      return *this;
   1.345 +    }
   1.346 +
   1.347 +    /// \brief Set single source and target nodes and a supply value.
   1.348 +    ///
   1.349 +    /// This function sets a single source node and a single target node
   1.350 +    /// and the required flow value.
   1.351 +    /// If neither this function nor \ref supplyMap() is used before
   1.352 +    /// calling \ref run(), the supply of each node will be set to zero.
   1.353 +    ///
   1.354 +    /// Using this function has the same effect as using \ref supplyMap()
   1.355 +    /// with such a map in which \c k is assigned to \c s, \c -k is
   1.356 +    /// assigned to \c t and all other nodes have zero supply value.
   1.357 +    ///
   1.358 +    /// \param s The source node.
   1.359 +    /// \param t The target node.
   1.360 +    /// \param k The required amount of flow from node \c s to node \c t
   1.361 +    /// (i.e. the supply of \c s and the demand of \c t).
   1.362 +    ///
   1.363 +    /// \return <tt>(*this)</tt>
   1.364 +    CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
   1.365 +      for (int i = 0; i != _res_node_num; ++i) {
   1.366 +        _supply[i] = 0;
   1.367 +      }
   1.368 +      _supply[_node_id[s]] =  k;
   1.369 +      _supply[_node_id[t]] = -k;
   1.370 +      return *this;
   1.371 +    }
   1.372 +
   1.373 +    /// @}
   1.374 +
   1.375 +    /// \name Execution control
   1.376 +    /// The algorithm can be executed using \ref run().
   1.377 +
   1.378 +    /// @{
   1.379 +
   1.380 +    /// \brief Run the algorithm.
   1.381 +    ///
   1.382 +    /// This function runs the algorithm.
   1.383 +    /// The paramters can be specified using functions \ref lowerMap(),
   1.384 +    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   1.385 +    /// For example,
   1.386 +    /// \code
   1.387 +    ///   CycleCanceling<ListDigraph> cc(graph);
   1.388 +    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
   1.389 +    ///     .supplyMap(sup).run();
   1.390 +    /// \endcode
   1.391 +    ///
   1.392 +    /// This function can be called more than once. All the given parameters
   1.393 +    /// are kept for the next call, unless \ref resetParams() or \ref reset()
   1.394 +    /// is used, thus only the modified parameters have to be set again.
   1.395 +    /// If the underlying digraph was also modified after the construction
   1.396 +    /// of the class (or the last \ref reset() call), then the \ref reset()
   1.397 +    /// function must be called.
   1.398 +    ///
   1.399 +    /// \param method The cycle-canceling method that will be used.
   1.400 +    /// For more information, see \ref Method.
   1.401 +    ///
   1.402 +    /// \return \c INFEASIBLE if no feasible flow exists,
   1.403 +    /// \n \c OPTIMAL if the problem has optimal solution
   1.404 +    /// (i.e. it is feasible and bounded), and the algorithm has found
   1.405 +    /// optimal flow and node potentials (primal and dual solutions),
   1.406 +    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   1.407 +    /// and infinite upper bound. It means that the objective function
   1.408 +    /// is unbounded on that arc, however, note that it could actually be
   1.409 +    /// bounded over the feasible flows, but this algroithm cannot handle
   1.410 +    /// these cases.
   1.411 +    ///
   1.412 +    /// \see ProblemType, Method
   1.413 +    /// \see resetParams(), reset()
   1.414 +    ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
   1.415 +      ProblemType pt = init();
   1.416 +      if (pt != OPTIMAL) return pt;
   1.417 +      start(method);
   1.418 +      return OPTIMAL;
   1.419 +    }
   1.420 +
   1.421 +    /// \brief Reset all the parameters that have been given before.
   1.422 +    ///
   1.423 +    /// This function resets all the paramaters that have been given
   1.424 +    /// before using functions \ref lowerMap(), \ref upperMap(),
   1.425 +    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   1.426 +    ///
   1.427 +    /// It is useful for multiple \ref run() calls. Basically, all the given
   1.428 +    /// parameters are kept for the next \ref run() call, unless
   1.429 +    /// \ref resetParams() or \ref reset() is used.
   1.430 +    /// If the underlying digraph was also modified after the construction
   1.431 +    /// of the class or the last \ref reset() call, then the \ref reset()
   1.432 +    /// function must be used, otherwise \ref resetParams() is sufficient.
   1.433 +    ///
   1.434 +    /// For example,
   1.435 +    /// \code
   1.436 +    ///   CycleCanceling<ListDigraph> cs(graph);
   1.437 +    ///
   1.438 +    ///   // First run
   1.439 +    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
   1.440 +    ///     .supplyMap(sup).run();
   1.441 +    ///
   1.442 +    ///   // Run again with modified cost map (resetParams() is not called,
   1.443 +    ///   // so only the cost map have to be set again)
   1.444 +    ///   cost[e] += 100;
   1.445 +    ///   cc.costMap(cost).run();
   1.446 +    ///
   1.447 +    ///   // Run again from scratch using resetParams()
   1.448 +    ///   // (the lower bounds will be set to zero on all arcs)
   1.449 +    ///   cc.resetParams();
   1.450 +    ///   cc.upperMap(capacity).costMap(cost)
   1.451 +    ///     .supplyMap(sup).run();
   1.452 +    /// \endcode
   1.453 +    ///
   1.454 +    /// \return <tt>(*this)</tt>
   1.455 +    ///
   1.456 +    /// \see reset(), run()
   1.457 +    CycleCanceling& resetParams() {
   1.458 +      for (int i = 0; i != _res_node_num; ++i) {
   1.459 +        _supply[i] = 0;
   1.460 +      }
   1.461 +      int limit = _first_out[_root];
   1.462 +      for (int j = 0; j != limit; ++j) {
   1.463 +        _lower[j] = 0;
   1.464 +        _upper[j] = INF;
   1.465 +        _cost[j] = _forward[j] ? 1 : -1;
   1.466 +      }
   1.467 +      for (int j = limit; j != _res_arc_num; ++j) {
   1.468 +        _lower[j] = 0;
   1.469 +        _upper[j] = INF;
   1.470 +        _cost[j] = 0;
   1.471 +        _cost[_reverse[j]] = 0;
   1.472 +      }
   1.473 +      _have_lower = false;
   1.474 +      return *this;
   1.475 +    }
   1.476 +
   1.477 +    /// \brief Reset the internal data structures and all the parameters
   1.478 +    /// that have been given before.
   1.479 +    ///
   1.480 +    /// This function resets the internal data structures and all the
   1.481 +    /// paramaters that have been given before using functions \ref lowerMap(),
   1.482 +    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   1.483 +    ///
   1.484 +    /// It is useful for multiple \ref run() calls. Basically, all the given
   1.485 +    /// parameters are kept for the next \ref run() call, unless
   1.486 +    /// \ref resetParams() or \ref reset() is used.
   1.487 +    /// If the underlying digraph was also modified after the construction
   1.488 +    /// of the class or the last \ref reset() call, then the \ref reset()
   1.489 +    /// function must be used, otherwise \ref resetParams() is sufficient.
   1.490 +    ///
   1.491 +    /// See \ref resetParams() for examples.
   1.492 +    ///
   1.493 +    /// \return <tt>(*this)</tt>
   1.494 +    ///
   1.495 +    /// \see resetParams(), run()
   1.496 +    CycleCanceling& reset() {
   1.497 +      // Resize vectors
   1.498 +      _node_num = countNodes(_graph);
   1.499 +      _arc_num = countArcs(_graph);
   1.500 +      _res_node_num = _node_num + 1;
   1.501 +      _res_arc_num = 2 * (_arc_num + _node_num);
   1.502 +      _root = _node_num;
   1.503 +
   1.504 +      _first_out.resize(_res_node_num + 1);
   1.505 +      _forward.resize(_res_arc_num);
   1.506 +      _source.resize(_res_arc_num);
   1.507 +      _target.resize(_res_arc_num);
   1.508 +      _reverse.resize(_res_arc_num);
   1.509 +
   1.510 +      _lower.resize(_res_arc_num);
   1.511 +      _upper.resize(_res_arc_num);
   1.512 +      _cost.resize(_res_arc_num);
   1.513 +      _supply.resize(_res_node_num);
   1.514 +
   1.515 +      _res_cap.resize(_res_arc_num);
   1.516 +      _pi.resize(_res_node_num);
   1.517 +
   1.518 +      _arc_vec.reserve(_res_arc_num);
   1.519 +      _cost_vec.reserve(_res_arc_num);
   1.520 +      _id_vec.reserve(_res_arc_num);
   1.521 +
   1.522 +      // Copy the graph
   1.523 +      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   1.524 +      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   1.525 +        _node_id[n] = i;
   1.526 +      }
   1.527 +      i = 0;
   1.528 +      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   1.529 +        _first_out[i] = j;
   1.530 +        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   1.531 +          _arc_idf[a] = j;
   1.532 +          _forward[j] = true;
   1.533 +          _source[j] = i;
   1.534 +          _target[j] = _node_id[_graph.runningNode(a)];
   1.535 +        }
   1.536 +        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   1.537 +          _arc_idb[a] = j;
   1.538 +          _forward[j] = false;
   1.539 +          _source[j] = i;
   1.540 +          _target[j] = _node_id[_graph.runningNode(a)];
   1.541 +        }
   1.542 +        _forward[j] = false;
   1.543 +        _source[j] = i;
   1.544 +        _target[j] = _root;
   1.545 +        _reverse[j] = k;
   1.546 +        _forward[k] = true;
   1.547 +        _source[k] = _root;
   1.548 +        _target[k] = i;
   1.549 +        _reverse[k] = j;
   1.550 +        ++j; ++k;
   1.551 +      }
   1.552 +      _first_out[i] = j;
   1.553 +      _first_out[_res_node_num] = k;
   1.554 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.555 +        int fi = _arc_idf[a];
   1.556 +        int bi = _arc_idb[a];
   1.557 +        _reverse[fi] = bi;
   1.558 +        _reverse[bi] = fi;
   1.559 +      }
   1.560 +
   1.561 +      // Reset parameters
   1.562 +      resetParams();
   1.563 +      return *this;
   1.564 +    }
   1.565 +
   1.566 +    /// @}
   1.567 +
   1.568 +    /// \name Query Functions
   1.569 +    /// The results of the algorithm can be obtained using these
   1.570 +    /// functions.\n
   1.571 +    /// The \ref run() function must be called before using them.
   1.572 +
   1.573 +    /// @{
   1.574 +
   1.575 +    /// \brief Return the total cost of the found flow.
   1.576 +    ///
   1.577 +    /// This function returns the total cost of the found flow.
   1.578 +    /// Its complexity is O(e).
   1.579 +    ///
   1.580 +    /// \note The return type of the function can be specified as a
   1.581 +    /// template parameter. For example,
   1.582 +    /// \code
   1.583 +    ///   cc.totalCost<double>();
   1.584 +    /// \endcode
   1.585 +    /// It is useful if the total cost cannot be stored in the \c Cost
   1.586 +    /// type of the algorithm, which is the default return type of the
   1.587 +    /// function.
   1.588 +    ///
   1.589 +    /// \pre \ref run() must be called before using this function.
   1.590 +    template <typename Number>
   1.591 +    Number totalCost() const {
   1.592 +      Number c = 0;
   1.593 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.594 +        int i = _arc_idb[a];
   1.595 +        c += static_cast<Number>(_res_cap[i]) *
   1.596 +             (-static_cast<Number>(_cost[i]));
   1.597 +      }
   1.598 +      return c;
   1.599 +    }
   1.600 +
   1.601 +#ifndef DOXYGEN
   1.602 +    Cost totalCost() const {
   1.603 +      return totalCost<Cost>();
   1.604 +    }
   1.605 +#endif
   1.606 +
   1.607 +    /// \brief Return the flow on the given arc.
   1.608 +    ///
   1.609 +    /// This function returns the flow on the given arc.
   1.610 +    ///
   1.611 +    /// \pre \ref run() must be called before using this function.
   1.612 +    Value flow(const Arc& a) const {
   1.613 +      return _res_cap[_arc_idb[a]];
   1.614 +    }
   1.615 +
   1.616 +    /// \brief Return the flow map (the primal solution).
   1.617 +    ///
   1.618 +    /// This function copies the flow value on each arc into the given
   1.619 +    /// map. The \c Value type of the algorithm must be convertible to
   1.620 +    /// the \c Value type of the map.
   1.621 +    ///
   1.622 +    /// \pre \ref run() must be called before using this function.
   1.623 +    template <typename FlowMap>
   1.624 +    void flowMap(FlowMap &map) const {
   1.625 +      for (ArcIt a(_graph); a != INVALID; ++a) {
   1.626 +        map.set(a, _res_cap[_arc_idb[a]]);
   1.627 +      }
   1.628 +    }
   1.629 +
   1.630 +    /// \brief Return the potential (dual value) of the given node.
   1.631 +    ///
   1.632 +    /// This function returns the potential (dual value) of the
   1.633 +    /// given node.
   1.634 +    ///
   1.635 +    /// \pre \ref run() must be called before using this function.
   1.636 +    Cost potential(const Node& n) const {
   1.637 +      return static_cast<Cost>(_pi[_node_id[n]]);
   1.638 +    }
   1.639 +
   1.640 +    /// \brief Return the potential map (the dual solution).
   1.641 +    ///
   1.642 +    /// This function copies the potential (dual value) of each node
   1.643 +    /// into the given map.
   1.644 +    /// The \c Cost type of the algorithm must be convertible to the
   1.645 +    /// \c Value type of the map.
   1.646 +    ///
   1.647 +    /// \pre \ref run() must be called before using this function.
   1.648 +    template <typename PotentialMap>
   1.649 +    void potentialMap(PotentialMap &map) const {
   1.650 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.651 +        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   1.652 +      }
   1.653 +    }
   1.654 +
   1.655 +    /// @}
   1.656 +
   1.657 +  private:
   1.658 +
   1.659 +    // Initialize the algorithm
   1.660 +    ProblemType init() {
   1.661 +      if (_res_node_num <= 1) return INFEASIBLE;
   1.662 +
   1.663 +      // Check the sum of supply values
   1.664 +      _sum_supply = 0;
   1.665 +      for (int i = 0; i != _root; ++i) {
   1.666 +        _sum_supply += _supply[i];
   1.667 +      }
   1.668 +      if (_sum_supply > 0) return INFEASIBLE;
   1.669 +
   1.670 +
   1.671 +      // Initialize vectors
   1.672 +      for (int i = 0; i != _res_node_num; ++i) {
   1.673 +        _pi[i] = 0;
   1.674 +      }
   1.675 +      ValueVector excess(_supply);
   1.676 +
   1.677 +      // Remove infinite upper bounds and check negative arcs
   1.678 +      const Value MAX = std::numeric_limits<Value>::max();
   1.679 +      int last_out;
   1.680 +      if (_have_lower) {
   1.681 +        for (int i = 0; i != _root; ++i) {
   1.682 +          last_out = _first_out[i+1];
   1.683 +          for (int j = _first_out[i]; j != last_out; ++j) {
   1.684 +            if (_forward[j]) {
   1.685 +              Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
   1.686 +              if (c >= MAX) return UNBOUNDED;
   1.687 +              excess[i] -= c;
   1.688 +              excess[_target[j]] += c;
   1.689 +            }
   1.690 +          }
   1.691 +        }
   1.692 +      } else {
   1.693 +        for (int i = 0; i != _root; ++i) {
   1.694 +          last_out = _first_out[i+1];
   1.695 +          for (int j = _first_out[i]; j != last_out; ++j) {
   1.696 +            if (_forward[j] && _cost[j] < 0) {
   1.697 +              Value c = _upper[j];
   1.698 +              if (c >= MAX) return UNBOUNDED;
   1.699 +              excess[i] -= c;
   1.700 +              excess[_target[j]] += c;
   1.701 +            }
   1.702 +          }
   1.703 +        }
   1.704 +      }
   1.705 +      Value ex, max_cap = 0;
   1.706 +      for (int i = 0; i != _res_node_num; ++i) {
   1.707 +        ex = excess[i];
   1.708 +        if (ex < 0) max_cap -= ex;
   1.709 +      }
   1.710 +      for (int j = 0; j != _res_arc_num; ++j) {
   1.711 +        if (_upper[j] >= MAX) _upper[j] = max_cap;
   1.712 +      }
   1.713 +
   1.714 +      // Initialize maps for Circulation and remove non-zero lower bounds
   1.715 +      ConstMap<Arc, Value> low(0);
   1.716 +      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   1.717 +      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   1.718 +      ValueArcMap cap(_graph), flow(_graph);
   1.719 +      ValueNodeMap sup(_graph);
   1.720 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.721 +        sup[n] = _supply[_node_id[n]];
   1.722 +      }
   1.723 +      if (_have_lower) {
   1.724 +        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.725 +          int j = _arc_idf[a];
   1.726 +          Value c = _lower[j];
   1.727 +          cap[a] = _upper[j] - c;
   1.728 +          sup[_graph.source(a)] -= c;
   1.729 +          sup[_graph.target(a)] += c;
   1.730 +        }
   1.731 +      } else {
   1.732 +        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.733 +          cap[a] = _upper[_arc_idf[a]];
   1.734 +        }
   1.735 +      }
   1.736 +
   1.737 +      // Find a feasible flow using Circulation
   1.738 +      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   1.739 +        circ(_graph, low, cap, sup);
   1.740 +      if (!circ.flowMap(flow).run()) return INFEASIBLE;
   1.741 +
   1.742 +      // Set residual capacities and handle GEQ supply type
   1.743 +      if (_sum_supply < 0) {
   1.744 +        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.745 +          Value fa = flow[a];
   1.746 +          _res_cap[_arc_idf[a]] = cap[a] - fa;
   1.747 +          _res_cap[_arc_idb[a]] = fa;
   1.748 +          sup[_graph.source(a)] -= fa;
   1.749 +          sup[_graph.target(a)] += fa;
   1.750 +        }
   1.751 +        for (NodeIt n(_graph); n != INVALID; ++n) {
   1.752 +          excess[_node_id[n]] = sup[n];
   1.753 +        }
   1.754 +        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   1.755 +          int u = _target[a];
   1.756 +          int ra = _reverse[a];
   1.757 +          _res_cap[a] = -_sum_supply + 1;
   1.758 +          _res_cap[ra] = -excess[u];
   1.759 +          _cost[a] = 0;
   1.760 +          _cost[ra] = 0;
   1.761 +        }
   1.762 +      } else {
   1.763 +        for (ArcIt a(_graph); a != INVALID; ++a) {
   1.764 +          Value fa = flow[a];
   1.765 +          _res_cap[_arc_idf[a]] = cap[a] - fa;
   1.766 +          _res_cap[_arc_idb[a]] = fa;
   1.767 +        }
   1.768 +        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   1.769 +          int ra = _reverse[a];
   1.770 +          _res_cap[a] = 1;
   1.771 +          _res_cap[ra] = 0;
   1.772 +          _cost[a] = 0;
   1.773 +          _cost[ra] = 0;
   1.774 +        }
   1.775 +      }
   1.776 +
   1.777 +      return OPTIMAL;
   1.778 +    }
   1.779 +
   1.780 +    // Build a StaticDigraph structure containing the current
   1.781 +    // residual network
   1.782 +    void buildResidualNetwork() {
   1.783 +      _arc_vec.clear();
   1.784 +      _cost_vec.clear();
   1.785 +      _id_vec.clear();
   1.786 +      for (int j = 0; j != _res_arc_num; ++j) {
   1.787 +        if (_res_cap[j] > 0) {
   1.788 +          _arc_vec.push_back(IntPair(_source[j], _target[j]));
   1.789 +          _cost_vec.push_back(_cost[j]);
   1.790 +          _id_vec.push_back(j);
   1.791 +        }
   1.792 +      }
   1.793 +      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   1.794 +    }
   1.795 +
   1.796 +    // Execute the algorithm and transform the results
   1.797 +    void start(Method method) {
   1.798 +      // Execute the algorithm
   1.799 +      switch (method) {
   1.800 +        case SIMPLE_CYCLE_CANCELING:
   1.801 +          startSimpleCycleCanceling();
   1.802 +          break;
   1.803 +        case MINIMUM_MEAN_CYCLE_CANCELING:
   1.804 +          startMinMeanCycleCanceling();
   1.805 +          break;
   1.806 +        case CANCEL_AND_TIGHTEN:
   1.807 +          startCancelAndTighten();
   1.808 +          break;
   1.809 +      }
   1.810 +
   1.811 +      // Compute node potentials
   1.812 +      if (method != SIMPLE_CYCLE_CANCELING) {
   1.813 +        buildResidualNetwork();
   1.814 +        typename BellmanFord<StaticDigraph, CostArcMap>
   1.815 +          ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
   1.816 +        bf.distMap(_pi_map);
   1.817 +        bf.init(0);
   1.818 +        bf.start();
   1.819 +      }
   1.820 +
   1.821 +      // Handle non-zero lower bounds
   1.822 +      if (_have_lower) {
   1.823 +        int limit = _first_out[_root];
   1.824 +        for (int j = 0; j != limit; ++j) {
   1.825 +          if (!_forward[j]) _res_cap[j] += _lower[j];
   1.826 +        }
   1.827 +      }
   1.828 +    }
   1.829 +
   1.830 +    // Execute the "Simple Cycle Canceling" method
   1.831 +    void startSimpleCycleCanceling() {
   1.832 +      // Constants for computing the iteration limits
   1.833 +      const int BF_FIRST_LIMIT  = 2;
   1.834 +      const double BF_LIMIT_FACTOR = 1.5;
   1.835 +
   1.836 +      typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
   1.837 +      typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
   1.838 +      typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
   1.839 +      typedef typename BellmanFord<ResDigraph, CostArcMap>
   1.840 +        ::template SetDistMap<CostNodeMap>
   1.841 +        ::template SetPredMap<PredMap>::Create BF;
   1.842 +
   1.843 +      // Build the residual network
   1.844 +      _arc_vec.clear();
   1.845 +      _cost_vec.clear();
   1.846 +      for (int j = 0; j != _res_arc_num; ++j) {
   1.847 +        _arc_vec.push_back(IntPair(_source[j], _target[j]));
   1.848 +        _cost_vec.push_back(_cost[j]);
   1.849 +      }
   1.850 +      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   1.851 +
   1.852 +      FilterMap filter_map(_res_cap);
   1.853 +      ResDigraph rgr(_sgr, filter_map);
   1.854 +      std::vector<int> cycle;
   1.855 +      std::vector<StaticDigraph::Arc> pred(_res_arc_num);
   1.856 +      PredMap pred_map(pred);
   1.857 +      BF bf(rgr, _cost_map);
   1.858 +      bf.distMap(_pi_map).predMap(pred_map);
   1.859 +
   1.860 +      int length_bound = BF_FIRST_LIMIT;
   1.861 +      bool optimal = false;
   1.862 +      while (!optimal) {
   1.863 +        bf.init(0);
   1.864 +        int iter_num = 0;
   1.865 +        bool cycle_found = false;
   1.866 +        while (!cycle_found) {
   1.867 +          // Perform some iterations of the Bellman-Ford algorithm
   1.868 +          int curr_iter_num = iter_num + length_bound <= _node_num ?
   1.869 +            length_bound : _node_num - iter_num;
   1.870 +          iter_num += curr_iter_num;
   1.871 +          int real_iter_num = curr_iter_num;
   1.872 +          for (int i = 0; i < curr_iter_num; ++i) {
   1.873 +            if (bf.processNextWeakRound()) {
   1.874 +              real_iter_num = i;
   1.875 +              break;
   1.876 +            }
   1.877 +          }
   1.878 +          if (real_iter_num < curr_iter_num) {
   1.879 +            // Optimal flow is found
   1.880 +            optimal = true;
   1.881 +            break;
   1.882 +          } else {
   1.883 +            // Search for node disjoint negative cycles
   1.884 +            std::vector<int> state(_res_node_num, 0);
   1.885 +            int id = 0;
   1.886 +            for (int u = 0; u != _res_node_num; ++u) {
   1.887 +              if (state[u] != 0) continue;
   1.888 +              ++id;
   1.889 +              int v = u;
   1.890 +              for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
   1.891 +                   -1 : rgr.id(rgr.source(pred[v]))) {
   1.892 +                state[v] = id;
   1.893 +              }
   1.894 +              if (v != -1 && state[v] == id) {
   1.895 +                // A negative cycle is found
   1.896 +                cycle_found = true;
   1.897 +                cycle.clear();
   1.898 +                StaticDigraph::Arc a = pred[v];
   1.899 +                Value d, delta = _res_cap[rgr.id(a)];
   1.900 +                cycle.push_back(rgr.id(a));
   1.901 +                while (rgr.id(rgr.source(a)) != v) {
   1.902 +                  a = pred_map[rgr.source(a)];
   1.903 +                  d = _res_cap[rgr.id(a)];
   1.904 +                  if (d < delta) delta = d;
   1.905 +                  cycle.push_back(rgr.id(a));
   1.906 +                }
   1.907 +
   1.908 +                // Augment along the cycle
   1.909 +                for (int i = 0; i < int(cycle.size()); ++i) {
   1.910 +                  int j = cycle[i];
   1.911 +                  _res_cap[j] -= delta;
   1.912 +                  _res_cap[_reverse[j]] += delta;
   1.913 +                }
   1.914 +              }
   1.915 +            }
   1.916 +          }
   1.917 +
   1.918 +          // Increase iteration limit if no cycle is found
   1.919 +          if (!cycle_found) {
   1.920 +            length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
   1.921 +          }
   1.922 +        }
   1.923 +      }
   1.924 +    }
   1.925 +
   1.926 +    // Execute the "Minimum Mean Cycle Canceling" method
   1.927 +    void startMinMeanCycleCanceling() {
   1.928 +      typedef SimplePath<StaticDigraph> SPath;
   1.929 +      typedef typename SPath::ArcIt SPathArcIt;
   1.930 +      typedef typename HowardMmc<StaticDigraph, CostArcMap>
   1.931 +        ::template SetPath<SPath>::Create MMC;
   1.932 +
   1.933 +      SPath cycle;
   1.934 +      MMC mmc(_sgr, _cost_map);
   1.935 +      mmc.cycle(cycle);
   1.936 +      buildResidualNetwork();
   1.937 +      while (mmc.findCycleMean() && mmc.cycleCost() < 0) {
   1.938 +        // Find the cycle
   1.939 +        mmc.findCycle();
   1.940 +
   1.941 +        // Compute delta value
   1.942 +        Value delta = INF;
   1.943 +        for (SPathArcIt a(cycle); a != INVALID; ++a) {
   1.944 +          Value d = _res_cap[_id_vec[_sgr.id(a)]];
   1.945 +          if (d < delta) delta = d;
   1.946 +        }
   1.947 +
   1.948 +        // Augment along the cycle
   1.949 +        for (SPathArcIt a(cycle); a != INVALID; ++a) {
   1.950 +          int j = _id_vec[_sgr.id(a)];
   1.951 +          _res_cap[j] -= delta;
   1.952 +          _res_cap[_reverse[j]] += delta;
   1.953 +        }
   1.954 +
   1.955 +        // Rebuild the residual network
   1.956 +        buildResidualNetwork();
   1.957 +      }
   1.958 +    }
   1.959 +
   1.960 +    // Execute the "Cancel And Tighten" method
   1.961 +    void startCancelAndTighten() {
   1.962 +      // Constants for the min mean cycle computations
   1.963 +      const double LIMIT_FACTOR = 1.0;
   1.964 +      const int MIN_LIMIT = 5;
   1.965 +
   1.966 +      // Contruct auxiliary data vectors
   1.967 +      DoubleVector pi(_res_node_num, 0.0);
   1.968 +      IntVector level(_res_node_num);
   1.969 +      BoolVector reached(_res_node_num);
   1.970 +      BoolVector processed(_res_node_num);
   1.971 +      IntVector pred_node(_res_node_num);
   1.972 +      IntVector pred_arc(_res_node_num);
   1.973 +      std::vector<int> stack(_res_node_num);
   1.974 +      std::vector<int> proc_vector(_res_node_num);
   1.975 +
   1.976 +      // Initialize epsilon
   1.977 +      double epsilon = 0;
   1.978 +      for (int a = 0; a != _res_arc_num; ++a) {
   1.979 +        if (_res_cap[a] > 0 && -_cost[a] > epsilon)
   1.980 +          epsilon = -_cost[a];
   1.981 +      }
   1.982 +
   1.983 +      // Start phases
   1.984 +      Tolerance<double> tol;
   1.985 +      tol.epsilon(1e-6);
   1.986 +      int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
   1.987 +      if (limit < MIN_LIMIT) limit = MIN_LIMIT;
   1.988 +      int iter = limit;
   1.989 +      while (epsilon * _res_node_num >= 1) {
   1.990 +        // Find and cancel cycles in the admissible network using DFS
   1.991 +        for (int u = 0; u != _res_node_num; ++u) {
   1.992 +          reached[u] = false;
   1.993 +          processed[u] = false;
   1.994 +        }
   1.995 +        int stack_head = -1;
   1.996 +        int proc_head = -1;
   1.997 +        for (int start = 0; start != _res_node_num; ++start) {
   1.998 +          if (reached[start]) continue;
   1.999 +
  1.1000 +          // New start node
  1.1001 +          reached[start] = true;
  1.1002 +          pred_arc[start] = -1;
  1.1003 +          pred_node[start] = -1;
  1.1004 +
  1.1005 +          // Find the first admissible outgoing arc
  1.1006 +          double p = pi[start];
  1.1007 +          int a = _first_out[start];
  1.1008 +          int last_out = _first_out[start+1];
  1.1009 +          for (; a != last_out && (_res_cap[a] == 0 ||
  1.1010 +               !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
  1.1011 +          if (a == last_out) {
  1.1012 +            processed[start] = true;
  1.1013 +            proc_vector[++proc_head] = start;
  1.1014 +            continue;
  1.1015 +          }
  1.1016 +          stack[++stack_head] = a;
  1.1017 +
  1.1018 +          while (stack_head >= 0) {
  1.1019 +            int sa = stack[stack_head];
  1.1020 +            int u = _source[sa];
  1.1021 +            int v = _target[sa];
  1.1022 +
  1.1023 +            if (!reached[v]) {
  1.1024 +              // A new node is reached
  1.1025 +              reached[v] = true;
  1.1026 +              pred_node[v] = u;
  1.1027 +              pred_arc[v] = sa;
  1.1028 +              p = pi[v];
  1.1029 +              a = _first_out[v];
  1.1030 +              last_out = _first_out[v+1];
  1.1031 +              for (; a != last_out && (_res_cap[a] == 0 ||
  1.1032 +                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
  1.1033 +              stack[++stack_head] = a == last_out ? -1 : a;
  1.1034 +            } else {
  1.1035 +              if (!processed[v]) {
  1.1036 +                // A cycle is found
  1.1037 +                int n, w = u;
  1.1038 +                Value d, delta = _res_cap[sa];
  1.1039 +                for (n = u; n != v; n = pred_node[n]) {
  1.1040 +                  d = _res_cap[pred_arc[n]];
  1.1041 +                  if (d <= delta) {
  1.1042 +                    delta = d;
  1.1043 +                    w = pred_node[n];
  1.1044 +                  }
  1.1045 +                }
  1.1046 +
  1.1047 +                // Augment along the cycle
  1.1048 +                _res_cap[sa] -= delta;
  1.1049 +                _res_cap[_reverse[sa]] += delta;
  1.1050 +                for (n = u; n != v; n = pred_node[n]) {
  1.1051 +                  int pa = pred_arc[n];
  1.1052 +                  _res_cap[pa] -= delta;
  1.1053 +                  _res_cap[_reverse[pa]] += delta;
  1.1054 +                }
  1.1055 +                for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
  1.1056 +                  --stack_head;
  1.1057 +                  reached[n] = false;
  1.1058 +                }
  1.1059 +                u = w;
  1.1060 +              }
  1.1061 +              v = u;
  1.1062 +
  1.1063 +              // Find the next admissible outgoing arc
  1.1064 +              p = pi[v];
  1.1065 +              a = stack[stack_head] + 1;
  1.1066 +              last_out = _first_out[v+1];
  1.1067 +              for (; a != last_out && (_res_cap[a] == 0 ||
  1.1068 +                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
  1.1069 +              stack[stack_head] = a == last_out ? -1 : a;
  1.1070 +            }
  1.1071 +
  1.1072 +            while (stack_head >= 0 && stack[stack_head] == -1) {
  1.1073 +              processed[v] = true;
  1.1074 +              proc_vector[++proc_head] = v;
  1.1075 +              if (--stack_head >= 0) {
  1.1076 +                // Find the next admissible outgoing arc
  1.1077 +                v = _source[stack[stack_head]];
  1.1078 +                p = pi[v];
  1.1079 +                a = stack[stack_head] + 1;
  1.1080 +                last_out = _first_out[v+1];
  1.1081 +                for (; a != last_out && (_res_cap[a] == 0 ||
  1.1082 +                     !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
  1.1083 +                stack[stack_head] = a == last_out ? -1 : a;
  1.1084 +              }
  1.1085 +            }
  1.1086 +          }
  1.1087 +        }
  1.1088 +
  1.1089 +        // Tighten potentials and epsilon
  1.1090 +        if (--iter > 0) {
  1.1091 +          for (int u = 0; u != _res_node_num; ++u) {
  1.1092 +            level[u] = 0;
  1.1093 +          }
  1.1094 +          for (int i = proc_head; i > 0; --i) {
  1.1095 +            int u = proc_vector[i];
  1.1096 +            double p = pi[u];
  1.1097 +            int l = level[u] + 1;
  1.1098 +            int last_out = _first_out[u+1];
  1.1099 +            for (int a = _first_out[u]; a != last_out; ++a) {
  1.1100 +              int v = _target[a];
  1.1101 +              if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
  1.1102 +                  l > level[v]) level[v] = l;
  1.1103 +            }
  1.1104 +          }
  1.1105 +
  1.1106 +          // Modify potentials
  1.1107 +          double q = std::numeric_limits<double>::max();
  1.1108 +          for (int u = 0; u != _res_node_num; ++u) {
  1.1109 +            int lu = level[u];
  1.1110 +            double p, pu = pi[u];
  1.1111 +            int last_out = _first_out[u+1];
  1.1112 +            for (int a = _first_out[u]; a != last_out; ++a) {
  1.1113 +              if (_res_cap[a] == 0) continue;
  1.1114 +              int v = _target[a];
  1.1115 +              int ld = lu - level[v];
  1.1116 +              if (ld > 0) {
  1.1117 +                p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
  1.1118 +                if (p < q) q = p;
  1.1119 +              }
  1.1120 +            }
  1.1121 +          }
  1.1122 +          for (int u = 0; u != _res_node_num; ++u) {
  1.1123 +            pi[u] -= q * level[u];
  1.1124 +          }
  1.1125 +
  1.1126 +          // Modify epsilon
  1.1127 +          epsilon = 0;
  1.1128 +          for (int u = 0; u != _res_node_num; ++u) {
  1.1129 +            double curr, pu = pi[u];
  1.1130 +            int last_out = _first_out[u+1];
  1.1131 +            for (int a = _first_out[u]; a != last_out; ++a) {
  1.1132 +              if (_res_cap[a] == 0) continue;
  1.1133 +              curr = _cost[a] + pu - pi[_target[a]];
  1.1134 +              if (-curr > epsilon) epsilon = -curr;
  1.1135 +            }
  1.1136 +          }
  1.1137 +        } else {
  1.1138 +          typedef HowardMmc<StaticDigraph, CostArcMap> MMC;
  1.1139 +          typedef typename BellmanFord<StaticDigraph, CostArcMap>
  1.1140 +            ::template SetDistMap<CostNodeMap>::Create BF;
  1.1141 +
  1.1142 +          // Set epsilon to the minimum cycle mean
  1.1143 +          buildResidualNetwork();
  1.1144 +          MMC mmc(_sgr, _cost_map);
  1.1145 +          mmc.findCycleMean();
  1.1146 +          epsilon = -mmc.cycleMean();
  1.1147 +          Cost cycle_cost = mmc.cycleCost();
  1.1148 +          int cycle_size = mmc.cycleSize();
  1.1149 +
  1.1150 +          // Compute feasible potentials for the current epsilon
  1.1151 +          for (int i = 0; i != int(_cost_vec.size()); ++i) {
  1.1152 +            _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
  1.1153 +          }
  1.1154 +          BF bf(_sgr, _cost_map);
  1.1155 +          bf.distMap(_pi_map);
  1.1156 +          bf.init(0);
  1.1157 +          bf.start();
  1.1158 +          for (int u = 0; u != _res_node_num; ++u) {
  1.1159 +            pi[u] = static_cast<double>(_pi[u]) / cycle_size;
  1.1160 +          }
  1.1161 +
  1.1162 +          iter = limit;
  1.1163 +        }
  1.1164 +      }
  1.1165 +    }
  1.1166 +
  1.1167 +  }; //class CycleCanceling
  1.1168 +
  1.1169 +  ///@}
  1.1170 +
  1.1171 +} //namespace lemon
  1.1172 +
  1.1173 +#endif //LEMON_CYCLE_CANCELING_H