lemon/cycle_canceling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 13 Nov 2009 00:09:35 +0100
changeset 814 0643a9c2c3ae
child 815 aef153f430e1
permissions -rw-r--r--
Port cycle canceling algorithms from SVN -r3524 (#180)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CYCLE_CANCELING_H
    20 #define LEMON_CYCLE_CANCELING_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief Cycle-canceling algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <lemon/adaptors.h>
    29 #include <lemon/path.h>
    30 
    31 #include <lemon/circulation.h>
    32 #include <lemon/bellman_ford.h>
    33 #include <lemon/howard.h>
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup min_cost_flow
    38   /// @{
    39 
    40   /// \brief Implementation of a cycle-canceling algorithm for
    41   /// finding a minimum cost flow.
    42   ///
    43   /// \ref CycleCanceling implements a cycle-canceling algorithm for
    44   /// finding a minimum cost flow.
    45   ///
    46   /// \tparam Digraph The digraph type the algorithm runs on.
    47   /// \tparam LowerMap The type of the lower bound map.
    48   /// \tparam CapacityMap The type of the capacity (upper bound) map.
    49   /// \tparam CostMap The type of the cost (length) map.
    50   /// \tparam SupplyMap The type of the supply map.
    51   ///
    52   /// \warning
    53   /// - Arc capacities and costs should be \e non-negative \e integers.
    54   /// - Supply values should be \e signed \e integers.
    55   /// - The value types of the maps should be convertible to each other.
    56   /// - \c CostMap::Value must be signed type.
    57   ///
    58   /// \note By default the \ref BellmanFord "Bellman-Ford" algorithm is
    59   /// used for negative cycle detection with limited iteration number.
    60   /// However \ref CycleCanceling also provides the "Minimum Mean
    61   /// Cycle-Canceling" algorithm, which is \e strongly \e polynomial,
    62   /// but rather slower in practice.
    63   /// To use this version of the algorithm, call \ref run() with \c true
    64   /// parameter.
    65   ///
    66   /// \author Peter Kovacs
    67   template < typename Digraph,
    68              typename LowerMap = typename Digraph::template ArcMap<int>,
    69              typename CapacityMap = typename Digraph::template ArcMap<int>,
    70              typename CostMap = typename Digraph::template ArcMap<int>,
    71              typename SupplyMap = typename Digraph::template NodeMap<int> >
    72   class CycleCanceling
    73   {
    74     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
    75 
    76     typedef typename CapacityMap::Value Capacity;
    77     typedef typename CostMap::Value Cost;
    78     typedef typename SupplyMap::Value Supply;
    79     typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap;
    80     typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap;
    81 
    82     typedef ResidualDigraph< const Digraph,
    83       CapacityArcMap, CapacityArcMap > ResDigraph;
    84     typedef typename ResDigraph::Node ResNode;
    85     typedef typename ResDigraph::NodeIt ResNodeIt;
    86     typedef typename ResDigraph::Arc ResArc;
    87     typedef typename ResDigraph::ArcIt ResArcIt;
    88 
    89   public:
    90 
    91     /// The type of the flow map.
    92     typedef typename Digraph::template ArcMap<Capacity> FlowMap;
    93     /// The type of the potential map.
    94     typedef typename Digraph::template NodeMap<Cost> PotentialMap;
    95 
    96   private:
    97 
    98     /// \brief Map adaptor class for handling residual arc costs.
    99     ///
   100     /// Map adaptor class for handling residual arc costs.
   101     class ResidualCostMap : public MapBase<ResArc, Cost>
   102     {
   103     private:
   104 
   105       const CostMap &_cost_map;
   106 
   107     public:
   108 
   109       ///\e
   110       ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
   111 
   112       ///\e
   113       Cost operator[](const ResArc &e) const {
   114         return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e];
   115       }
   116 
   117     }; //class ResidualCostMap
   118 
   119   private:
   120 
   121     // The maximum number of iterations for the first execution of the
   122     // Bellman-Ford algorithm. It should be at least 2.
   123     static const int BF_FIRST_LIMIT  = 2;
   124     // The iteration limit for the Bellman-Ford algorithm is multiplied
   125     // by BF_LIMIT_FACTOR/100 in every round.
   126     static const int BF_LIMIT_FACTOR = 150;
   127 
   128   private:
   129 
   130     // The digraph the algorithm runs on
   131     const Digraph &_graph;
   132     // The original lower bound map
   133     const LowerMap *_lower;
   134     // The modified capacity map
   135     CapacityArcMap _capacity;
   136     // The original cost map
   137     const CostMap &_cost;
   138     // The modified supply map
   139     SupplyNodeMap _supply;
   140     bool _valid_supply;
   141 
   142     // Arc map of the current flow
   143     FlowMap *_flow;
   144     bool _local_flow;
   145     // Node map of the current potentials
   146     PotentialMap *_potential;
   147     bool _local_potential;
   148 
   149     // The residual digraph
   150     ResDigraph *_res_graph;
   151     // The residual cost map
   152     ResidualCostMap _res_cost;
   153 
   154   public:
   155 
   156     /// \brief General constructor (with lower bounds).
   157     ///
   158     /// General constructor (with lower bounds).
   159     ///
   160     /// \param digraph The digraph the algorithm runs on.
   161     /// \param lower The lower bounds of the arcs.
   162     /// \param capacity The capacities (upper bounds) of the arcs.
   163     /// \param cost The cost (length) values of the arcs.
   164     /// \param supply The supply values of the nodes (signed).
   165     CycleCanceling( const Digraph &digraph,
   166                     const LowerMap &lower,
   167                     const CapacityMap &capacity,
   168                     const CostMap &cost,
   169                     const SupplyMap &supply ) :
   170       _graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost),
   171       _supply(digraph), _flow(NULL), _local_flow(false),
   172       _potential(NULL), _local_potential(false),
   173       _res_graph(NULL), _res_cost(_cost)
   174     {
   175       // Check the sum of supply values
   176       Supply sum = 0;
   177       for (NodeIt n(_graph); n != INVALID; ++n) {
   178         _supply[n] = supply[n];
   179         sum += _supply[n];
   180       }
   181       _valid_supply = sum == 0;
   182 
   183       // Remove non-zero lower bounds
   184       for (ArcIt e(_graph); e != INVALID; ++e) {
   185         _capacity[e] = capacity[e];
   186         if (lower[e] != 0) {
   187           _capacity[e] -= lower[e];
   188           _supply[_graph.source(e)] -= lower[e];
   189           _supply[_graph.target(e)] += lower[e];
   190         }
   191       }
   192     }
   193 /*
   194     /// \brief General constructor (without lower bounds).
   195     ///
   196     /// General constructor (without lower bounds).
   197     ///
   198     /// \param digraph The digraph the algorithm runs on.
   199     /// \param capacity The capacities (upper bounds) of the arcs.
   200     /// \param cost The cost (length) values of the arcs.
   201     /// \param supply The supply values of the nodes (signed).
   202     CycleCanceling( const Digraph &digraph,
   203                     const CapacityMap &capacity,
   204                     const CostMap &cost,
   205                     const SupplyMap &supply ) :
   206       _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
   207       _supply(supply), _flow(NULL), _local_flow(false),
   208       _potential(NULL), _local_potential(false), _res_graph(NULL),
   209       _res_cost(_cost)
   210     {
   211       // Check the sum of supply values
   212       Supply sum = 0;
   213       for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
   214       _valid_supply = sum == 0;
   215     }
   216 
   217     /// \brief Simple constructor (with lower bounds).
   218     ///
   219     /// Simple constructor (with lower bounds).
   220     ///
   221     /// \param digraph The digraph the algorithm runs on.
   222     /// \param lower The lower bounds of the arcs.
   223     /// \param capacity The capacities (upper bounds) of the arcs.
   224     /// \param cost The cost (length) values of the arcs.
   225     /// \param s The source node.
   226     /// \param t The target node.
   227     /// \param flow_value The required amount of flow from node \c s
   228     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   229     CycleCanceling( const Digraph &digraph,
   230                     const LowerMap &lower,
   231                     const CapacityMap &capacity,
   232                     const CostMap &cost,
   233                     Node s, Node t,
   234                     Supply flow_value ) :
   235       _graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost),
   236       _supply(digraph, 0), _flow(NULL), _local_flow(false),
   237       _potential(NULL), _local_potential(false), _res_graph(NULL),
   238       _res_cost(_cost)
   239     {
   240       // Remove non-zero lower bounds
   241       _supply[s] =  flow_value;
   242       _supply[t] = -flow_value;
   243       for (ArcIt e(_graph); e != INVALID; ++e) {
   244         if (lower[e] != 0) {
   245           _capacity[e] -= lower[e];
   246           _supply[_graph.source(e)] -= lower[e];
   247           _supply[_graph.target(e)] += lower[e];
   248         }
   249       }
   250       _valid_supply = true;
   251     }
   252 
   253     /// \brief Simple constructor (without lower bounds).
   254     ///
   255     /// Simple constructor (without lower bounds).
   256     ///
   257     /// \param digraph The digraph the algorithm runs on.
   258     /// \param capacity The capacities (upper bounds) of the arcs.
   259     /// \param cost The cost (length) values of the arcs.
   260     /// \param s The source node.
   261     /// \param t The target node.
   262     /// \param flow_value The required amount of flow from node \c s
   263     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   264     CycleCanceling( const Digraph &digraph,
   265                     const CapacityMap &capacity,
   266                     const CostMap &cost,
   267                     Node s, Node t,
   268                     Supply flow_value ) :
   269       _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
   270       _supply(digraph, 0), _flow(NULL), _local_flow(false),
   271       _potential(NULL), _local_potential(false), _res_graph(NULL),
   272       _res_cost(_cost)
   273     {
   274       _supply[s] =  flow_value;
   275       _supply[t] = -flow_value;
   276       _valid_supply = true;
   277     }
   278 */
   279     /// Destructor.
   280     ~CycleCanceling() {
   281       if (_local_flow) delete _flow;
   282       if (_local_potential) delete _potential;
   283       delete _res_graph;
   284     }
   285 
   286     /// \brief Set the flow map.
   287     ///
   288     /// Set the flow map.
   289     ///
   290     /// \return \c (*this)
   291     CycleCanceling& flowMap(FlowMap &map) {
   292       if (_local_flow) {
   293         delete _flow;
   294         _local_flow = false;
   295       }
   296       _flow = &map;
   297       return *this;
   298     }
   299 
   300     /// \brief Set the potential map.
   301     ///
   302     /// Set the potential map.
   303     ///
   304     /// \return \c (*this)
   305     CycleCanceling& potentialMap(PotentialMap &map) {
   306       if (_local_potential) {
   307         delete _potential;
   308         _local_potential = false;
   309       }
   310       _potential = &map;
   311       return *this;
   312     }
   313 
   314     /// \name Execution control
   315 
   316     /// @{
   317 
   318     /// \brief Run the algorithm.
   319     ///
   320     /// Run the algorithm.
   321     ///
   322     /// \param min_mean_cc Set this parameter to \c true to run the
   323     /// "Minimum Mean Cycle-Canceling" algorithm, which is strongly
   324     /// polynomial, but rather slower in practice.
   325     ///
   326     /// \return \c true if a feasible flow can be found.
   327     bool run(bool min_mean_cc = false) {
   328       return init() && start(min_mean_cc);
   329     }
   330 
   331     /// @}
   332 
   333     /// \name Query Functions
   334     /// The result of the algorithm can be obtained using these
   335     /// functions.\n
   336     /// \ref lemon::CycleCanceling::run() "run()" must be called before
   337     /// using them.
   338 
   339     /// @{
   340 
   341     /// \brief Return a const reference to the arc map storing the
   342     /// found flow.
   343     ///
   344     /// Return a const reference to the arc map storing the found flow.
   345     ///
   346     /// \pre \ref run() must be called before using this function.
   347     const FlowMap& flowMap() const {
   348       return *_flow;
   349     }
   350 
   351     /// \brief Return a const reference to the node map storing the
   352     /// found potentials (the dual solution).
   353     ///
   354     /// Return a const reference to the node map storing the found
   355     /// potentials (the dual solution).
   356     ///
   357     /// \pre \ref run() must be called before using this function.
   358     const PotentialMap& potentialMap() const {
   359       return *_potential;
   360     }
   361 
   362     /// \brief Return the flow on the given arc.
   363     ///
   364     /// Return the flow on the given arc.
   365     ///
   366     /// \pre \ref run() must be called before using this function.
   367     Capacity flow(const Arc& arc) const {
   368       return (*_flow)[arc];
   369     }
   370 
   371     /// \brief Return the potential of the given node.
   372     ///
   373     /// Return the potential of the given node.
   374     ///
   375     /// \pre \ref run() must be called before using this function.
   376     Cost potential(const Node& node) const {
   377       return (*_potential)[node];
   378     }
   379 
   380     /// \brief Return the total cost of the found flow.
   381     ///
   382     /// Return the total cost of the found flow. The complexity of the
   383     /// function is \f$ O(e) \f$.
   384     ///
   385     /// \pre \ref run() must be called before using this function.
   386     Cost totalCost() const {
   387       Cost c = 0;
   388       for (ArcIt e(_graph); e != INVALID; ++e)
   389         c += (*_flow)[e] * _cost[e];
   390       return c;
   391     }
   392 
   393     /// @}
   394 
   395   private:
   396 
   397     /// Initialize the algorithm.
   398     bool init() {
   399       if (!_valid_supply) return false;
   400 
   401       // Initializing flow and potential maps
   402       if (!_flow) {
   403         _flow = new FlowMap(_graph);
   404         _local_flow = true;
   405       }
   406       if (!_potential) {
   407         _potential = new PotentialMap(_graph);
   408         _local_potential = true;
   409       }
   410 
   411       _res_graph = new ResDigraph(_graph, _capacity, *_flow);
   412 
   413       // Finding a feasible flow using Circulation
   414       Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap,
   415                    SupplyMap >
   416         circulation( _graph, constMap<Arc>(Capacity(0)), _capacity,
   417                      _supply );
   418       return circulation.flowMap(*_flow).run();
   419     }
   420 
   421     bool start(bool min_mean_cc) {
   422       if (min_mean_cc)
   423         startMinMean();
   424       else
   425         start();
   426 
   427       // Handling non-zero lower bounds
   428       if (_lower) {
   429         for (ArcIt e(_graph); e != INVALID; ++e)
   430           (*_flow)[e] += (*_lower)[e];
   431       }
   432       return true;
   433     }
   434 
   435     /// \brief Execute the algorithm using \ref BellmanFord.
   436     ///
   437     /// Execute the algorithm using the \ref BellmanFord
   438     /// "Bellman-Ford" algorithm for negative cycle detection with
   439     /// successively larger limit for the number of iterations.
   440     void start() {
   441       typename BellmanFord<ResDigraph, ResidualCostMap>::PredMap pred(*_res_graph);
   442       typename ResDigraph::template NodeMap<int> visited(*_res_graph);
   443       std::vector<ResArc> cycle;
   444       int node_num = countNodes(_graph);
   445 
   446       int length_bound = BF_FIRST_LIMIT;
   447       bool optimal = false;
   448       while (!optimal) {
   449         BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost);
   450         bf.predMap(pred);
   451         bf.init(0);
   452         int iter_num = 0;
   453         bool cycle_found = false;
   454         while (!cycle_found) {
   455           int curr_iter_num = iter_num + length_bound <= node_num ?
   456                               length_bound : node_num - iter_num;
   457           iter_num += curr_iter_num;
   458           int real_iter_num = curr_iter_num;
   459           for (int i = 0; i < curr_iter_num; ++i) {
   460             if (bf.processNextWeakRound()) {
   461               real_iter_num = i;
   462               break;
   463             }
   464           }
   465           if (real_iter_num < curr_iter_num) {
   466             // Optimal flow is found
   467             optimal = true;
   468             // Setting node potentials
   469             for (NodeIt n(_graph); n != INVALID; ++n)
   470               (*_potential)[n] = bf.dist(n);
   471             break;
   472           } else {
   473             // Searching for node disjoint negative cycles
   474             for (ResNodeIt n(*_res_graph); n != INVALID; ++n)
   475               visited[n] = 0;
   476             int id = 0;
   477             for (ResNodeIt n(*_res_graph); n != INVALID; ++n) {
   478               if (visited[n] > 0) continue;
   479               visited[n] = ++id;
   480               ResNode u = pred[n] == INVALID ?
   481                           INVALID : _res_graph->source(pred[n]);
   482               while (u != INVALID && visited[u] == 0) {
   483                 visited[u] = id;
   484                 u = pred[u] == INVALID ?
   485                     INVALID : _res_graph->source(pred[u]);
   486               }
   487               if (u != INVALID && visited[u] == id) {
   488                 // Finding the negative cycle
   489                 cycle_found = true;
   490                 cycle.clear();
   491                 ResArc e = pred[u];
   492                 cycle.push_back(e);
   493                 Capacity d = _res_graph->residualCapacity(e);
   494                 while (_res_graph->source(e) != u) {
   495                   cycle.push_back(e = pred[_res_graph->source(e)]);
   496                   if (_res_graph->residualCapacity(e) < d)
   497                     d = _res_graph->residualCapacity(e);
   498                 }
   499 
   500                 // Augmenting along the cycle
   501                 for (int i = 0; i < int(cycle.size()); ++i)
   502                   _res_graph->augment(cycle[i], d);
   503               }
   504             }
   505           }
   506 
   507           if (!cycle_found)
   508             length_bound = length_bound * BF_LIMIT_FACTOR / 100;
   509         }
   510       }
   511     }
   512 
   513     /// \brief Execute the algorithm using \ref Howard.
   514     ///
   515     /// Execute the algorithm using \ref Howard for negative
   516     /// cycle detection.
   517     void startMinMean() {
   518       typedef Path<ResDigraph> ResPath;
   519       Howard<ResDigraph, ResidualCostMap> mmc(*_res_graph, _res_cost);
   520       ResPath cycle;
   521 
   522       mmc.cycle(cycle);
   523       if (mmc.findMinMean()) {
   524         while (mmc.cycleLength() < 0) {
   525           // Finding the cycle
   526           mmc.findCycle();
   527 
   528           // Finding the largest flow amount that can be augmented
   529           // along the cycle
   530           Capacity delta = 0;
   531           for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e) {
   532             if (delta == 0 || _res_graph->residualCapacity(e) < delta)
   533               delta = _res_graph->residualCapacity(e);
   534           }
   535 
   536           // Augmenting along the cycle
   537           for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e)
   538             _res_graph->augment(e, delta);
   539 
   540           // Finding the minimum cycle mean for the modified residual
   541           // digraph
   542           if (!mmc.findMinMean()) break;
   543         }
   544       }
   545 
   546       // Computing node potentials
   547       BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost);
   548       bf.init(0); bf.start();
   549       for (NodeIt n(_graph); n != INVALID; ++n)
   550         (*_potential)[n] = bf.dist(n);
   551     }
   552 
   553   }; //class CycleCanceling
   554 
   555   ///@}
   556 
   557 } //namespace lemon
   558 
   559 #endif //LEMON_CYCLE_CANCELING_H