lemon/matching.h
changeset 993 ad40f7d32846
parent 876 7f6e2bd76654
     1.1 --- a/lemon/matching.h	Fri Aug 09 11:07:27 2013 +0200
     1.2 +++ b/lemon/matching.h	Sun Aug 11 15:28:12 2013 +0200
     1.3 @@ -2,7 +2,7 @@
     1.4   *
     1.5   * This file is a part of LEMON, a generic C++ optimization library.
     1.6   *
     1.7 - * Copyright (C) 2003-2009
     1.8 + * Copyright (C) 2003-2010
     1.9   * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10   * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11   *
    1.12 @@ -16,8 +16,8 @@
    1.13   *
    1.14   */
    1.15  
    1.16 -#ifndef LEMON_MAX_MATCHING_H
    1.17 -#define LEMON_MAX_MATCHING_H
    1.18 +#ifndef LEMON_MATCHING_H
    1.19 +#define LEMON_MATCHING_H
    1.20  
    1.21  #include <vector>
    1.22  #include <queue>
    1.23 @@ -28,6 +28,7 @@
    1.24  #include <lemon/unionfind.h>
    1.25  #include <lemon/bin_heap.h>
    1.26  #include <lemon/maps.h>
    1.27 +#include <lemon/fractional_matching.h>
    1.28  
    1.29  ///\ingroup matching
    1.30  ///\file
    1.31 @@ -41,7 +42,7 @@
    1.32    ///
    1.33    /// This class implements Edmonds' alternating forest matching algorithm
    1.34    /// for finding a maximum cardinality matching in a general undirected graph.
    1.35 -  /// It can be started from an arbitrary initial matching 
    1.36 +  /// It can be started from an arbitrary initial matching
    1.37    /// (the default is the empty one).
    1.38    ///
    1.39    /// The dual solution of the problem is a map of the nodes to
    1.40 @@ -69,11 +70,11 @@
    1.41  
    1.42      ///\brief Status constants for Gallai-Edmonds decomposition.
    1.43      ///
    1.44 -    ///These constants are used for indicating the Gallai-Edmonds 
    1.45 +    ///These constants are used for indicating the Gallai-Edmonds
    1.46      ///decomposition of a graph. The nodes with status \c EVEN (or \c D)
    1.47      ///induce a subgraph with factor-critical components, the nodes with
    1.48      ///status \c ODD (or \c A) form the canonical barrier, and the nodes
    1.49 -    ///with status \c MATCHED (or \c C) induce a subgraph having a 
    1.50 +    ///with status \c MATCHED (or \c C) induce a subgraph having a
    1.51      ///perfect matching.
    1.52      enum Status {
    1.53        EVEN = 1,       ///< = 1. (\c D is an alias for \c EVEN.)
    1.54 @@ -512,7 +513,7 @@
    1.55        }
    1.56      }
    1.57  
    1.58 -    /// \brief Start Edmonds' algorithm with a heuristic improvement 
    1.59 +    /// \brief Start Edmonds' algorithm with a heuristic improvement
    1.60      /// for dense graphs
    1.61      ///
    1.62      /// This function runs Edmonds' algorithm with a heuristic of postponing
    1.63 @@ -534,8 +535,8 @@
    1.64  
    1.65      /// \brief Run Edmonds' algorithm
    1.66      ///
    1.67 -    /// This function runs Edmonds' algorithm. An additional heuristic of 
    1.68 -    /// postponing shrinks is used for relatively dense graphs 
    1.69 +    /// This function runs Edmonds' algorithm. An additional heuristic of
    1.70 +    /// postponing shrinks is used for relatively dense graphs
    1.71      /// (for which <tt>m>=2*n</tt> holds).
    1.72      void run() {
    1.73        if (countEdges(_graph) < 2 * countNodes(_graph)) {
    1.74 @@ -556,7 +557,7 @@
    1.75  
    1.76      /// \brief Return the size (cardinality) of the matching.
    1.77      ///
    1.78 -    /// This function returns the size (cardinality) of the current matching. 
    1.79 +    /// This function returns the size (cardinality) of the current matching.
    1.80      /// After run() it returns the size of the maximum matching in the graph.
    1.81      int matchingSize() const {
    1.82        int size = 0;
    1.83 @@ -570,7 +571,7 @@
    1.84  
    1.85      /// \brief Return \c true if the given edge is in the matching.
    1.86      ///
    1.87 -    /// This function returns \c true if the given edge is in the current 
    1.88 +    /// This function returns \c true if the given edge is in the current
    1.89      /// matching.
    1.90      bool matching(const Edge& edge) const {
    1.91        return edge == (*_matching)[_graph.u(edge)];
    1.92 @@ -579,7 +580,7 @@
    1.93      /// \brief Return the matching arc (or edge) incident to the given node.
    1.94      ///
    1.95      /// This function returns the matching arc (or edge) incident to the
    1.96 -    /// given node in the current matching or \c INVALID if the node is 
    1.97 +    /// given node in the current matching or \c INVALID if the node is
    1.98      /// not covered by the matching.
    1.99      Arc matching(const Node& n) const {
   1.100        return (*_matching)[n];
   1.101 @@ -595,7 +596,7 @@
   1.102  
   1.103      /// \brief Return the mate of the given node.
   1.104      ///
   1.105 -    /// This function returns the mate of the given node in the current 
   1.106 +    /// This function returns the mate of the given node in the current
   1.107      /// matching or \c INVALID if the node is not covered by the matching.
   1.108      Node mate(const Node& n) const {
   1.109        return (*_matching)[n] != INVALID ?
   1.110 @@ -605,7 +606,7 @@
   1.111      /// @}
   1.112  
   1.113      /// \name Dual Solution
   1.114 -    /// Functions to get the dual solution, i.e. the Gallai-Edmonds 
   1.115 +    /// Functions to get the dual solution, i.e. the Gallai-Edmonds
   1.116      /// decomposition.
   1.117  
   1.118      /// @{
   1.119 @@ -648,8 +649,8 @@
   1.120    /// on extensive use of priority queues and provides
   1.121    /// \f$O(nm\log n)\f$ time complexity.
   1.122    ///
   1.123 -  /// The maximum weighted matching problem is to find a subset of the 
   1.124 -  /// edges in an undirected graph with maximum overall weight for which 
   1.125 +  /// The maximum weighted matching problem is to find a subset of the
   1.126 +  /// edges in an undirected graph with maximum overall weight for which
   1.127    /// each node has at most one incident edge.
   1.128    /// It can be formulated with the following linear program.
   1.129    /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f]
   1.130 @@ -673,16 +674,16 @@
   1.131    /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
   1.132        \frac{\vert B \vert - 1}{2}z_B\f] */
   1.133    ///
   1.134 -  /// The algorithm can be executed with the run() function. 
   1.135 +  /// The algorithm can be executed with the run() function.
   1.136    /// After it the matching (the primal solution) and the dual solution
   1.137 -  /// can be obtained using the query functions and the 
   1.138 -  /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, 
   1.139 -  /// which is able to iterate on the nodes of a blossom. 
   1.140 +  /// can be obtained using the query functions and the
   1.141 +  /// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class,
   1.142 +  /// which is able to iterate on the nodes of a blossom.
   1.143    /// If the value type is integer, then the dual solution is multiplied
   1.144    /// by \ref MaxWeightedMatching::dualScale "4".
   1.145    ///
   1.146    /// \tparam GR The undirected graph type the algorithm runs on.
   1.147 -  /// \tparam WM The type edge weight map. The default type is 
   1.148 +  /// \tparam WM The type edge weight map. The default type is
   1.149    /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
   1.150  #ifdef DOXYGEN
   1.151    template <typename GR, typename WM>
   1.152 @@ -745,7 +746,7 @@
   1.153      typedef RangeMap<int> IntIntMap;
   1.154  
   1.155      enum Status {
   1.156 -      EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2
   1.157 +      EVEN = -1, MATCHED = 0, ODD = 1
   1.158      };
   1.159  
   1.160      typedef HeapUnionFind<Value, IntNodeMap> BlossomSet;
   1.161 @@ -797,6 +798,10 @@
   1.162      BinHeap<Value, IntIntMap> *_delta4;
   1.163  
   1.164      Value _delta_sum;
   1.165 +    int _unmatched;
   1.166 +
   1.167 +    typedef MaxWeightedFractionalMatching<Graph, WeightMap> FractionalMatching;
   1.168 +    FractionalMatching *_fractional;
   1.169  
   1.170      void createStructures() {
   1.171        _node_num = countNodes(_graph);
   1.172 @@ -863,9 +868,6 @@
   1.173      }
   1.174  
   1.175      void destroyStructures() {
   1.176 -      _node_num = countNodes(_graph);
   1.177 -      _blossom_num = _node_num * 3 / 2;
   1.178 -
   1.179        if (_matching) {
   1.180          delete _matching;
   1.181        }
   1.182 @@ -941,10 +943,6 @@
   1.183              if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   1.184                _delta3->push(e, rw / 2);
   1.185              }
   1.186 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.187 -            if (_delta3->state(e) != _delta3->IN_HEAP) {
   1.188 -              _delta3->push(e, rw);
   1.189 -            }
   1.190            } else {
   1.191              typename std::map<int, Arc>::iterator it =
   1.192                (*_node_data)[vi].heap_index.find(tree);
   1.193 @@ -968,202 +966,6 @@
   1.194                    _delta2->push(vb, _blossom_set->classPrio(vb) -
   1.195                                 (*_blossom_data)[vb].offset);
   1.196                  } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   1.197 -                           (*_blossom_data)[vb].offset){
   1.198 -                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   1.199 -                                   (*_blossom_data)[vb].offset);
   1.200 -                }
   1.201 -              }
   1.202 -            }
   1.203 -          }
   1.204 -        }
   1.205 -      }
   1.206 -      (*_blossom_data)[blossom].offset = 0;
   1.207 -    }
   1.208 -
   1.209 -    void matchedToOdd(int blossom) {
   1.210 -      if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   1.211 -        _delta2->erase(blossom);
   1.212 -      }
   1.213 -      (*_blossom_data)[blossom].offset += _delta_sum;
   1.214 -      if (!_blossom_set->trivial(blossom)) {
   1.215 -        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
   1.216 -                     (*_blossom_data)[blossom].offset);
   1.217 -      }
   1.218 -    }
   1.219 -
   1.220 -    void evenToMatched(int blossom, int tree) {
   1.221 -      if (!_blossom_set->trivial(blossom)) {
   1.222 -        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
   1.223 -      }
   1.224 -
   1.225 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   1.226 -           n != INVALID; ++n) {
   1.227 -        int ni = (*_node_index)[n];
   1.228 -        (*_node_data)[ni].pot -= _delta_sum;
   1.229 -
   1.230 -        _delta1->erase(n);
   1.231 -
   1.232 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.233 -          Node v = _graph.source(e);
   1.234 -          int vb = _blossom_set->find(v);
   1.235 -          int vi = (*_node_index)[v];
   1.236 -
   1.237 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   1.238 -            dualScale * _weight[e];
   1.239 -
   1.240 -          if (vb == blossom) {
   1.241 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.242 -              _delta3->erase(e);
   1.243 -            }
   1.244 -          } else if ((*_blossom_data)[vb].status == EVEN) {
   1.245 -
   1.246 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.247 -              _delta3->erase(e);
   1.248 -            }
   1.249 -
   1.250 -            int vt = _tree_set->find(vb);
   1.251 -
   1.252 -            if (vt != tree) {
   1.253 -
   1.254 -              Arc r = _graph.oppositeArc(e);
   1.255 -
   1.256 -              typename std::map<int, Arc>::iterator it =
   1.257 -                (*_node_data)[ni].heap_index.find(vt);
   1.258 -
   1.259 -              if (it != (*_node_data)[ni].heap_index.end()) {
   1.260 -                if ((*_node_data)[ni].heap[it->second] > rw) {
   1.261 -                  (*_node_data)[ni].heap.replace(it->second, r);
   1.262 -                  (*_node_data)[ni].heap.decrease(r, rw);
   1.263 -                  it->second = r;
   1.264 -                }
   1.265 -              } else {
   1.266 -                (*_node_data)[ni].heap.push(r, rw);
   1.267 -                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
   1.268 -              }
   1.269 -
   1.270 -              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
   1.271 -                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
   1.272 -
   1.273 -                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
   1.274 -                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
   1.275 -                               (*_blossom_data)[blossom].offset);
   1.276 -                } else if ((*_delta2)[blossom] >
   1.277 -                           _blossom_set->classPrio(blossom) -
   1.278 -                           (*_blossom_data)[blossom].offset){
   1.279 -                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
   1.280 -                                   (*_blossom_data)[blossom].offset);
   1.281 -                }
   1.282 -              }
   1.283 -            }
   1.284 -
   1.285 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.286 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.287 -              _delta3->erase(e);
   1.288 -            }
   1.289 -          } else {
   1.290 -
   1.291 -            typename std::map<int, Arc>::iterator it =
   1.292 -              (*_node_data)[vi].heap_index.find(tree);
   1.293 -
   1.294 -            if (it != (*_node_data)[vi].heap_index.end()) {
   1.295 -              (*_node_data)[vi].heap.erase(it->second);
   1.296 -              (*_node_data)[vi].heap_index.erase(it);
   1.297 -              if ((*_node_data)[vi].heap.empty()) {
   1.298 -                _blossom_set->increase(v, std::numeric_limits<Value>::max());
   1.299 -              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
   1.300 -                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
   1.301 -              }
   1.302 -
   1.303 -              if ((*_blossom_data)[vb].status == MATCHED) {
   1.304 -                if (_blossom_set->classPrio(vb) ==
   1.305 -                    std::numeric_limits<Value>::max()) {
   1.306 -                  _delta2->erase(vb);
   1.307 -                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
   1.308 -                           (*_blossom_data)[vb].offset) {
   1.309 -                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
   1.310 -                                   (*_blossom_data)[vb].offset);
   1.311 -                }
   1.312 -              }
   1.313 -            }
   1.314 -          }
   1.315 -        }
   1.316 -      }
   1.317 -    }
   1.318 -
   1.319 -    void oddToMatched(int blossom) {
   1.320 -      (*_blossom_data)[blossom].offset -= _delta_sum;
   1.321 -
   1.322 -      if (_blossom_set->classPrio(blossom) !=
   1.323 -          std::numeric_limits<Value>::max()) {
   1.324 -        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
   1.325 -                       (*_blossom_data)[blossom].offset);
   1.326 -      }
   1.327 -
   1.328 -      if (!_blossom_set->trivial(blossom)) {
   1.329 -        _delta4->erase(blossom);
   1.330 -      }
   1.331 -    }
   1.332 -
   1.333 -    void oddToEven(int blossom, int tree) {
   1.334 -      if (!_blossom_set->trivial(blossom)) {
   1.335 -        _delta4->erase(blossom);
   1.336 -        (*_blossom_data)[blossom].pot -=
   1.337 -          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
   1.338 -      }
   1.339 -
   1.340 -      for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   1.341 -           n != INVALID; ++n) {
   1.342 -        int ni = (*_node_index)[n];
   1.343 -
   1.344 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
   1.345 -
   1.346 -        (*_node_data)[ni].heap.clear();
   1.347 -        (*_node_data)[ni].heap_index.clear();
   1.348 -        (*_node_data)[ni].pot +=
   1.349 -          2 * _delta_sum - (*_blossom_data)[blossom].offset;
   1.350 -
   1.351 -        _delta1->push(n, (*_node_data)[ni].pot);
   1.352 -
   1.353 -        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.354 -          Node v = _graph.source(e);
   1.355 -          int vb = _blossom_set->find(v);
   1.356 -          int vi = (*_node_index)[v];
   1.357 -
   1.358 -          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   1.359 -            dualScale * _weight[e];
   1.360 -
   1.361 -          if ((*_blossom_data)[vb].status == EVEN) {
   1.362 -            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   1.363 -              _delta3->push(e, rw / 2);
   1.364 -            }
   1.365 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.366 -            if (_delta3->state(e) != _delta3->IN_HEAP) {
   1.367 -              _delta3->push(e, rw);
   1.368 -            }
   1.369 -          } else {
   1.370 -
   1.371 -            typename std::map<int, Arc>::iterator it =
   1.372 -              (*_node_data)[vi].heap_index.find(tree);
   1.373 -
   1.374 -            if (it != (*_node_data)[vi].heap_index.end()) {
   1.375 -              if ((*_node_data)[vi].heap[it->second] > rw) {
   1.376 -                (*_node_data)[vi].heap.replace(it->second, e);
   1.377 -                (*_node_data)[vi].heap.decrease(e, rw);
   1.378 -                it->second = e;
   1.379 -              }
   1.380 -            } else {
   1.381 -              (*_node_data)[vi].heap.push(e, rw);
   1.382 -              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   1.383 -            }
   1.384 -
   1.385 -            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   1.386 -              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   1.387 -
   1.388 -              if ((*_blossom_data)[vb].status == MATCHED) {
   1.389 -                if (_delta2->state(vb) != _delta2->IN_HEAP) {
   1.390 -                  _delta2->push(vb, _blossom_set->classPrio(vb) -
   1.391 -                               (*_blossom_data)[vb].offset);
   1.392 -                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   1.393                             (*_blossom_data)[vb].offset) {
   1.394                    _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   1.395                                     (*_blossom_data)[vb].offset);
   1.396 @@ -1176,43 +978,145 @@
   1.397        (*_blossom_data)[blossom].offset = 0;
   1.398      }
   1.399  
   1.400 -
   1.401 -    void matchedToUnmatched(int blossom) {
   1.402 +    void matchedToOdd(int blossom) {
   1.403        if (_delta2->state(blossom) == _delta2->IN_HEAP) {
   1.404          _delta2->erase(blossom);
   1.405        }
   1.406 +      (*_blossom_data)[blossom].offset += _delta_sum;
   1.407 +      if (!_blossom_set->trivial(blossom)) {
   1.408 +        _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 +
   1.409 +                      (*_blossom_data)[blossom].offset);
   1.410 +      }
   1.411 +    }
   1.412 +
   1.413 +    void evenToMatched(int blossom, int tree) {
   1.414 +      if (!_blossom_set->trivial(blossom)) {
   1.415 +        (*_blossom_data)[blossom].pot += 2 * _delta_sum;
   1.416 +      }
   1.417  
   1.418        for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   1.419             n != INVALID; ++n) {
   1.420          int ni = (*_node_index)[n];
   1.421 -
   1.422 -        _blossom_set->increase(n, std::numeric_limits<Value>::max());
   1.423 -
   1.424 -        (*_node_data)[ni].heap.clear();
   1.425 -        (*_node_data)[ni].heap_index.clear();
   1.426 -
   1.427 -        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   1.428 -          Node v = _graph.target(e);
   1.429 +        (*_node_data)[ni].pot -= _delta_sum;
   1.430 +
   1.431 +        _delta1->erase(n);
   1.432 +
   1.433 +        for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.434 +          Node v = _graph.source(e);
   1.435            int vb = _blossom_set->find(v);
   1.436            int vi = (*_node_index)[v];
   1.437  
   1.438            Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   1.439              dualScale * _weight[e];
   1.440  
   1.441 -          if ((*_blossom_data)[vb].status == EVEN) {
   1.442 -            if (_delta3->state(e) != _delta3->IN_HEAP) {
   1.443 -              _delta3->push(e, rw);
   1.444 +          if (vb == blossom) {
   1.445 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.446 +              _delta3->erase(e);
   1.447 +            }
   1.448 +          } else if ((*_blossom_data)[vb].status == EVEN) {
   1.449 +
   1.450 +            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.451 +              _delta3->erase(e);
   1.452 +            }
   1.453 +
   1.454 +            int vt = _tree_set->find(vb);
   1.455 +
   1.456 +            if (vt != tree) {
   1.457 +
   1.458 +              Arc r = _graph.oppositeArc(e);
   1.459 +
   1.460 +              typename std::map<int, Arc>::iterator it =
   1.461 +                (*_node_data)[ni].heap_index.find(vt);
   1.462 +
   1.463 +              if (it != (*_node_data)[ni].heap_index.end()) {
   1.464 +                if ((*_node_data)[ni].heap[it->second] > rw) {
   1.465 +                  (*_node_data)[ni].heap.replace(it->second, r);
   1.466 +                  (*_node_data)[ni].heap.decrease(r, rw);
   1.467 +                  it->second = r;
   1.468 +                }
   1.469 +              } else {
   1.470 +                (*_node_data)[ni].heap.push(r, rw);
   1.471 +                (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
   1.472 +              }
   1.473 +
   1.474 +              if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
   1.475 +                _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
   1.476 +
   1.477 +                if (_delta2->state(blossom) != _delta2->IN_HEAP) {
   1.478 +                  _delta2->push(blossom, _blossom_set->classPrio(blossom) -
   1.479 +                               (*_blossom_data)[blossom].offset);
   1.480 +                } else if ((*_delta2)[blossom] >
   1.481 +                           _blossom_set->classPrio(blossom) -
   1.482 +                           (*_blossom_data)[blossom].offset){
   1.483 +                  _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
   1.484 +                                   (*_blossom_data)[blossom].offset);
   1.485 +                }
   1.486 +              }
   1.487 +            }
   1.488 +          } else {
   1.489 +
   1.490 +            typename std::map<int, Arc>::iterator it =
   1.491 +              (*_node_data)[vi].heap_index.find(tree);
   1.492 +
   1.493 +            if (it != (*_node_data)[vi].heap_index.end()) {
   1.494 +              (*_node_data)[vi].heap.erase(it->second);
   1.495 +              (*_node_data)[vi].heap_index.erase(it);
   1.496 +              if ((*_node_data)[vi].heap.empty()) {
   1.497 +                _blossom_set->increase(v, std::numeric_limits<Value>::max());
   1.498 +              } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) {
   1.499 +                _blossom_set->increase(v, (*_node_data)[vi].heap.prio());
   1.500 +              }
   1.501 +
   1.502 +              if ((*_blossom_data)[vb].status == MATCHED) {
   1.503 +                if (_blossom_set->classPrio(vb) ==
   1.504 +                    std::numeric_limits<Value>::max()) {
   1.505 +                  _delta2->erase(vb);
   1.506 +                } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) -
   1.507 +                           (*_blossom_data)[vb].offset) {
   1.508 +                  _delta2->increase(vb, _blossom_set->classPrio(vb) -
   1.509 +                                   (*_blossom_data)[vb].offset);
   1.510 +                }
   1.511 +              }
   1.512              }
   1.513            }
   1.514          }
   1.515        }
   1.516      }
   1.517  
   1.518 -    void unmatchedToMatched(int blossom) {
   1.519 +    void oddToMatched(int blossom) {
   1.520 +      (*_blossom_data)[blossom].offset -= _delta_sum;
   1.521 +
   1.522 +      if (_blossom_set->classPrio(blossom) !=
   1.523 +          std::numeric_limits<Value>::max()) {
   1.524 +        _delta2->push(blossom, _blossom_set->classPrio(blossom) -
   1.525 +                      (*_blossom_data)[blossom].offset);
   1.526 +      }
   1.527 +
   1.528 +      if (!_blossom_set->trivial(blossom)) {
   1.529 +        _delta4->erase(blossom);
   1.530 +      }
   1.531 +    }
   1.532 +
   1.533 +    void oddToEven(int blossom, int tree) {
   1.534 +      if (!_blossom_set->trivial(blossom)) {
   1.535 +        _delta4->erase(blossom);
   1.536 +        (*_blossom_data)[blossom].pot -=
   1.537 +          2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset);
   1.538 +      }
   1.539 +
   1.540        for (typename BlossomSet::ItemIt n(*_blossom_set, blossom);
   1.541             n != INVALID; ++n) {
   1.542          int ni = (*_node_index)[n];
   1.543  
   1.544 +        _blossom_set->increase(n, std::numeric_limits<Value>::max());
   1.545 +
   1.546 +        (*_node_data)[ni].heap.clear();
   1.547 +        (*_node_data)[ni].heap_index.clear();
   1.548 +        (*_node_data)[ni].pot +=
   1.549 +          2 * _delta_sum - (*_blossom_data)[blossom].offset;
   1.550 +
   1.551 +        _delta1->push(n, (*_node_data)[ni].pot);
   1.552 +
   1.553          for (InArcIt e(_graph, n); e != INVALID; ++e) {
   1.554            Node v = _graph.source(e);
   1.555            int vb = _blossom_set->find(v);
   1.556 @@ -1221,54 +1125,44 @@
   1.557            Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   1.558              dualScale * _weight[e];
   1.559  
   1.560 -          if (vb == blossom) {
   1.561 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.562 -              _delta3->erase(e);
   1.563 +          if ((*_blossom_data)[vb].status == EVEN) {
   1.564 +            if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) {
   1.565 +              _delta3->push(e, rw / 2);
   1.566              }
   1.567 -          } else if ((*_blossom_data)[vb].status == EVEN) {
   1.568 -
   1.569 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.570 -              _delta3->erase(e);
   1.571 -            }
   1.572 -
   1.573 -            int vt = _tree_set->find(vb);
   1.574 -
   1.575 -            Arc r = _graph.oppositeArc(e);
   1.576 +          } else {
   1.577  
   1.578              typename std::map<int, Arc>::iterator it =
   1.579 -              (*_node_data)[ni].heap_index.find(vt);
   1.580 -
   1.581 -            if (it != (*_node_data)[ni].heap_index.end()) {
   1.582 -              if ((*_node_data)[ni].heap[it->second] > rw) {
   1.583 -                (*_node_data)[ni].heap.replace(it->second, r);
   1.584 -                (*_node_data)[ni].heap.decrease(r, rw);
   1.585 -                it->second = r;
   1.586 +              (*_node_data)[vi].heap_index.find(tree);
   1.587 +
   1.588 +            if (it != (*_node_data)[vi].heap_index.end()) {
   1.589 +              if ((*_node_data)[vi].heap[it->second] > rw) {
   1.590 +                (*_node_data)[vi].heap.replace(it->second, e);
   1.591 +                (*_node_data)[vi].heap.decrease(e, rw);
   1.592 +                it->second = e;
   1.593                }
   1.594              } else {
   1.595 -              (*_node_data)[ni].heap.push(r, rw);
   1.596 -              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r));
   1.597 +              (*_node_data)[vi].heap.push(e, rw);
   1.598 +              (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e));
   1.599              }
   1.600  
   1.601 -            if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) {
   1.602 -              _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
   1.603 -
   1.604 -              if (_delta2->state(blossom) != _delta2->IN_HEAP) {
   1.605 -                _delta2->push(blossom, _blossom_set->classPrio(blossom) -
   1.606 -                             (*_blossom_data)[blossom].offset);
   1.607 -              } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)-
   1.608 -                         (*_blossom_data)[blossom].offset){
   1.609 -                _delta2->decrease(blossom, _blossom_set->classPrio(blossom) -
   1.610 -                                 (*_blossom_data)[blossom].offset);
   1.611 +            if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) {
   1.612 +              _blossom_set->decrease(v, (*_node_data)[vi].heap.prio());
   1.613 +
   1.614 +              if ((*_blossom_data)[vb].status == MATCHED) {
   1.615 +                if (_delta2->state(vb) != _delta2->IN_HEAP) {
   1.616 +                  _delta2->push(vb, _blossom_set->classPrio(vb) -
   1.617 +                               (*_blossom_data)[vb].offset);
   1.618 +                } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) -
   1.619 +                           (*_blossom_data)[vb].offset) {
   1.620 +                  _delta2->decrease(vb, _blossom_set->classPrio(vb) -
   1.621 +                                   (*_blossom_data)[vb].offset);
   1.622 +                }
   1.623                }
   1.624              }
   1.625 -
   1.626 -          } else if ((*_blossom_data)[vb].status == UNMATCHED) {
   1.627 -            if (_delta3->state(e) == _delta3->IN_HEAP) {
   1.628 -              _delta3->erase(e);
   1.629 -            }
   1.630            }
   1.631          }
   1.632        }
   1.633 +      (*_blossom_data)[blossom].offset = 0;
   1.634      }
   1.635  
   1.636      void alternatePath(int even, int tree) {
   1.637 @@ -1313,39 +1207,42 @@
   1.638        alternatePath(blossom, tree);
   1.639        destroyTree(tree);
   1.640  
   1.641 -      (*_blossom_data)[blossom].status = UNMATCHED;
   1.642        (*_blossom_data)[blossom].base = node;
   1.643 -      matchedToUnmatched(blossom);
   1.644 +      (*_blossom_data)[blossom].next = INVALID;
   1.645      }
   1.646  
   1.647 -
   1.648      void augmentOnEdge(const Edge& edge) {
   1.649  
   1.650        int left = _blossom_set->find(_graph.u(edge));
   1.651        int right = _blossom_set->find(_graph.v(edge));
   1.652  
   1.653 -      if ((*_blossom_data)[left].status == EVEN) {
   1.654 -        int left_tree = _tree_set->find(left);
   1.655 -        alternatePath(left, left_tree);
   1.656 -        destroyTree(left_tree);
   1.657 -      } else {
   1.658 -        (*_blossom_data)[left].status = MATCHED;
   1.659 -        unmatchedToMatched(left);
   1.660 -      }
   1.661 -
   1.662 -      if ((*_blossom_data)[right].status == EVEN) {
   1.663 -        int right_tree = _tree_set->find(right);
   1.664 -        alternatePath(right, right_tree);
   1.665 -        destroyTree(right_tree);
   1.666 -      } else {
   1.667 -        (*_blossom_data)[right].status = MATCHED;
   1.668 -        unmatchedToMatched(right);
   1.669 -      }
   1.670 +      int left_tree = _tree_set->find(left);
   1.671 +      alternatePath(left, left_tree);
   1.672 +      destroyTree(left_tree);
   1.673 +
   1.674 +      int right_tree = _tree_set->find(right);
   1.675 +      alternatePath(right, right_tree);
   1.676 +      destroyTree(right_tree);
   1.677  
   1.678        (*_blossom_data)[left].next = _graph.direct(edge, true);
   1.679        (*_blossom_data)[right].next = _graph.direct(edge, false);
   1.680      }
   1.681  
   1.682 +    void augmentOnArc(const Arc& arc) {
   1.683 +
   1.684 +      int left = _blossom_set->find(_graph.source(arc));
   1.685 +      int right = _blossom_set->find(_graph.target(arc));
   1.686 +
   1.687 +      (*_blossom_data)[left].status = MATCHED;
   1.688 +
   1.689 +      int right_tree = _tree_set->find(right);
   1.690 +      alternatePath(right, right_tree);
   1.691 +      destroyTree(right_tree);
   1.692 +
   1.693 +      (*_blossom_data)[left].next = arc;
   1.694 +      (*_blossom_data)[right].next = _graph.oppositeArc(arc);
   1.695 +    }
   1.696 +
   1.697      void extendOnArc(const Arc& arc) {
   1.698        int base = _blossom_set->find(_graph.target(arc));
   1.699        int tree = _tree_set->find(base);
   1.700 @@ -1548,7 +1445,7 @@
   1.701            _tree_set->insert(sb, tree);
   1.702            (*_blossom_data)[sb].pred = pred;
   1.703            (*_blossom_data)[sb].next =
   1.704 -                           _graph.oppositeArc((*_blossom_data)[tb].next);
   1.705 +            _graph.oppositeArc((*_blossom_data)[tb].next);
   1.706  
   1.707            pred = (*_blossom_data)[ub].next;
   1.708  
   1.709 @@ -1648,7 +1545,7 @@
   1.710        }
   1.711  
   1.712        for (int i = 0; i < int(blossoms.size()); ++i) {
   1.713 -        if ((*_blossom_data)[blossoms[i]].status == MATCHED) {
   1.714 +        if ((*_blossom_data)[blossoms[i]].next != INVALID) {
   1.715  
   1.716            Value offset = (*_blossom_data)[blossoms[i]].offset;
   1.717            (*_blossom_data)[blossoms[i]].pot += 2 * offset;
   1.718 @@ -1686,10 +1583,16 @@
   1.719          _delta3_index(0), _delta3(0),
   1.720          _delta4_index(0), _delta4(0),
   1.721  
   1.722 -        _delta_sum() {}
   1.723 +        _delta_sum(), _unmatched(0),
   1.724 +
   1.725 +        _fractional(0)
   1.726 +    {}
   1.727  
   1.728      ~MaxWeightedMatching() {
   1.729        destroyStructures();
   1.730 +      if (_fractional) {
   1.731 +        delete _fractional;
   1.732 +      }
   1.733      }
   1.734  
   1.735      /// \name Execution Control
   1.736 @@ -1720,7 +1623,9 @@
   1.737          (*_delta2_index)[i] = _delta2->PRE_HEAP;
   1.738          (*_delta4_index)[i] = _delta4->PRE_HEAP;
   1.739        }
   1.740 -      
   1.741 +
   1.742 +      _unmatched = _node_num;
   1.743 +
   1.744        _delta1->clear();
   1.745        _delta2->clear();
   1.746        _delta3->clear();
   1.747 @@ -1764,18 +1669,167 @@
   1.748        }
   1.749      }
   1.750  
   1.751 +    /// \brief Initialize the algorithm with fractional matching
   1.752 +    ///
   1.753 +    /// This function initializes the algorithm with a fractional
   1.754 +    /// matching. This initialization is also called jumpstart heuristic.
   1.755 +    void fractionalInit() {
   1.756 +      createStructures();
   1.757 +
   1.758 +      _blossom_node_list.clear();
   1.759 +      _blossom_potential.clear();
   1.760 +
   1.761 +      if (_fractional == 0) {
   1.762 +        _fractional = new FractionalMatching(_graph, _weight, false);
   1.763 +      }
   1.764 +      _fractional->run();
   1.765 +
   1.766 +      for (ArcIt e(_graph); e != INVALID; ++e) {
   1.767 +        (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
   1.768 +      }
   1.769 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.770 +        (*_delta1_index)[n] = _delta1->PRE_HEAP;
   1.771 +      }
   1.772 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
   1.773 +        (*_delta3_index)[e] = _delta3->PRE_HEAP;
   1.774 +      }
   1.775 +      for (int i = 0; i < _blossom_num; ++i) {
   1.776 +        (*_delta2_index)[i] = _delta2->PRE_HEAP;
   1.777 +        (*_delta4_index)[i] = _delta4->PRE_HEAP;
   1.778 +      }
   1.779 +
   1.780 +      _unmatched = 0;
   1.781 +
   1.782 +      _delta1->clear();
   1.783 +      _delta2->clear();
   1.784 +      _delta3->clear();
   1.785 +      _delta4->clear();
   1.786 +      _blossom_set->clear();
   1.787 +      _tree_set->clear();
   1.788 +
   1.789 +      int index = 0;
   1.790 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.791 +        Value pot = _fractional->nodeValue(n);
   1.792 +        (*_node_index)[n] = index;
   1.793 +        (*_node_data)[index].pot = pot;
   1.794 +        (*_node_data)[index].heap_index.clear();
   1.795 +        (*_node_data)[index].heap.clear();
   1.796 +        int blossom =
   1.797 +          _blossom_set->insert(n, std::numeric_limits<Value>::max());
   1.798 +
   1.799 +        (*_blossom_data)[blossom].status = MATCHED;
   1.800 +        (*_blossom_data)[blossom].pred = INVALID;
   1.801 +        (*_blossom_data)[blossom].next = _fractional->matching(n);
   1.802 +        if (_fractional->matching(n) == INVALID) {
   1.803 +          (*_blossom_data)[blossom].base = n;
   1.804 +        }
   1.805 +        (*_blossom_data)[blossom].pot = 0;
   1.806 +        (*_blossom_data)[blossom].offset = 0;
   1.807 +        ++index;
   1.808 +      }
   1.809 +
   1.810 +      typename Graph::template NodeMap<bool> processed(_graph, false);
   1.811 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.812 +        if (processed[n]) continue;
   1.813 +        processed[n] = true;
   1.814 +        if (_fractional->matching(n) == INVALID) continue;
   1.815 +        int num = 1;
   1.816 +        Node v = _graph.target(_fractional->matching(n));
   1.817 +        while (n != v) {
   1.818 +          processed[v] = true;
   1.819 +          v = _graph.target(_fractional->matching(v));
   1.820 +          ++num;
   1.821 +        }
   1.822 +
   1.823 +        if (num % 2 == 1) {
   1.824 +          std::vector<int> subblossoms(num);
   1.825 +
   1.826 +          subblossoms[--num] = _blossom_set->find(n);
   1.827 +          _delta1->push(n, _fractional->nodeValue(n));
   1.828 +          v = _graph.target(_fractional->matching(n));
   1.829 +          while (n != v) {
   1.830 +            subblossoms[--num] = _blossom_set->find(v);
   1.831 +            _delta1->push(v, _fractional->nodeValue(v));
   1.832 +            v = _graph.target(_fractional->matching(v));
   1.833 +          }
   1.834 +
   1.835 +          int surface =
   1.836 +            _blossom_set->join(subblossoms.begin(), subblossoms.end());
   1.837 +          (*_blossom_data)[surface].status = EVEN;
   1.838 +          (*_blossom_data)[surface].pred = INVALID;
   1.839 +          (*_blossom_data)[surface].next = INVALID;
   1.840 +          (*_blossom_data)[surface].pot = 0;
   1.841 +          (*_blossom_data)[surface].offset = 0;
   1.842 +
   1.843 +          _tree_set->insert(surface);
   1.844 +          ++_unmatched;
   1.845 +        }
   1.846 +      }
   1.847 +
   1.848 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
   1.849 +        int si = (*_node_index)[_graph.u(e)];
   1.850 +        int sb = _blossom_set->find(_graph.u(e));
   1.851 +        int ti = (*_node_index)[_graph.v(e)];
   1.852 +        int tb = _blossom_set->find(_graph.v(e));
   1.853 +        if ((*_blossom_data)[sb].status == EVEN &&
   1.854 +            (*_blossom_data)[tb].status == EVEN && sb != tb) {
   1.855 +          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
   1.856 +                            dualScale * _weight[e]) / 2);
   1.857 +        }
   1.858 +      }
   1.859 +
   1.860 +      for (NodeIt n(_graph); n != INVALID; ++n) {
   1.861 +        int nb = _blossom_set->find(n);
   1.862 +        if ((*_blossom_data)[nb].status != MATCHED) continue;
   1.863 +        int ni = (*_node_index)[n];
   1.864 +
   1.865 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
   1.866 +          Node v = _graph.target(e);
   1.867 +          int vb = _blossom_set->find(v);
   1.868 +          int vi = (*_node_index)[v];
   1.869 +
   1.870 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
   1.871 +            dualScale * _weight[e];
   1.872 +
   1.873 +          if ((*_blossom_data)[vb].status == EVEN) {
   1.874 +
   1.875 +            int vt = _tree_set->find(vb);
   1.876 +
   1.877 +            typename std::map<int, Arc>::iterator it =
   1.878 +              (*_node_data)[ni].heap_index.find(vt);
   1.879 +
   1.880 +            if (it != (*_node_data)[ni].heap_index.end()) {
   1.881 +              if ((*_node_data)[ni].heap[it->second] > rw) {
   1.882 +                (*_node_data)[ni].heap.replace(it->second, e);
   1.883 +                (*_node_data)[ni].heap.decrease(e, rw);
   1.884 +                it->second = e;
   1.885 +              }
   1.886 +            } else {
   1.887 +              (*_node_data)[ni].heap.push(e, rw);
   1.888 +              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, e));
   1.889 +            }
   1.890 +          }
   1.891 +        }
   1.892 +
   1.893 +        if (!(*_node_data)[ni].heap.empty()) {
   1.894 +          _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
   1.895 +          _delta2->push(nb, _blossom_set->classPrio(nb));
   1.896 +        }
   1.897 +      }
   1.898 +    }
   1.899 +
   1.900      /// \brief Start the algorithm
   1.901      ///
   1.902      /// This function starts the algorithm.
   1.903      ///
   1.904 -    /// \pre \ref init() must be called before using this function.
   1.905 +    /// \pre \ref init() or \ref fractionalInit() must be called
   1.906 +    /// before using this function.
   1.907      void start() {
   1.908        enum OpType {
   1.909          D1, D2, D3, D4
   1.910        };
   1.911  
   1.912 -      int unmatched = _node_num;
   1.913 -      while (unmatched > 0) {
   1.914 +      while (_unmatched > 0) {
   1.915          Value d1 = !_delta1->empty() ?
   1.916            _delta1->prio() : std::numeric_limits<Value>::max();
   1.917  
   1.918 @@ -1788,26 +1842,30 @@
   1.919          Value d4 = !_delta4->empty() ?
   1.920            _delta4->prio() : std::numeric_limits<Value>::max();
   1.921  
   1.922 -        _delta_sum = d1; OpType ot = D1;
   1.923 +        _delta_sum = d3; OpType ot = D3;
   1.924 +        if (d1 < _delta_sum) { _delta_sum = d1; ot = D1; }
   1.925          if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
   1.926 -        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
   1.927          if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
   1.928  
   1.929 -
   1.930          switch (ot) {
   1.931          case D1:
   1.932            {
   1.933              Node n = _delta1->top();
   1.934              unmatchNode(n);
   1.935 -            --unmatched;
   1.936 +            --_unmatched;
   1.937            }
   1.938            break;
   1.939          case D2:
   1.940            {
   1.941              int blossom = _delta2->top();
   1.942              Node n = _blossom_set->classTop(blossom);
   1.943 -            Arc e = (*_node_data)[(*_node_index)[n]].heap.top();
   1.944 -            extendOnArc(e);
   1.945 +            Arc a = (*_node_data)[(*_node_index)[n]].heap.top();
   1.946 +            if ((*_blossom_data)[blossom].next == INVALID) {
   1.947 +              augmentOnArc(a);
   1.948 +              --_unmatched;
   1.949 +            } else {
   1.950 +              extendOnArc(a);
   1.951 +            }
   1.952            }
   1.953            break;
   1.954          case D3:
   1.955 @@ -1820,26 +1878,14 @@
   1.956              if (left_blossom == right_blossom) {
   1.957                _delta3->pop();
   1.958              } else {
   1.959 -              int left_tree;
   1.960 -              if ((*_blossom_data)[left_blossom].status == EVEN) {
   1.961 -                left_tree = _tree_set->find(left_blossom);
   1.962 -              } else {
   1.963 -                left_tree = -1;
   1.964 -                ++unmatched;
   1.965 -              }
   1.966 -              int right_tree;
   1.967 -              if ((*_blossom_data)[right_blossom].status == EVEN) {
   1.968 -                right_tree = _tree_set->find(right_blossom);
   1.969 -              } else {
   1.970 -                right_tree = -1;
   1.971 -                ++unmatched;
   1.972 -              }
   1.973 +              int left_tree = _tree_set->find(left_blossom);
   1.974 +              int right_tree = _tree_set->find(right_blossom);
   1.975  
   1.976                if (left_tree == right_tree) {
   1.977                  shrinkOnEdge(e, left_tree);
   1.978                } else {
   1.979                  augmentOnEdge(e);
   1.980 -                unmatched -= 2;
   1.981 +                _unmatched -= 2;
   1.982                }
   1.983              }
   1.984            } break;
   1.985 @@ -1857,18 +1903,18 @@
   1.986      ///
   1.987      /// \note mwm.run() is just a shortcut of the following code.
   1.988      /// \code
   1.989 -    ///   mwm.init();
   1.990 +    ///   mwm.fractionalInit();
   1.991      ///   mwm.start();
   1.992      /// \endcode
   1.993      void run() {
   1.994 -      init();
   1.995 +      fractionalInit();
   1.996        start();
   1.997      }
   1.998  
   1.999      /// @}
  1.1000  
  1.1001      /// \name Primal Solution
  1.1002 -    /// Functions to get the primal solution, i.e. the maximum weighted 
  1.1003 +    /// Functions to get the primal solution, i.e. the maximum weighted
  1.1004      /// matching.\n
  1.1005      /// Either \ref run() or \ref start() function should be called before
  1.1006      /// using them.
  1.1007 @@ -1887,7 +1933,7 @@
  1.1008            sum += _weight[(*_matching)[n]];
  1.1009          }
  1.1010        }
  1.1011 -      return sum /= 2;
  1.1012 +      return sum / 2;
  1.1013      }
  1.1014  
  1.1015      /// \brief Return the size (cardinality) of the matching.
  1.1016 @@ -1907,7 +1953,7 @@
  1.1017  
  1.1018      /// \brief Return \c true if the given edge is in the matching.
  1.1019      ///
  1.1020 -    /// This function returns \c true if the given edge is in the found 
  1.1021 +    /// This function returns \c true if the given edge is in the found
  1.1022      /// matching.
  1.1023      ///
  1.1024      /// \pre Either run() or start() must be called before using this function.
  1.1025 @@ -1918,7 +1964,7 @@
  1.1026      /// \brief Return the matching arc (or edge) incident to the given node.
  1.1027      ///
  1.1028      /// This function returns the matching arc (or edge) incident to the
  1.1029 -    /// given node in the found matching or \c INVALID if the node is 
  1.1030 +    /// given node in the found matching or \c INVALID if the node is
  1.1031      /// not covered by the matching.
  1.1032      ///
  1.1033      /// \pre Either run() or start() must be called before using this function.
  1.1034 @@ -1936,7 +1982,7 @@
  1.1035  
  1.1036      /// \brief Return the mate of the given node.
  1.1037      ///
  1.1038 -    /// This function returns the mate of the given node in the found 
  1.1039 +    /// This function returns the mate of the given node in the found
  1.1040      /// matching or \c INVALID if the node is not covered by the matching.
  1.1041      ///
  1.1042      /// \pre Either run() or start() must be called before using this function.
  1.1043 @@ -1956,8 +2002,8 @@
  1.1044  
  1.1045      /// \brief Return the value of the dual solution.
  1.1046      ///
  1.1047 -    /// This function returns the value of the dual solution. 
  1.1048 -    /// It should be equal to the primal value scaled by \ref dualScale 
  1.1049 +    /// This function returns the value of the dual solution.
  1.1050 +    /// It should be equal to the primal value scaled by \ref dualScale
  1.1051      /// "dual scale".
  1.1052      ///
  1.1053      /// \pre Either run() or start() must be called before using this function.
  1.1054 @@ -2012,9 +2058,9 @@
  1.1055  
  1.1056      /// \brief Iterator for obtaining the nodes of a blossom.
  1.1057      ///
  1.1058 -    /// This class provides an iterator for obtaining the nodes of the 
  1.1059 +    /// This class provides an iterator for obtaining the nodes of the
  1.1060      /// given blossom. It lists a subset of the nodes.
  1.1061 -    /// Before using this iterator, you must allocate a 
  1.1062 +    /// Before using this iterator, you must allocate a
  1.1063      /// MaxWeightedMatching class and execute it.
  1.1064      class BlossomIt {
  1.1065      public:
  1.1066 @@ -2023,8 +2069,8 @@
  1.1067        ///
  1.1068        /// Constructor to get the nodes of the given variable.
  1.1069        ///
  1.1070 -      /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or 
  1.1071 -      /// \ref MaxWeightedMatching::start() "algorithm.start()" must be 
  1.1072 +      /// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or
  1.1073 +      /// \ref MaxWeightedMatching::start() "algorithm.start()" must be
  1.1074        /// called before initializing this iterator.
  1.1075        BlossomIt(const MaxWeightedMatching& algorithm, int variable)
  1.1076          : _algorithm(&algorithm)
  1.1077 @@ -2077,8 +2123,8 @@
  1.1078    /// is based on extensive use of priority queues and provides
  1.1079    /// \f$O(nm\log n)\f$ time complexity.
  1.1080    ///
  1.1081 -  /// The maximum weighted perfect matching problem is to find a subset of 
  1.1082 -  /// the edges in an undirected graph with maximum overall weight for which 
  1.1083 +  /// The maximum weighted perfect matching problem is to find a subset of
  1.1084 +  /// the edges in an undirected graph with maximum overall weight for which
  1.1085    /// each node has exactly one incident edge.
  1.1086    /// It can be formulated with the following linear program.
  1.1087    /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f]
  1.1088 @@ -2101,16 +2147,16 @@
  1.1089    /** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}
  1.1090        \frac{\vert B \vert - 1}{2}z_B\f] */
  1.1091    ///
  1.1092 -  /// The algorithm can be executed with the run() function. 
  1.1093 +  /// The algorithm can be executed with the run() function.
  1.1094    /// After it the matching (the primal solution) and the dual solution
  1.1095 -  /// can be obtained using the query functions and the 
  1.1096 -  /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, 
  1.1097 -  /// which is able to iterate on the nodes of a blossom. 
  1.1098 +  /// can be obtained using the query functions and the
  1.1099 +  /// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class,
  1.1100 +  /// which is able to iterate on the nodes of a blossom.
  1.1101    /// If the value type is integer, then the dual solution is multiplied
  1.1102    /// by \ref MaxWeightedMatching::dualScale "4".
  1.1103    ///
  1.1104    /// \tparam GR The undirected graph type the algorithm runs on.
  1.1105 -  /// \tparam WM The type edge weight map. The default type is 
  1.1106 +  /// \tparam WM The type edge weight map. The default type is
  1.1107    /// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
  1.1108  #ifdef DOXYGEN
  1.1109    template <typename GR, typename WM>
  1.1110 @@ -2221,6 +2267,11 @@
  1.1111      BinHeap<Value, IntIntMap> *_delta4;
  1.1112  
  1.1113      Value _delta_sum;
  1.1114 +    int _unmatched;
  1.1115 +
  1.1116 +    typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap>
  1.1117 +    FractionalMatching;
  1.1118 +    FractionalMatching *_fractional;
  1.1119  
  1.1120      void createStructures() {
  1.1121        _node_num = countNodes(_graph);
  1.1122 @@ -2282,9 +2333,6 @@
  1.1123      }
  1.1124  
  1.1125      void destroyStructures() {
  1.1126 -      _node_num = countNodes(_graph);
  1.1127 -      _blossom_num = _node_num * 3 / 2;
  1.1128 -
  1.1129        if (_matching) {
  1.1130          delete _matching;
  1.1131        }
  1.1132 @@ -2957,10 +3005,16 @@
  1.1133          _delta3_index(0), _delta3(0),
  1.1134          _delta4_index(0), _delta4(0),
  1.1135  
  1.1136 -        _delta_sum() {}
  1.1137 +        _delta_sum(), _unmatched(0),
  1.1138 +
  1.1139 +        _fractional(0)
  1.1140 +    {}
  1.1141  
  1.1142      ~MaxWeightedPerfectMatching() {
  1.1143        destroyStructures();
  1.1144 +      if (_fractional) {
  1.1145 +        delete _fractional;
  1.1146 +      }
  1.1147      }
  1.1148  
  1.1149      /// \name Execution Control
  1.1150 @@ -2989,6 +3043,8 @@
  1.1151          (*_delta4_index)[i] = _delta4->PRE_HEAP;
  1.1152        }
  1.1153  
  1.1154 +      _unmatched = _node_num;
  1.1155 +
  1.1156        _delta2->clear();
  1.1157        _delta3->clear();
  1.1158        _delta4->clear();
  1.1159 @@ -3030,18 +3086,163 @@
  1.1160        }
  1.1161      }
  1.1162  
  1.1163 +    /// \brief Initialize the algorithm with fractional matching
  1.1164 +    ///
  1.1165 +    /// This function initializes the algorithm with a fractional
  1.1166 +    /// matching. This initialization is also called jumpstart heuristic.
  1.1167 +    void fractionalInit() {
  1.1168 +      createStructures();
  1.1169 +
  1.1170 +      _blossom_node_list.clear();
  1.1171 +      _blossom_potential.clear();
  1.1172 +
  1.1173 +      if (_fractional == 0) {
  1.1174 +        _fractional = new FractionalMatching(_graph, _weight, false);
  1.1175 +      }
  1.1176 +      if (!_fractional->run()) {
  1.1177 +        _unmatched = -1;
  1.1178 +        return;
  1.1179 +      }
  1.1180 +
  1.1181 +      for (ArcIt e(_graph); e != INVALID; ++e) {
  1.1182 +        (*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP;
  1.1183 +      }
  1.1184 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  1.1185 +        (*_delta3_index)[e] = _delta3->PRE_HEAP;
  1.1186 +      }
  1.1187 +      for (int i = 0; i < _blossom_num; ++i) {
  1.1188 +        (*_delta2_index)[i] = _delta2->PRE_HEAP;
  1.1189 +        (*_delta4_index)[i] = _delta4->PRE_HEAP;
  1.1190 +      }
  1.1191 +
  1.1192 +      _unmatched = 0;
  1.1193 +
  1.1194 +      _delta2->clear();
  1.1195 +      _delta3->clear();
  1.1196 +      _delta4->clear();
  1.1197 +      _blossom_set->clear();
  1.1198 +      _tree_set->clear();
  1.1199 +
  1.1200 +      int index = 0;
  1.1201 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1202 +        Value pot = _fractional->nodeValue(n);
  1.1203 +        (*_node_index)[n] = index;
  1.1204 +        (*_node_data)[index].pot = pot;
  1.1205 +        (*_node_data)[index].heap_index.clear();
  1.1206 +        (*_node_data)[index].heap.clear();
  1.1207 +        int blossom =
  1.1208 +          _blossom_set->insert(n, std::numeric_limits<Value>::max());
  1.1209 +
  1.1210 +        (*_blossom_data)[blossom].status = MATCHED;
  1.1211 +        (*_blossom_data)[blossom].pred = INVALID;
  1.1212 +        (*_blossom_data)[blossom].next = _fractional->matching(n);
  1.1213 +        (*_blossom_data)[blossom].pot = 0;
  1.1214 +        (*_blossom_data)[blossom].offset = 0;
  1.1215 +        ++index;
  1.1216 +      }
  1.1217 +
  1.1218 +      typename Graph::template NodeMap<bool> processed(_graph, false);
  1.1219 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1220 +        if (processed[n]) continue;
  1.1221 +        processed[n] = true;
  1.1222 +        if (_fractional->matching(n) == INVALID) continue;
  1.1223 +        int num = 1;
  1.1224 +        Node v = _graph.target(_fractional->matching(n));
  1.1225 +        while (n != v) {
  1.1226 +          processed[v] = true;
  1.1227 +          v = _graph.target(_fractional->matching(v));
  1.1228 +          ++num;
  1.1229 +        }
  1.1230 +
  1.1231 +        if (num % 2 == 1) {
  1.1232 +          std::vector<int> subblossoms(num);
  1.1233 +
  1.1234 +          subblossoms[--num] = _blossom_set->find(n);
  1.1235 +          v = _graph.target(_fractional->matching(n));
  1.1236 +          while (n != v) {
  1.1237 +            subblossoms[--num] = _blossom_set->find(v);
  1.1238 +            v = _graph.target(_fractional->matching(v));
  1.1239 +          }
  1.1240 +
  1.1241 +          int surface =
  1.1242 +            _blossom_set->join(subblossoms.begin(), subblossoms.end());
  1.1243 +          (*_blossom_data)[surface].status = EVEN;
  1.1244 +          (*_blossom_data)[surface].pred = INVALID;
  1.1245 +          (*_blossom_data)[surface].next = INVALID;
  1.1246 +          (*_blossom_data)[surface].pot = 0;
  1.1247 +          (*_blossom_data)[surface].offset = 0;
  1.1248 +
  1.1249 +          _tree_set->insert(surface);
  1.1250 +          ++_unmatched;
  1.1251 +        }
  1.1252 +      }
  1.1253 +
  1.1254 +      for (EdgeIt e(_graph); e != INVALID; ++e) {
  1.1255 +        int si = (*_node_index)[_graph.u(e)];
  1.1256 +        int sb = _blossom_set->find(_graph.u(e));
  1.1257 +        int ti = (*_node_index)[_graph.v(e)];
  1.1258 +        int tb = _blossom_set->find(_graph.v(e));
  1.1259 +        if ((*_blossom_data)[sb].status == EVEN &&
  1.1260 +            (*_blossom_data)[tb].status == EVEN && sb != tb) {
  1.1261 +          _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot -
  1.1262 +                            dualScale * _weight[e]) / 2);
  1.1263 +        }
  1.1264 +      }
  1.1265 +
  1.1266 +      for (NodeIt n(_graph); n != INVALID; ++n) {
  1.1267 +        int nb = _blossom_set->find(n);
  1.1268 +        if ((*_blossom_data)[nb].status != MATCHED) continue;
  1.1269 +        int ni = (*_node_index)[n];
  1.1270 +
  1.1271 +        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
  1.1272 +          Node v = _graph.target(e);
  1.1273 +          int vb = _blossom_set->find(v);
  1.1274 +          int vi = (*_node_index)[v];
  1.1275 +
  1.1276 +          Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot -
  1.1277 +            dualScale * _weight[e];
  1.1278 +
  1.1279 +          if ((*_blossom_data)[vb].status == EVEN) {
  1.1280 +
  1.1281 +            int vt = _tree_set->find(vb);
  1.1282 +
  1.1283 +            typename std::map<int, Arc>::iterator it =
  1.1284 +              (*_node_data)[ni].heap_index.find(vt);
  1.1285 +
  1.1286 +            if (it != (*_node_data)[ni].heap_index.end()) {
  1.1287 +              if ((*_node_data)[ni].heap[it->second] > rw) {
  1.1288 +                (*_node_data)[ni].heap.replace(it->second, e);
  1.1289 +                (*_node_data)[ni].heap.decrease(e, rw);
  1.1290 +                it->second = e;
  1.1291 +              }
  1.1292 +            } else {
  1.1293 +              (*_node_data)[ni].heap.push(e, rw);
  1.1294 +              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, e));
  1.1295 +            }
  1.1296 +          }
  1.1297 +        }
  1.1298 +
  1.1299 +        if (!(*_node_data)[ni].heap.empty()) {
  1.1300 +          _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
  1.1301 +          _delta2->push(nb, _blossom_set->classPrio(nb));
  1.1302 +        }
  1.1303 +      }
  1.1304 +    }
  1.1305 +
  1.1306      /// \brief Start the algorithm
  1.1307      ///
  1.1308      /// This function starts the algorithm.
  1.1309      ///
  1.1310 -    /// \pre \ref init() must be called before using this function.
  1.1311 +    /// \pre \ref init() or \ref fractionalInit() must be called before
  1.1312 +    /// using this function.
  1.1313      bool start() {
  1.1314        enum OpType {
  1.1315          D2, D3, D4
  1.1316        };
  1.1317  
  1.1318 -      int unmatched = _node_num;
  1.1319 -      while (unmatched > 0) {
  1.1320 +      if (_unmatched == -1) return false;
  1.1321 +
  1.1322 +      while (_unmatched > 0) {
  1.1323          Value d2 = !_delta2->empty() ?
  1.1324            _delta2->prio() : std::numeric_limits<Value>::max();
  1.1325  
  1.1326 @@ -3051,8 +3252,8 @@
  1.1327          Value d4 = !_delta4->empty() ?
  1.1328            _delta4->prio() : std::numeric_limits<Value>::max();
  1.1329  
  1.1330 -        _delta_sum = d2; OpType ot = D2;
  1.1331 -        if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; }
  1.1332 +        _delta_sum = d3; OpType ot = D3;
  1.1333 +        if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; }
  1.1334          if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; }
  1.1335  
  1.1336          if (_delta_sum == std::numeric_limits<Value>::max()) {
  1.1337 @@ -3085,7 +3286,7 @@
  1.1338                  shrinkOnEdge(e, left_tree);
  1.1339                } else {
  1.1340                  augmentOnEdge(e);
  1.1341 -                unmatched -= 2;
  1.1342 +                _unmatched -= 2;
  1.1343                }
  1.1344              }
  1.1345            } break;
  1.1346 @@ -3104,18 +3305,18 @@
  1.1347      ///
  1.1348      /// \note mwpm.run() is just a shortcut of the following code.
  1.1349      /// \code
  1.1350 -    ///   mwpm.init();
  1.1351 +    ///   mwpm.fractionalInit();
  1.1352      ///   mwpm.start();
  1.1353      /// \endcode
  1.1354      bool run() {
  1.1355 -      init();
  1.1356 +      fractionalInit();
  1.1357        return start();
  1.1358      }
  1.1359  
  1.1360      /// @}
  1.1361  
  1.1362      /// \name Primal Solution
  1.1363 -    /// Functions to get the primal solution, i.e. the maximum weighted 
  1.1364 +    /// Functions to get the primal solution, i.e. the maximum weighted
  1.1365      /// perfect matching.\n
  1.1366      /// Either \ref run() or \ref start() function should be called before
  1.1367      /// using them.
  1.1368 @@ -3134,12 +3335,12 @@
  1.1369            sum += _weight[(*_matching)[n]];
  1.1370          }
  1.1371        }
  1.1372 -      return sum /= 2;
  1.1373 +      return sum / 2;
  1.1374      }
  1.1375  
  1.1376      /// \brief Return \c true if the given edge is in the matching.
  1.1377      ///
  1.1378 -    /// This function returns \c true if the given edge is in the found 
  1.1379 +    /// This function returns \c true if the given edge is in the found
  1.1380      /// matching.
  1.1381      ///
  1.1382      /// \pre Either run() or start() must be called before using this function.
  1.1383 @@ -3150,7 +3351,7 @@
  1.1384      /// \brief Return the matching arc (or edge) incident to the given node.
  1.1385      ///
  1.1386      /// This function returns the matching arc (or edge) incident to the
  1.1387 -    /// given node in the found matching or \c INVALID if the node is 
  1.1388 +    /// given node in the found matching or \c INVALID if the node is
  1.1389      /// not covered by the matching.
  1.1390      ///
  1.1391      /// \pre Either run() or start() must be called before using this function.
  1.1392 @@ -3168,7 +3369,7 @@
  1.1393  
  1.1394      /// \brief Return the mate of the given node.
  1.1395      ///
  1.1396 -    /// This function returns the mate of the given node in the found 
  1.1397 +    /// This function returns the mate of the given node in the found
  1.1398      /// matching or \c INVALID if the node is not covered by the matching.
  1.1399      ///
  1.1400      /// \pre Either run() or start() must be called before using this function.
  1.1401 @@ -3187,8 +3388,8 @@
  1.1402  
  1.1403      /// \brief Return the value of the dual solution.
  1.1404      ///
  1.1405 -    /// This function returns the value of the dual solution. 
  1.1406 -    /// It should be equal to the primal value scaled by \ref dualScale 
  1.1407 +    /// This function returns the value of the dual solution.
  1.1408 +    /// It should be equal to the primal value scaled by \ref dualScale
  1.1409      /// "dual scale".
  1.1410      ///
  1.1411      /// \pre Either run() or start() must be called before using this function.
  1.1412 @@ -3243,9 +3444,9 @@
  1.1413  
  1.1414      /// \brief Iterator for obtaining the nodes of a blossom.
  1.1415      ///
  1.1416 -    /// This class provides an iterator for obtaining the nodes of the 
  1.1417 +    /// This class provides an iterator for obtaining the nodes of the
  1.1418      /// given blossom. It lists a subset of the nodes.
  1.1419 -    /// Before using this iterator, you must allocate a 
  1.1420 +    /// Before using this iterator, you must allocate a
  1.1421      /// MaxWeightedPerfectMatching class and execute it.
  1.1422      class BlossomIt {
  1.1423      public:
  1.1424 @@ -3254,8 +3455,8 @@
  1.1425        ///
  1.1426        /// Constructor to get the nodes of the given variable.
  1.1427        ///
  1.1428 -      /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" 
  1.1429 -      /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" 
  1.1430 +      /// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()"
  1.1431 +      /// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()"
  1.1432        /// must be called before initializing this iterator.
  1.1433        BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable)
  1.1434          : _algorithm(&algorithm)
  1.1435 @@ -3301,4 +3502,4 @@
  1.1436  
  1.1437  } //END OF NAMESPACE LEMON
  1.1438  
  1.1439 -#endif //LEMON_MAX_MATCHING_H
  1.1440 +#endif //LEMON_MATCHING_H