1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
25 #include <lemon/config.h>
26 #include <lemon/bits/enable_if.h>
27 #include <lemon/bits/traits.h>
28 #include <lemon/assert.h>
30 // Disable the following warnings when compiling with MSVC:
31 // C4250: 'class1' : inherits 'class2::member' via dominance
32 // C4355: 'this' : used in base member initializer list
33 // C4503: 'function' : decorated name length exceeded, name was truncated
34 // C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning)
35 // C4996: 'function': was declared deprecated
37 #pragma warning( disable : 4250 4355 4503 4800 4996 )
41 ///\brief LEMON core utilities.
43 ///This header file contains core utilities for LEMON.
44 ///It is automatically included by all graph types, therefore it usually
45 ///do not have to be included directly.
49 /// \brief Dummy type to make it easier to create invalid iterators.
51 /// Dummy type to make it easier to create invalid iterators.
52 /// See \ref INVALID for the usage.
55 bool operator==(Invalid) { return true; }
56 bool operator!=(Invalid) { return false; }
57 bool operator< (Invalid) { return false; }
60 /// \brief Invalid iterators.
62 /// \ref Invalid is a global type that converts to each iterator
63 /// in such a way that the value of the target iterator will be invalid.
64 #ifdef LEMON_ONLY_TEMPLATES
65 const Invalid INVALID = Invalid();
67 extern const Invalid INVALID;
70 /// \addtogroup gutils
73 ///Create convenience typedefs for the digraph types and iterators
75 ///This \c \#define creates convenient type definitions for the following
76 ///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
77 ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
78 ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
80 ///\note If the graph type is a dependent type, ie. the graph type depend
81 ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
83 #define DIGRAPH_TYPEDEFS(Digraph) \
84 typedef Digraph::Node Node; \
85 typedef Digraph::NodeIt NodeIt; \
86 typedef Digraph::Arc Arc; \
87 typedef Digraph::ArcIt ArcIt; \
88 typedef Digraph::InArcIt InArcIt; \
89 typedef Digraph::OutArcIt OutArcIt; \
90 typedef Digraph::NodeMap<bool> BoolNodeMap; \
91 typedef Digraph::NodeMap<int> IntNodeMap; \
92 typedef Digraph::NodeMap<double> DoubleNodeMap; \
93 typedef Digraph::ArcMap<bool> BoolArcMap; \
94 typedef Digraph::ArcMap<int> IntArcMap; \
95 typedef Digraph::ArcMap<double> DoubleArcMap
97 ///Create convenience typedefs for the digraph types and iterators
99 ///\see DIGRAPH_TYPEDEFS
101 ///\note Use this macro, if the graph type is a dependent type,
102 ///ie. the graph type depend on a template parameter.
103 #define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \
104 typedef typename Digraph::Node Node; \
105 typedef typename Digraph::NodeIt NodeIt; \
106 typedef typename Digraph::Arc Arc; \
107 typedef typename Digraph::ArcIt ArcIt; \
108 typedef typename Digraph::InArcIt InArcIt; \
109 typedef typename Digraph::OutArcIt OutArcIt; \
110 typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \
111 typedef typename Digraph::template NodeMap<int> IntNodeMap; \
112 typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \
113 typedef typename Digraph::template ArcMap<bool> BoolArcMap; \
114 typedef typename Digraph::template ArcMap<int> IntArcMap; \
115 typedef typename Digraph::template ArcMap<double> DoubleArcMap
117 ///Create convenience typedefs for the graph types and iterators
119 ///This \c \#define creates the same convenient type definitions as defined
120 ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
121 ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
124 ///\note If the graph type is a dependent type, ie. the graph type depend
125 ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
127 #define GRAPH_TYPEDEFS(Graph) \
128 DIGRAPH_TYPEDEFS(Graph); \
129 typedef Graph::Edge Edge; \
130 typedef Graph::EdgeIt EdgeIt; \
131 typedef Graph::IncEdgeIt IncEdgeIt; \
132 typedef Graph::EdgeMap<bool> BoolEdgeMap; \
133 typedef Graph::EdgeMap<int> IntEdgeMap; \
134 typedef Graph::EdgeMap<double> DoubleEdgeMap
136 ///Create convenience typedefs for the graph types and iterators
138 ///\see GRAPH_TYPEDEFS
140 ///\note Use this macro, if the graph type is a dependent type,
141 ///ie. the graph type depend on a template parameter.
142 #define TEMPLATE_GRAPH_TYPEDEFS(Graph) \
143 TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \
144 typedef typename Graph::Edge Edge; \
145 typedef typename Graph::EdgeIt EdgeIt; \
146 typedef typename Graph::IncEdgeIt IncEdgeIt; \
147 typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \
148 typedef typename Graph::template EdgeMap<int> IntEdgeMap; \
149 typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
151 /// \brief Function to count the items in a graph.
153 /// This function counts the items (nodes, arcs etc.) in a graph.
154 /// The complexity of the function is linear because
155 /// it iterates on all of the items.
156 template <typename Graph, typename Item>
157 inline int countItems(const Graph& g) {
158 typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
160 for (ItemIt it(g); it != INVALID; ++it) {
168 namespace _core_bits {
170 template <typename Graph, typename Enable = void>
171 struct CountNodesSelector {
172 static int count(const Graph &g) {
173 return countItems<Graph, typename Graph::Node>(g);
177 template <typename Graph>
178 struct CountNodesSelector<
180 enable_if<typename Graph::NodeNumTag, void>::type>
182 static int count(const Graph &g) {
188 /// \brief Function to count the nodes in the graph.
190 /// This function counts the nodes in the graph.
191 /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
192 /// graph structures it is specialized to run in <em>O</em>(1).
194 /// \note If the graph contains a \c nodeNum() member function and a
195 /// \c NodeNumTag tag then this function calls directly the member
196 /// function to query the cardinality of the node set.
197 template <typename Graph>
198 inline int countNodes(const Graph& g) {
199 return _core_bits::CountNodesSelector<Graph>::count(g);
204 namespace _core_bits {
206 template <typename Graph, typename Enable = void>
207 struct CountArcsSelector {
208 static int count(const Graph &g) {
209 return countItems<Graph, typename Graph::Arc>(g);
213 template <typename Graph>
214 struct CountArcsSelector<
216 typename enable_if<typename Graph::ArcNumTag, void>::type>
218 static int count(const Graph &g) {
224 /// \brief Function to count the arcs in the graph.
226 /// This function counts the arcs in the graph.
227 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
228 /// graph structures it is specialized to run in <em>O</em>(1).
230 /// \note If the graph contains a \c arcNum() member function and a
231 /// \c ArcNumTag tag then this function calls directly the member
232 /// function to query the cardinality of the arc set.
233 template <typename Graph>
234 inline int countArcs(const Graph& g) {
235 return _core_bits::CountArcsSelector<Graph>::count(g);
240 namespace _core_bits {
242 template <typename Graph, typename Enable = void>
243 struct CountEdgesSelector {
244 static int count(const Graph &g) {
245 return countItems<Graph, typename Graph::Edge>(g);
249 template <typename Graph>
250 struct CountEdgesSelector<
252 typename enable_if<typename Graph::EdgeNumTag, void>::type>
254 static int count(const Graph &g) {
260 /// \brief Function to count the edges in the graph.
262 /// This function counts the edges in the graph.
263 /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
264 /// graph structures it is specialized to run in <em>O</em>(1).
266 /// \note If the graph contains a \c edgeNum() member function and a
267 /// \c EdgeNumTag tag then this function calls directly the member
268 /// function to query the cardinality of the edge set.
269 template <typename Graph>
270 inline int countEdges(const Graph& g) {
271 return _core_bits::CountEdgesSelector<Graph>::count(g);
276 template <typename Graph, typename DegIt>
277 inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
279 for (DegIt it(_g, _n); it != INVALID; ++it) {
285 /// \brief Function to count the number of the out-arcs from node \c n.
287 /// This function counts the number of the out-arcs from node \c n
288 /// in the graph \c g.
289 template <typename Graph>
290 inline int countOutArcs(const Graph& g, const typename Graph::Node& n) {
291 return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
294 /// \brief Function to count the number of the in-arcs to node \c n.
296 /// This function counts the number of the in-arcs to node \c n
297 /// in the graph \c g.
298 template <typename Graph>
299 inline int countInArcs(const Graph& g, const typename Graph::Node& n) {
300 return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
303 /// \brief Function to count the number of the inc-edges to node \c n.
305 /// This function counts the number of the inc-edges to node \c n
306 /// in the undirected graph \c g.
307 template <typename Graph>
308 inline int countIncEdges(const Graph& g, const typename Graph::Node& n) {
309 return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
312 namespace _core_bits {
314 template <typename Digraph, typename Item, typename RefMap>
317 virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
319 virtual ~MapCopyBase() {}
322 template <typename Digraph, typename Item, typename RefMap,
323 typename FromMap, typename ToMap>
324 class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
327 MapCopy(const FromMap& map, ToMap& tmap)
328 : _map(map), _tmap(tmap) {}
330 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
331 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
332 for (ItemIt it(digraph); it != INVALID; ++it) {
333 _tmap.set(refMap[it], _map[it]);
342 template <typename Digraph, typename Item, typename RefMap, typename It>
343 class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
346 ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
348 virtual void copy(const Digraph&, const RefMap& refMap) {
357 template <typename Digraph, typename Item, typename RefMap, typename Ref>
358 class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
361 RefCopy(Ref& map) : _map(map) {}
363 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
364 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
365 for (ItemIt it(digraph); it != INVALID; ++it) {
366 _map.set(it, refMap[it]);
374 template <typename Digraph, typename Item, typename RefMap,
376 class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
379 CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
381 virtual void copy(const Digraph& digraph, const RefMap& refMap) {
382 typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
383 for (ItemIt it(digraph); it != INVALID; ++it) {
384 _cmap.set(refMap[it], it);
392 template <typename Digraph, typename Enable = void>
393 struct DigraphCopySelector {
394 template <typename From, typename NodeRefMap, typename ArcRefMap>
395 static void copy(const From& from, Digraph &to,
396 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
398 for (typename From::NodeIt it(from); it != INVALID; ++it) {
399 nodeRefMap[it] = to.addNode();
401 for (typename From::ArcIt it(from); it != INVALID; ++it) {
402 arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
403 nodeRefMap[from.target(it)]);
408 template <typename Digraph>
409 struct DigraphCopySelector<
411 typename enable_if<typename Digraph::BuildTag, void>::type>
413 template <typename From, typename NodeRefMap, typename ArcRefMap>
414 static void copy(const From& from, Digraph &to,
415 NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
416 to.build(from, nodeRefMap, arcRefMap);
420 template <typename Graph, typename Enable = void>
421 struct GraphCopySelector {
422 template <typename From, typename NodeRefMap, typename EdgeRefMap>
423 static void copy(const From& from, Graph &to,
424 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
426 for (typename From::NodeIt it(from); it != INVALID; ++it) {
427 nodeRefMap[it] = to.addNode();
429 for (typename From::EdgeIt it(from); it != INVALID; ++it) {
430 edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
431 nodeRefMap[from.v(it)]);
436 template <typename Graph>
437 struct GraphCopySelector<
439 typename enable_if<typename Graph::BuildTag, void>::type>
441 template <typename From, typename NodeRefMap, typename EdgeRefMap>
442 static void copy(const From& from, Graph &to,
443 NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
444 to.build(from, nodeRefMap, edgeRefMap);
450 /// \brief Class to copy a digraph.
452 /// Class to copy a digraph to another digraph (duplicate a digraph). The
453 /// simplest way of using it is through the \c digraphCopy() function.
455 /// This class not only make a copy of a digraph, but it can create
456 /// references and cross references between the nodes and arcs of
457 /// the two digraphs, and it can copy maps to use with the newly created
460 /// To make a copy from a digraph, first an instance of DigraphCopy
461 /// should be created, then the data belongs to the digraph should
462 /// assigned to copy. In the end, the \c run() member should be
465 /// The next code copies a digraph with several data:
467 /// DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
468 /// // Create references for the nodes
469 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
471 /// // Create cross references (inverse) for the arcs
472 /// NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
473 /// cg.arcCrossRef(acr);
474 /// // Copy an arc map
475 /// OrigGraph::ArcMap<double> oamap(orig_graph);
476 /// NewGraph::ArcMap<double> namap(new_graph);
477 /// cg.arcMap(oamap, namap);
479 /// OrigGraph::Node on;
480 /// NewGraph::Node nn;
482 /// // Execute copying
485 template <typename From, typename To>
489 typedef typename From::Node Node;
490 typedef typename From::NodeIt NodeIt;
491 typedef typename From::Arc Arc;
492 typedef typename From::ArcIt ArcIt;
494 typedef typename To::Node TNode;
495 typedef typename To::Arc TArc;
497 typedef typename From::template NodeMap<TNode> NodeRefMap;
498 typedef typename From::template ArcMap<TArc> ArcRefMap;
502 /// \brief Constructor of DigraphCopy.
504 /// Constructor of DigraphCopy for copying the content of the
505 /// \c from digraph into the \c to digraph.
506 DigraphCopy(const From& from, To& to)
507 : _from(from), _to(to) {}
509 /// \brief Destructor of DigraphCopy
511 /// Destructor of DigraphCopy.
513 for (int i = 0; i < int(_node_maps.size()); ++i) {
514 delete _node_maps[i];
516 for (int i = 0; i < int(_arc_maps.size()); ++i) {
522 /// \brief Copy the node references into the given map.
524 /// This function copies the node references into the given map.
525 /// The parameter should be a map, whose key type is the Node type of
526 /// the source digraph, while the value type is the Node type of the
527 /// destination digraph.
528 template <typename NodeRef>
529 DigraphCopy& nodeRef(NodeRef& map) {
530 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
531 NodeRefMap, NodeRef>(map));
535 /// \brief Copy the node cross references into the given map.
537 /// This function copies the node cross references (reverse references)
538 /// into the given map. The parameter should be a map, whose key type
539 /// is the Node type of the destination digraph, while the value type is
540 /// the Node type of the source digraph.
541 template <typename NodeCrossRef>
542 DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
543 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
544 NodeRefMap, NodeCrossRef>(map));
548 /// \brief Make a copy of the given node map.
550 /// This function makes a copy of the given node map for the newly
552 /// The key type of the new map \c tmap should be the Node type of the
553 /// destination digraph, and the key type of the original map \c map
554 /// should be the Node type of the source digraph.
555 template <typename FromMap, typename ToMap>
556 DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
557 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
558 NodeRefMap, FromMap, ToMap>(map, tmap));
562 /// \brief Make a copy of the given node.
564 /// This function makes a copy of the given node.
565 DigraphCopy& node(const Node& node, TNode& tnode) {
566 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
567 NodeRefMap, TNode>(node, tnode));
571 /// \brief Copy the arc references into the given map.
573 /// This function copies the arc references into the given map.
574 /// The parameter should be a map, whose key type is the Arc type of
575 /// the source digraph, while the value type is the Arc type of the
576 /// destination digraph.
577 template <typename ArcRef>
578 DigraphCopy& arcRef(ArcRef& map) {
579 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
580 ArcRefMap, ArcRef>(map));
584 /// \brief Copy the arc cross references into the given map.
586 /// This function copies the arc cross references (reverse references)
587 /// into the given map. The parameter should be a map, whose key type
588 /// is the Arc type of the destination digraph, while the value type is
589 /// the Arc type of the source digraph.
590 template <typename ArcCrossRef>
591 DigraphCopy& arcCrossRef(ArcCrossRef& map) {
592 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
593 ArcRefMap, ArcCrossRef>(map));
597 /// \brief Make a copy of the given arc map.
599 /// This function makes a copy of the given arc map for the newly
601 /// The key type of the new map \c tmap should be the Arc type of the
602 /// destination digraph, and the key type of the original map \c map
603 /// should be the Arc type of the source digraph.
604 template <typename FromMap, typename ToMap>
605 DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
606 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
607 ArcRefMap, FromMap, ToMap>(map, tmap));
611 /// \brief Make a copy of the given arc.
613 /// This function makes a copy of the given arc.
614 DigraphCopy& arc(const Arc& arc, TArc& tarc) {
615 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
616 ArcRefMap, TArc>(arc, tarc));
620 /// \brief Execute copying.
622 /// This function executes the copying of the digraph along with the
623 /// copying of the assigned data.
625 NodeRefMap nodeRefMap(_from);
626 ArcRefMap arcRefMap(_from);
627 _core_bits::DigraphCopySelector<To>::
628 copy(_from, _to, nodeRefMap, arcRefMap);
629 for (int i = 0; i < int(_node_maps.size()); ++i) {
630 _node_maps[i]->copy(_from, nodeRefMap);
632 for (int i = 0; i < int(_arc_maps.size()); ++i) {
633 _arc_maps[i]->copy(_from, arcRefMap);
642 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
645 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
650 /// \brief Copy a digraph to another digraph.
652 /// This function copies a digraph to another digraph.
653 /// The complete usage of it is detailed in the DigraphCopy class, but
654 /// a short example shows a basic work:
656 /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
659 /// After the copy the \c nr map will contain the mapping from the
660 /// nodes of the \c from digraph to the nodes of the \c to digraph and
661 /// \c acr will contain the mapping from the arcs of the \c to digraph
662 /// to the arcs of the \c from digraph.
665 template <typename From, typename To>
666 DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
667 return DigraphCopy<From, To>(from, to);
670 /// \brief Class to copy a graph.
672 /// Class to copy a graph to another graph (duplicate a graph). The
673 /// simplest way of using it is through the \c graphCopy() function.
675 /// This class not only make a copy of a graph, but it can create
676 /// references and cross references between the nodes, edges and arcs of
677 /// the two graphs, and it can copy maps for using with the newly created
680 /// To make a copy from a graph, first an instance of GraphCopy
681 /// should be created, then the data belongs to the graph should
682 /// assigned to copy. In the end, the \c run() member should be
685 /// The next code copies a graph with several data:
687 /// GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
688 /// // Create references for the nodes
689 /// OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
691 /// // Create cross references (inverse) for the edges
692 /// NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
693 /// cg.edgeCrossRef(ecr);
694 /// // Copy an edge map
695 /// OrigGraph::EdgeMap<double> oemap(orig_graph);
696 /// NewGraph::EdgeMap<double> nemap(new_graph);
697 /// cg.edgeMap(oemap, nemap);
699 /// OrigGraph::Node on;
700 /// NewGraph::Node nn;
702 /// // Execute copying
705 template <typename From, typename To>
709 typedef typename From::Node Node;
710 typedef typename From::NodeIt NodeIt;
711 typedef typename From::Arc Arc;
712 typedef typename From::ArcIt ArcIt;
713 typedef typename From::Edge Edge;
714 typedef typename From::EdgeIt EdgeIt;
716 typedef typename To::Node TNode;
717 typedef typename To::Arc TArc;
718 typedef typename To::Edge TEdge;
720 typedef typename From::template NodeMap<TNode> NodeRefMap;
721 typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
724 ArcRefMap(const From& from, const To& to,
725 const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
726 : _from(from), _to(to),
727 _edge_ref(edge_ref), _node_ref(node_ref) {}
729 typedef typename From::Arc Key;
730 typedef typename To::Arc Value;
732 Value operator[](const Key& key) const {
733 bool forward = _from.u(key) != _from.v(key) ?
734 _node_ref[_from.source(key)] ==
735 _to.source(_to.direct(_edge_ref[key], true)) :
736 _from.direction(key);
737 return _to.direct(_edge_ref[key], forward);
742 const EdgeRefMap& _edge_ref;
743 const NodeRefMap& _node_ref;
748 /// \brief Constructor of GraphCopy.
750 /// Constructor of GraphCopy for copying the content of the
751 /// \c from graph into the \c to graph.
752 GraphCopy(const From& from, To& to)
753 : _from(from), _to(to) {}
755 /// \brief Destructor of GraphCopy
757 /// Destructor of GraphCopy.
759 for (int i = 0; i < int(_node_maps.size()); ++i) {
760 delete _node_maps[i];
762 for (int i = 0; i < int(_arc_maps.size()); ++i) {
765 for (int i = 0; i < int(_edge_maps.size()); ++i) {
766 delete _edge_maps[i];
770 /// \brief Copy the node references into the given map.
772 /// This function copies the node references into the given map.
773 /// The parameter should be a map, whose key type is the Node type of
774 /// the source graph, while the value type is the Node type of the
775 /// destination graph.
776 template <typename NodeRef>
777 GraphCopy& nodeRef(NodeRef& map) {
778 _node_maps.push_back(new _core_bits::RefCopy<From, Node,
779 NodeRefMap, NodeRef>(map));
783 /// \brief Copy the node cross references into the given map.
785 /// This function copies the node cross references (reverse references)
786 /// into the given map. The parameter should be a map, whose key type
787 /// is the Node type of the destination graph, while the value type is
788 /// the Node type of the source graph.
789 template <typename NodeCrossRef>
790 GraphCopy& nodeCrossRef(NodeCrossRef& map) {
791 _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
792 NodeRefMap, NodeCrossRef>(map));
796 /// \brief Make a copy of the given node map.
798 /// This function makes a copy of the given node map for the newly
800 /// The key type of the new map \c tmap should be the Node type of the
801 /// destination graph, and the key type of the original map \c map
802 /// should be the Node type of the source graph.
803 template <typename FromMap, typename ToMap>
804 GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
805 _node_maps.push_back(new _core_bits::MapCopy<From, Node,
806 NodeRefMap, FromMap, ToMap>(map, tmap));
810 /// \brief Make a copy of the given node.
812 /// This function makes a copy of the given node.
813 GraphCopy& node(const Node& node, TNode& tnode) {
814 _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
815 NodeRefMap, TNode>(node, tnode));
819 /// \brief Copy the arc references into the given map.
821 /// This function copies the arc references into the given map.
822 /// The parameter should be a map, whose key type is the Arc type of
823 /// the source graph, while the value type is the Arc type of the
824 /// destination graph.
825 template <typename ArcRef>
826 GraphCopy& arcRef(ArcRef& map) {
827 _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
828 ArcRefMap, ArcRef>(map));
832 /// \brief Copy the arc cross references into the given map.
834 /// This function copies the arc cross references (reverse references)
835 /// into the given map. The parameter should be a map, whose key type
836 /// is the Arc type of the destination graph, while the value type is
837 /// the Arc type of the source graph.
838 template <typename ArcCrossRef>
839 GraphCopy& arcCrossRef(ArcCrossRef& map) {
840 _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
841 ArcRefMap, ArcCrossRef>(map));
845 /// \brief Make a copy of the given arc map.
847 /// This function makes a copy of the given arc map for the newly
849 /// The key type of the new map \c tmap should be the Arc type of the
850 /// destination graph, and the key type of the original map \c map
851 /// should be the Arc type of the source graph.
852 template <typename FromMap, typename ToMap>
853 GraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
854 _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
855 ArcRefMap, FromMap, ToMap>(map, tmap));
859 /// \brief Make a copy of the given arc.
861 /// This function makes a copy of the given arc.
862 GraphCopy& arc(const Arc& arc, TArc& tarc) {
863 _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
864 ArcRefMap, TArc>(arc, tarc));
868 /// \brief Copy the edge references into the given map.
870 /// This function copies the edge references into the given map.
871 /// The parameter should be a map, whose key type is the Edge type of
872 /// the source graph, while the value type is the Edge type of the
873 /// destination graph.
874 template <typename EdgeRef>
875 GraphCopy& edgeRef(EdgeRef& map) {
876 _edge_maps.push_back(new _core_bits::RefCopy<From, Edge,
877 EdgeRefMap, EdgeRef>(map));
881 /// \brief Copy the edge cross references into the given map.
883 /// This function copies the edge cross references (reverse references)
884 /// into the given map. The parameter should be a map, whose key type
885 /// is the Edge type of the destination graph, while the value type is
886 /// the Edge type of the source graph.
887 template <typename EdgeCrossRef>
888 GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
889 _edge_maps.push_back(new _core_bits::CrossRefCopy<From,
890 Edge, EdgeRefMap, EdgeCrossRef>(map));
894 /// \brief Make a copy of the given edge map.
896 /// This function makes a copy of the given edge map for the newly
898 /// The key type of the new map \c tmap should be the Edge type of the
899 /// destination graph, and the key type of the original map \c map
900 /// should be the Edge type of the source graph.
901 template <typename FromMap, typename ToMap>
902 GraphCopy& edgeMap(const FromMap& map, ToMap& tmap) {
903 _edge_maps.push_back(new _core_bits::MapCopy<From, Edge,
904 EdgeRefMap, FromMap, ToMap>(map, tmap));
908 /// \brief Make a copy of the given edge.
910 /// This function makes a copy of the given edge.
911 GraphCopy& edge(const Edge& edge, TEdge& tedge) {
912 _edge_maps.push_back(new _core_bits::ItemCopy<From, Edge,
913 EdgeRefMap, TEdge>(edge, tedge));
917 /// \brief Execute copying.
919 /// This function executes the copying of the graph along with the
920 /// copying of the assigned data.
922 NodeRefMap nodeRefMap(_from);
923 EdgeRefMap edgeRefMap(_from);
924 ArcRefMap arcRefMap(_from, _to, edgeRefMap, nodeRefMap);
925 _core_bits::GraphCopySelector<To>::
926 copy(_from, _to, nodeRefMap, edgeRefMap);
927 for (int i = 0; i < int(_node_maps.size()); ++i) {
928 _node_maps[i]->copy(_from, nodeRefMap);
930 for (int i = 0; i < int(_edge_maps.size()); ++i) {
931 _edge_maps[i]->copy(_from, edgeRefMap);
933 for (int i = 0; i < int(_arc_maps.size()); ++i) {
934 _arc_maps[i]->copy(_from, arcRefMap);
943 std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
946 std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
949 std::vector<_core_bits::MapCopyBase<From, Edge, EdgeRefMap>* >
954 /// \brief Copy a graph to another graph.
956 /// This function copies a graph to another graph.
957 /// The complete usage of it is detailed in the GraphCopy class,
958 /// but a short example shows a basic work:
960 /// graphCopy(src, trg).nodeRef(nr).edgeCrossRef(ecr).run();
963 /// After the copy the \c nr map will contain the mapping from the
964 /// nodes of the \c from graph to the nodes of the \c to graph and
965 /// \c ecr will contain the mapping from the edges of the \c to graph
966 /// to the edges of the \c from graph.
969 template <typename From, typename To>
971 graphCopy(const From& from, To& to) {
972 return GraphCopy<From, To>(from, to);
975 namespace _core_bits {
977 template <typename Graph, typename Enable = void>
978 struct FindArcSelector {
979 typedef typename Graph::Node Node;
980 typedef typename Graph::Arc Arc;
981 static Arc find(const Graph &g, Node u, Node v, Arc e) {
987 while (e != INVALID && g.target(e) != v) {
994 template <typename Graph>
995 struct FindArcSelector<
997 typename enable_if<typename Graph::FindArcTag, void>::type>
999 typedef typename Graph::Node Node;
1000 typedef typename Graph::Arc Arc;
1001 static Arc find(const Graph &g, Node u, Node v, Arc prev) {
1002 return g.findArc(u, v, prev);
1007 /// \brief Find an arc between two nodes of a digraph.
1009 /// This function finds an arc from node \c u to node \c v in the
1012 /// If \c prev is \ref INVALID (this is the default value), then
1013 /// it finds the first arc from \c u to \c v. Otherwise it looks for
1014 /// the next arc from \c u to \c v after \c prev.
1015 /// \return The found arc or \ref INVALID if there is no such an arc.
1017 /// Thus you can iterate through each arc from \c u to \c v as it follows.
1019 /// for(Arc e = findArc(g,u,v); e != INVALID; e = findArc(g,u,v,e)) {
1024 /// \note \ref ConArcIt provides iterator interface for the same
1028 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1029 template <typename Graph>
1030 inline typename Graph::Arc
1031 findArc(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1032 typename Graph::Arc prev = INVALID) {
1033 return _core_bits::FindArcSelector<Graph>::find(g, u, v, prev);
1036 /// \brief Iterator for iterating on parallel arcs connecting the same nodes.
1038 /// Iterator for iterating on parallel arcs connecting the same nodes. It is
1039 /// a higher level interface for the \ref findArc() function. You can
1040 /// use it the following way:
1042 /// for (ConArcIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1048 ///\sa ArcLookUp, AllArcLookUp, DynArcLookUp
1049 template <typename GR>
1050 class ConArcIt : public GR::Arc {
1051 typedef typename GR::Arc Parent;
1055 typedef typename GR::Arc Arc;
1056 typedef typename GR::Node Node;
1058 /// \brief Constructor.
1060 /// Construct a new ConArcIt iterating on the arcs that
1061 /// connects nodes \c u and \c v.
1062 ConArcIt(const GR& g, Node u, Node v) : _graph(g) {
1063 Parent::operator=(findArc(_graph, u, v));
1066 /// \brief Constructor.
1068 /// Construct a new ConArcIt that continues the iterating from arc \c a.
1069 ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {}
1071 /// \brief Increment operator.
1073 /// It increments the iterator and gives back the next arc.
1074 ConArcIt& operator++() {
1075 Parent::operator=(findArc(_graph, _graph.source(*this),
1076 _graph.target(*this), *this));
1083 namespace _core_bits {
1085 template <typename Graph, typename Enable = void>
1086 struct FindEdgeSelector {
1087 typedef typename Graph::Node Node;
1088 typedef typename Graph::Edge Edge;
1089 static Edge find(const Graph &g, Node u, Node v, Edge e) {
1093 g.firstInc(e, b, u);
1098 while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) {
1103 g.firstInc(e, b, u);
1108 while (e != INVALID && (!b || g.v(e) != v)) {
1116 template <typename Graph>
1117 struct FindEdgeSelector<
1119 typename enable_if<typename Graph::FindEdgeTag, void>::type>
1121 typedef typename Graph::Node Node;
1122 typedef typename Graph::Edge Edge;
1123 static Edge find(const Graph &g, Node u, Node v, Edge prev) {
1124 return g.findEdge(u, v, prev);
1129 /// \brief Find an edge between two nodes of a graph.
1131 /// This function finds an edge from node \c u to node \c v in graph \c g.
1132 /// If node \c u and node \c v is equal then each loop edge
1133 /// will be enumerated once.
1135 /// If \c prev is \ref INVALID (this is the default value), then
1136 /// it finds the first edge from \c u to \c v. Otherwise it looks for
1137 /// the next edge from \c u to \c v after \c prev.
1138 /// \return The found edge or \ref INVALID if there is no such an edge.
1140 /// Thus you can iterate through each edge between \c u and \c v
1143 /// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) {
1148 /// \note \ref ConEdgeIt provides iterator interface for the same
1152 template <typename Graph>
1153 inline typename Graph::Edge
1154 findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
1155 typename Graph::Edge p = INVALID) {
1156 return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p);
1159 /// \brief Iterator for iterating on parallel edges connecting the same nodes.
1161 /// Iterator for iterating on parallel edges connecting the same nodes.
1162 /// It is a higher level interface for the findEdge() function. You can
1163 /// use it the following way:
1165 /// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) {
1171 template <typename GR>
1172 class ConEdgeIt : public GR::Edge {
1173 typedef typename GR::Edge Parent;
1177 typedef typename GR::Edge Edge;
1178 typedef typename GR::Node Node;
1180 /// \brief Constructor.
1182 /// Construct a new ConEdgeIt iterating on the edges that
1183 /// connects nodes \c u and \c v.
1184 ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) {
1185 Parent::operator=(findEdge(_graph, _u, _v));
1188 /// \brief Constructor.
1190 /// Construct a new ConEdgeIt that continues iterating from edge \c e.
1191 ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {}
1193 /// \brief Increment operator.
1195 /// It increments the iterator and gives back the next edge.
1196 ConEdgeIt& operator++() {
1197 Parent::operator=(findEdge(_graph, _u, _v, *this));
1206 ///Dynamic arc look-up between given endpoints.
1208 ///Using this class, you can find an arc in a digraph from a given
1209 ///source to a given target in amortized time <em>O</em>(log<em>d</em>),
1210 ///where <em>d</em> is the out-degree of the source node.
1212 ///It is possible to find \e all parallel arcs between two nodes with
1213 ///the \c operator() member.
1215 ///This is a dynamic data structure. Consider to use \ref ArcLookUp or
1216 ///\ref AllArcLookUp if your digraph is not changed so frequently.
1218 ///This class uses a self-adjusting binary search tree, the Splay tree
1219 ///of Sleator and Tarjan to guarantee the logarithmic amortized
1220 ///time bound for arc look-ups. This class also guarantees the
1221 ///optimal time bound in a constant factor for any distribution of
1224 ///\tparam GR The type of the underlying digraph.
1228 template <typename GR>
1230 : protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase
1232 typedef typename ItemSetTraits<GR, typename GR::Arc>
1233 ::ItemNotifier::ObserverBase Parent;
1235 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1239 /// The Digraph type
1244 class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
1246 typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
1250 AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
1252 virtual void add(const Node& node) {
1254 Parent::set(node, INVALID);
1257 virtual void add(const std::vector<Node>& nodes) {
1259 for (int i = 0; i < int(nodes.size()); ++i) {
1260 Parent::set(nodes[i], INVALID);
1264 virtual void build() {
1267 typename Parent::Notifier* nf = Parent::notifier();
1268 for (nf->first(it); it != INVALID; nf->next(it)) {
1269 Parent::set(it, INVALID);
1277 ArcLess(const Digraph &_g) : g(_g) {}
1278 bool operator()(Arc a,Arc b) const
1280 return g.target(a)<g.target(b);
1288 typename Digraph::template ArcMap<Arc> _parent;
1289 typename Digraph::template ArcMap<Arc> _left;
1290 typename Digraph::template ArcMap<Arc> _right;
1298 ///It builds up the search database.
1299 DynArcLookUp(const Digraph &g)
1300 : _g(g),_head(g),_parent(g),_left(g),_right(g)
1302 Parent::attach(_g.notifier(typename Digraph::Arc()));
1308 virtual void add(const Arc& arc) {
1312 virtual void add(const std::vector<Arc>& arcs) {
1313 for (int i = 0; i < int(arcs.size()); ++i) {
1318 virtual void erase(const Arc& arc) {
1322 virtual void erase(const std::vector<Arc>& arcs) {
1323 for (int i = 0; i < int(arcs.size()); ++i) {
1328 virtual void build() {
1332 virtual void clear() {
1333 for(NodeIt n(_g);n!=INVALID;++n) {
1338 void insert(Arc arc) {
1339 Node s = _g.source(arc);
1340 Node t = _g.target(arc);
1341 _left[arc] = INVALID;
1342 _right[arc] = INVALID;
1347 _parent[arc] = INVALID;
1351 if (t < _g.target(e)) {
1352 if (_left[e] == INVALID) {
1361 if (_right[e] == INVALID) {
1373 void remove(Arc arc) {
1374 if (_left[arc] == INVALID) {
1375 if (_right[arc] != INVALID) {
1376 _parent[_right[arc]] = _parent[arc];
1378 if (_parent[arc] != INVALID) {
1379 if (_left[_parent[arc]] == arc) {
1380 _left[_parent[arc]] = _right[arc];
1382 _right[_parent[arc]] = _right[arc];
1385 _head[_g.source(arc)] = _right[arc];
1387 } else if (_right[arc] == INVALID) {
1388 _parent[_left[arc]] = _parent[arc];
1389 if (_parent[arc] != INVALID) {
1390 if (_left[_parent[arc]] == arc) {
1391 _left[_parent[arc]] = _left[arc];
1393 _right[_parent[arc]] = _left[arc];
1396 _head[_g.source(arc)] = _left[arc];
1400 if (_right[e] != INVALID) {
1402 while (_right[e] != INVALID) {
1406 _right[_parent[e]] = _left[e];
1407 if (_left[e] != INVALID) {
1408 _parent[_left[e]] = _parent[e];
1411 _left[e] = _left[arc];
1412 _parent[_left[arc]] = e;
1413 _right[e] = _right[arc];
1414 _parent[_right[arc]] = e;
1416 _parent[e] = _parent[arc];
1417 if (_parent[arc] != INVALID) {
1418 if (_left[_parent[arc]] == arc) {
1419 _left[_parent[arc]] = e;
1421 _right[_parent[arc]] = e;
1426 _right[e] = _right[arc];
1427 _parent[_right[arc]] = e;
1428 _parent[e] = _parent[arc];
1430 if (_parent[arc] != INVALID) {
1431 if (_left[_parent[arc]] == arc) {
1432 _left[_parent[arc]] = e;
1434 _right[_parent[arc]] = e;
1437 _head[_g.source(arc)] = e;
1443 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1448 Arc left = refreshRec(v,a,m-1);
1452 _left[me] = INVALID;
1455 Arc right = refreshRec(v,m+1,b);
1457 _parent[right] = me;
1459 _right[me] = INVALID;
1465 for(NodeIt n(_g);n!=INVALID;++n) {
1467 for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
1469 std::sort(v.begin(),v.end(),ArcLess(_g));
1470 Arc head = refreshRec(v,0,v.size()-1);
1472 _parent[head] = INVALID;
1474 else _head[n] = INVALID;
1480 _parent[v] = _parent[w];
1482 _left[w] = _right[v];
1484 if (_parent[v] != INVALID) {
1485 if (_right[_parent[v]] == w) {
1486 _right[_parent[v]] = v;
1488 _left[_parent[v]] = v;
1491 if (_left[w] != INVALID){
1492 _parent[_left[w]] = w;
1498 _parent[v] = _parent[w];
1500 _right[w] = _left[v];
1502 if (_parent[v] != INVALID){
1503 if (_left[_parent[v]] == w) {
1504 _left[_parent[v]] = v;
1506 _right[_parent[v]] = v;
1509 if (_right[w] != INVALID){
1510 _parent[_right[w]] = w;
1515 while (_parent[v] != INVALID) {
1516 if (v == _left[_parent[v]]) {
1517 if (_parent[_parent[v]] == INVALID) {
1520 if (_parent[v] == _left[_parent[_parent[v]]]) {
1529 if (_parent[_parent[v]] == INVALID) {
1532 if (_parent[v] == _left[_parent[_parent[v]]]) {
1542 _head[_g.source(v)] = v;
1548 ///Find an arc between two nodes.
1550 ///Find an arc between two nodes.
1551 ///\param s The source node.
1552 ///\param t The target node.
1553 ///\param p The previous arc between \c s and \c t. It it is INVALID or
1554 ///not given, the operator finds the first appropriate arc.
1555 ///\return An arc from \c s to \c t after \c p or
1556 ///\ref INVALID if there is no more.
1558 ///For example, you can count the number of arcs from \c u to \c v in the
1561 ///DynArcLookUp<ListDigraph> ae(g);
1564 ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
1567 ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
1568 ///amortized time, specifically, the time complexity of the lookups
1569 ///is equal to the optimal search tree implementation for the
1570 ///current query distribution in a constant factor.
1572 ///\note This is a dynamic data structure, therefore the data
1573 ///structure is updated after each graph alteration. Thus although
1574 ///this data structure is theoretically faster than \ref ArcLookUp
1575 ///and \ref AllArcLookUp, it often provides worse performance than
1577 Arc operator()(Node s, Node t, Arc p = INVALID) const {
1580 if (a == INVALID) return INVALID;
1583 if (_g.target(a) < t) {
1584 if (_right[a] == INVALID) {
1585 const_cast<DynArcLookUp&>(*this).splay(a);
1591 if (_g.target(a) == t) {
1594 if (_left[a] == INVALID) {
1595 const_cast<DynArcLookUp&>(*this).splay(a);
1604 if (_right[a] != INVALID) {
1606 while (_left[a] != INVALID) {
1609 const_cast<DynArcLookUp&>(*this).splay(a);
1611 while (_parent[a] != INVALID && _right[_parent[a]] == a) {
1614 if (_parent[a] == INVALID) {
1618 const_cast<DynArcLookUp&>(*this).splay(a);
1621 if (_g.target(a) == t) return a;
1622 else return INVALID;
1628 ///Fast arc look-up between given endpoints.
1630 ///Using this class, you can find an arc in a digraph from a given
1631 ///source to a given target in time <em>O</em>(log<em>d</em>),
1632 ///where <em>d</em> is the out-degree of the source node.
1634 ///It is not possible to find \e all parallel arcs between two nodes.
1635 ///Use \ref AllArcLookUp for this purpose.
1637 ///\warning This class is static, so you should call refresh() (or at
1638 ///least refresh(Node)) to refresh this data structure whenever the
1639 ///digraph changes. This is a time consuming (superlinearly proportional
1640 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1642 ///\tparam GR The type of the underlying digraph.
1649 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1653 /// The Digraph type
1658 typename Digraph::template NodeMap<Arc> _head;
1659 typename Digraph::template ArcMap<Arc> _left;
1660 typename Digraph::template ArcMap<Arc> _right;
1665 ArcLess(const Digraph &_g) : g(_g) {}
1666 bool operator()(Arc a,Arc b) const
1668 return g.target(a)<g.target(b);
1678 ///It builds up the search database, which remains valid until the digraph
1680 ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
1683 Arc refreshRec(std::vector<Arc> &v,int a,int b)
1687 _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
1688 _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
1692 ///Refresh the search data structure at a node.
1694 ///Build up the search database of node \c n.
1696 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
1697 ///is the number of the outgoing arcs of \c n.
1698 void refresh(Node n)
1701 for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1703 std::sort(v.begin(),v.end(),ArcLess(_g));
1704 _head[n]=refreshRec(v,0,v.size()-1);
1706 else _head[n]=INVALID;
1708 ///Refresh the full data structure.
1710 ///Build up the full search database. In fact, it simply calls
1711 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1713 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1714 ///the number of the arcs in the digraph and <em>D</em> is the maximum
1715 ///out-degree of the digraph.
1718 for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
1721 ///Find an arc between two nodes.
1723 ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
1724 ///where <em>d</em> is the number of outgoing arcs of \c s.
1725 ///\param s The source node.
1726 ///\param t The target node.
1727 ///\return An arc from \c s to \c t if there exists,
1728 ///\ref INVALID otherwise.
1730 ///\warning If you change the digraph, refresh() must be called before using
1731 ///this operator. If you change the outgoing arcs of
1732 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1733 Arc operator()(Node s, Node t) const
1737 e!=INVALID&&_g.target(e)!=t;
1738 e = t < _g.target(e)?_left[e]:_right[e]) ;
1744 ///Fast look-up of all arcs between given endpoints.
1746 ///This class is the same as \ref ArcLookUp, with the addition
1747 ///that it makes it possible to find all parallel arcs between given
1750 ///\warning This class is static, so you should call refresh() (or at
1751 ///least refresh(Node)) to refresh this data structure whenever the
1752 ///digraph changes. This is a time consuming (superlinearly proportional
1753 ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1755 ///\tparam GR The type of the underlying digraph.
1760 class AllArcLookUp : public ArcLookUp<GR>
1762 using ArcLookUp<GR>::_g;
1763 using ArcLookUp<GR>::_right;
1764 using ArcLookUp<GR>::_left;
1765 using ArcLookUp<GR>::_head;
1767 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
1769 typename GR::template ArcMap<Arc> _next;
1771 Arc refreshNext(Arc head,Arc next=INVALID)
1773 if(head==INVALID) return next;
1775 next=refreshNext(_right[head],next);
1776 _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
1778 return refreshNext(_left[head],head);
1784 for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
1789 /// The Digraph type
1796 ///It builds up the search database, which remains valid until the digraph
1798 AllArcLookUp(const Digraph &g) : ArcLookUp<GR>(g), _next(g) {refreshNext();}
1800 ///Refresh the data structure at a node.
1802 ///Build up the search database of node \c n.
1804 ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
1805 ///the number of the outgoing arcs of \c n.
1806 void refresh(Node n)
1808 ArcLookUp<GR>::refresh(n);
1809 refreshNext(_head[n]);
1812 ///Refresh the full data structure.
1814 ///Build up the full search database. In fact, it simply calls
1815 ///\ref refresh(Node) "refresh(n)" for each node \c n.
1817 ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1818 ///the number of the arcs in the digraph and <em>D</em> is the maximum
1819 ///out-degree of the digraph.
1822 for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
1825 ///Find an arc between two nodes.
1827 ///Find an arc between two nodes.
1828 ///\param s The source node.
1829 ///\param t The target node.
1830 ///\param prev The previous arc between \c s and \c t. It it is INVALID or
1831 ///not given, the operator finds the first appropriate arc.
1832 ///\return An arc from \c s to \c t after \c prev or
1833 ///\ref INVALID if there is no more.
1835 ///For example, you can count the number of arcs from \c u to \c v in the
1838 ///AllArcLookUp<ListDigraph> ae(g);
1841 ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
1844 ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
1845 ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
1846 ///consecutive arcs are found in constant time.
1848 ///\warning If you change the digraph, refresh() must be called before using
1849 ///this operator. If you change the outgoing arcs of
1850 ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1853 Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
1855 using ArcLookUp<GR>::operator() ;
1856 Arc operator()(Node s, Node t, Arc prev) const
1858 return prev==INVALID?(*this)(s,t):_next[prev];