1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2010
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_NETWORK_SIMPLEX_H
20 #define LEMON_NETWORK_SIMPLEX_H
22 /// \ingroup min_cost_flow_algs
25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
31 #include <lemon/core.h>
32 #include <lemon/math.h>
36 /// \addtogroup min_cost_flow_algs
39 /// \brief Implementation of the primal Network Simplex algorithm
40 /// for finding a \ref min_cost_flow "minimum cost flow".
42 /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43 /// for finding a \ref min_cost_flow "minimum cost flow"
44 /// \ref amo93networkflows, \ref dantzig63linearprog,
45 /// \ref kellyoneill91netsimplex.
46 /// This algorithm is a highly efficient specialized version of the
47 /// linear programming simplex method directly for the minimum cost
50 /// In general, %NetworkSimplex is the fastest implementation available
51 /// in LEMON for this problem.
52 /// Moreover, it supports both directions of the supply/demand inequality
53 /// constraints. For more information, see \ref SupplyType.
55 /// Most of the parameters of the problem (except for the digraph)
56 /// can be given using separate functions, and the algorithm can be
57 /// executed using the \ref run() function. If some parameters are not
58 /// specified, then default values will be used.
60 /// \tparam GR The digraph type the algorithm runs on.
61 /// \tparam V The number type used for flow amounts, capacity bounds
62 /// and supply values in the algorithm. By default, it is \c int.
63 /// \tparam C The number type used for costs and potentials in the
64 /// algorithm. By default, it is the same as \c V.
66 /// \warning Both number types must be signed and all input data must
69 /// \note %NetworkSimplex provides five different pivot rule
70 /// implementations, from which the most efficient one is used
71 /// by default. For more information, see \ref PivotRule.
72 template <typename GR, typename V = int, typename C = V>
77 /// The type of the flow amounts, capacity bounds and supply values
79 /// The type of the arc costs
84 /// \brief Problem type constants for the \c run() function.
86 /// Enum type containing the problem type constants that can be
87 /// returned by the \ref run() function of the algorithm.
89 /// The problem has no feasible solution (flow).
91 /// The problem has optimal solution (i.e. it is feasible and
92 /// bounded), and the algorithm has found optimal flow and node
93 /// potentials (primal and dual solutions).
95 /// The objective function of the problem is unbounded, i.e.
96 /// there is a directed cycle having negative total cost and
97 /// infinite upper bound.
101 /// \brief Constants for selecting the type of the supply constraints.
103 /// Enum type containing constants for selecting the supply type,
104 /// i.e. the direction of the inequalities in the supply/demand
105 /// constraints of the \ref min_cost_flow "minimum cost flow problem".
107 /// The default supply type is \c GEQ, the \c LEQ type can be
108 /// selected using \ref supplyType().
109 /// The equality form is a special case of both supply types.
111 /// This option means that there are <em>"greater or equal"</em>
112 /// supply/demand constraints in the definition of the problem.
114 /// This option means that there are <em>"less or equal"</em>
115 /// supply/demand constraints in the definition of the problem.
119 /// \brief Constants for selecting the pivot rule.
121 /// Enum type containing constants for selecting the pivot rule for
122 /// the \ref run() function.
124 /// \ref NetworkSimplex provides five different pivot rule
125 /// implementations that significantly affect the running time
126 /// of the algorithm.
127 /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
128 /// proved to be the most efficient and the most robust on various
130 /// However, another pivot rule can be selected using the \ref run()
131 /// function with the proper parameter.
134 /// The \e First \e Eligible pivot rule.
135 /// The next eligible arc is selected in a wraparound fashion
136 /// in every iteration.
139 /// The \e Best \e Eligible pivot rule.
140 /// The best eligible arc is selected in every iteration.
143 /// The \e Block \e Search pivot rule.
144 /// A specified number of arcs are examined in every iteration
145 /// in a wraparound fashion and the best eligible arc is selected
149 /// The \e Candidate \e List pivot rule.
150 /// In a major iteration a candidate list is built from eligible arcs
151 /// in a wraparound fashion and in the following minor iterations
152 /// the best eligible arc is selected from this list.
155 /// The \e Altering \e Candidate \e List pivot rule.
156 /// It is a modified version of the Candidate List method.
157 /// It keeps only the several best eligible arcs from the former
158 /// candidate list and extends this list in every iteration.
164 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
166 typedef std::vector<int> IntVector;
167 typedef std::vector<Value> ValueVector;
168 typedef std::vector<Cost> CostVector;
169 typedef std::vector<char> BoolVector;
170 // Note: vector<char> is used instead of vector<bool> for efficiency reasons
172 // State constants for arcs
179 typedef std::vector<signed char> StateVector;
180 // Note: vector<signed char> is used instead of vector<ArcState> for
181 // efficiency reasons
185 // Data related to the underlying digraph
192 // Parameters of the problem
197 // Data structures for storing the digraph
213 // Data for storing the spanning tree structure
217 IntVector _rev_thread;
219 IntVector _last_succ;
220 IntVector _dirty_revs;
225 // Temporary data used in the current pivot iteration
226 int in_arc, join, u_in, v_in, u_out, v_out;
227 int first, second, right, last;
228 int stem, par_stem, new_stem;
235 /// \brief Constant for infinite upper bounds (capacities).
237 /// Constant for infinite upper bounds (capacities).
238 /// It is \c std::numeric_limits<Value>::infinity() if available,
239 /// \c std::numeric_limits<Value>::max() otherwise.
244 // Implementation of the First Eligible pivot rule
245 class FirstEligiblePivotRule
249 // References to the NetworkSimplex class
250 const IntVector &_source;
251 const IntVector &_target;
252 const CostVector &_cost;
253 const StateVector &_state;
254 const CostVector &_pi;
264 FirstEligiblePivotRule(NetworkSimplex &ns) :
265 _source(ns._source), _target(ns._target),
266 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
267 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
271 // Find next entering arc
272 bool findEnteringArc() {
274 for (int e = _next_arc; e != _search_arc_num; ++e) {
275 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
282 for (int e = 0; e != _next_arc; ++e) {
283 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
293 }; //class FirstEligiblePivotRule
296 // Implementation of the Best Eligible pivot rule
297 class BestEligiblePivotRule
301 // References to the NetworkSimplex class
302 const IntVector &_source;
303 const IntVector &_target;
304 const CostVector &_cost;
305 const StateVector &_state;
306 const CostVector &_pi;
313 BestEligiblePivotRule(NetworkSimplex &ns) :
314 _source(ns._source), _target(ns._target),
315 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
316 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
319 // Find next entering arc
320 bool findEnteringArc() {
322 for (int e = 0; e != _search_arc_num; ++e) {
323 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
332 }; //class BestEligiblePivotRule
335 // Implementation of the Block Search pivot rule
336 class BlockSearchPivotRule
340 // References to the NetworkSimplex class
341 const IntVector &_source;
342 const IntVector &_target;
343 const CostVector &_cost;
344 const StateVector &_state;
345 const CostVector &_pi;
356 BlockSearchPivotRule(NetworkSimplex &ns) :
357 _source(ns._source), _target(ns._target),
358 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
359 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
362 // The main parameters of the pivot rule
363 const double BLOCK_SIZE_FACTOR = 1.0;
364 const int MIN_BLOCK_SIZE = 10;
366 _block_size = std::max( int(BLOCK_SIZE_FACTOR *
367 std::sqrt(double(_search_arc_num))),
371 // Find next entering arc
372 bool findEnteringArc() {
374 int cnt = _block_size;
376 for (e = _next_arc; e != _search_arc_num; ++e) {
377 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
383 if (min < 0) goto search_end;
387 for (e = 0; e != _next_arc; ++e) {
388 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
394 if (min < 0) goto search_end;
398 if (min >= 0) return false;
405 }; //class BlockSearchPivotRule
408 // Implementation of the Candidate List pivot rule
409 class CandidateListPivotRule
413 // References to the NetworkSimplex class
414 const IntVector &_source;
415 const IntVector &_target;
416 const CostVector &_cost;
417 const StateVector &_state;
418 const CostVector &_pi;
423 IntVector _candidates;
424 int _list_length, _minor_limit;
425 int _curr_length, _minor_count;
431 CandidateListPivotRule(NetworkSimplex &ns) :
432 _source(ns._source), _target(ns._target),
433 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
434 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
437 // The main parameters of the pivot rule
438 const double LIST_LENGTH_FACTOR = 0.25;
439 const int MIN_LIST_LENGTH = 10;
440 const double MINOR_LIMIT_FACTOR = 0.1;
441 const int MIN_MINOR_LIMIT = 3;
443 _list_length = std::max( int(LIST_LENGTH_FACTOR *
444 std::sqrt(double(_search_arc_num))),
446 _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
448 _curr_length = _minor_count = 0;
449 _candidates.resize(_list_length);
452 /// Find next entering arc
453 bool findEnteringArc() {
456 if (_curr_length > 0 && _minor_count < _minor_limit) {
457 // Minor iteration: select the best eligible arc from the
458 // current candidate list
461 for (int i = 0; i < _curr_length; ++i) {
463 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
469 _candidates[i--] = _candidates[--_curr_length];
472 if (min < 0) return true;
475 // Major iteration: build a new candidate list
478 for (e = _next_arc; e != _search_arc_num; ++e) {
479 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
481 _candidates[_curr_length++] = e;
486 if (_curr_length == _list_length) goto search_end;
489 for (e = 0; e != _next_arc; ++e) {
490 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
492 _candidates[_curr_length++] = e;
497 if (_curr_length == _list_length) goto search_end;
500 if (_curr_length == 0) return false;
508 }; //class CandidateListPivotRule
511 // Implementation of the Altering Candidate List pivot rule
512 class AlteringListPivotRule
516 // References to the NetworkSimplex class
517 const IntVector &_source;
518 const IntVector &_target;
519 const CostVector &_cost;
520 const StateVector &_state;
521 const CostVector &_pi;
526 int _block_size, _head_length, _curr_length;
528 IntVector _candidates;
529 CostVector _cand_cost;
531 // Functor class to compare arcs during sort of the candidate list
535 const CostVector &_map;
537 SortFunc(const CostVector &map) : _map(map) {}
538 bool operator()(int left, int right) {
539 return _map[left] > _map[right];
548 AlteringListPivotRule(NetworkSimplex &ns) :
549 _source(ns._source), _target(ns._target),
550 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
551 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
552 _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
554 // The main parameters of the pivot rule
555 const double BLOCK_SIZE_FACTOR = 1.0;
556 const int MIN_BLOCK_SIZE = 10;
557 const double HEAD_LENGTH_FACTOR = 0.1;
558 const int MIN_HEAD_LENGTH = 3;
560 _block_size = std::max( int(BLOCK_SIZE_FACTOR *
561 std::sqrt(double(_search_arc_num))),
563 _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
565 _candidates.resize(_head_length + _block_size);
569 // Find next entering arc
570 bool findEnteringArc() {
571 // Check the current candidate list
573 for (int i = 0; i != _curr_length; ++i) {
575 _cand_cost[e] = _state[e] *
576 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
577 if (_cand_cost[e] >= 0) {
578 _candidates[i--] = _candidates[--_curr_length];
583 int cnt = _block_size;
584 int limit = _head_length;
586 for (e = _next_arc; e != _search_arc_num; ++e) {
587 _cand_cost[e] = _state[e] *
588 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
589 if (_cand_cost[e] < 0) {
590 _candidates[_curr_length++] = e;
593 if (_curr_length > limit) goto search_end;
598 for (e = 0; e != _next_arc; ++e) {
599 _cand_cost[e] = _state[e] *
600 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
601 if (_cand_cost[e] < 0) {
602 _candidates[_curr_length++] = e;
605 if (_curr_length > limit) goto search_end;
610 if (_curr_length == 0) return false;
614 // Make heap of the candidate list (approximating a partial sort)
615 make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
618 // Pop the first element of the heap
619 _in_arc = _candidates[0];
621 pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
623 _curr_length = std::min(_head_length, _curr_length - 1);
627 }; //class AlteringListPivotRule
631 /// \brief Constructor.
633 /// The constructor of the class.
635 /// \param graph The digraph the algorithm runs on.
636 /// \param arc_mixing Indicate if the arcs have to be stored in a
637 /// mixed order in the internal data structure.
638 /// In special cases, it could lead to better overall performance,
639 /// but it is usually slower. Therefore it is disabled by default.
640 NetworkSimplex(const GR& graph, bool arc_mixing = false) :
641 _graph(graph), _node_id(graph), _arc_id(graph),
642 _arc_mixing(arc_mixing),
643 MAX(std::numeric_limits<Value>::max()),
644 INF(std::numeric_limits<Value>::has_infinity ?
645 std::numeric_limits<Value>::infinity() : MAX)
647 // Check the number types
648 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
649 "The flow type of NetworkSimplex must be signed");
650 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
651 "The cost type of NetworkSimplex must be signed");
653 // Reset data structures
658 /// The parameters of the algorithm can be specified using these
663 /// \brief Set the lower bounds on the arcs.
665 /// This function sets the lower bounds on the arcs.
666 /// If it is not used before calling \ref run(), the lower bounds
667 /// will be set to zero on all arcs.
669 /// \param map An arc map storing the lower bounds.
670 /// Its \c Value type must be convertible to the \c Value type
671 /// of the algorithm.
673 /// \return <tt>(*this)</tt>
674 template <typename LowerMap>
675 NetworkSimplex& lowerMap(const LowerMap& map) {
677 for (ArcIt a(_graph); a != INVALID; ++a) {
678 _lower[_arc_id[a]] = map[a];
683 /// \brief Set the upper bounds (capacities) on the arcs.
685 /// This function sets the upper bounds (capacities) on the arcs.
686 /// If it is not used before calling \ref run(), the upper bounds
687 /// will be set to \ref INF on all arcs (i.e. the flow value will be
688 /// unbounded from above).
690 /// \param map An arc map storing the upper bounds.
691 /// Its \c Value type must be convertible to the \c Value type
692 /// of the algorithm.
694 /// \return <tt>(*this)</tt>
695 template<typename UpperMap>
696 NetworkSimplex& upperMap(const UpperMap& map) {
697 for (ArcIt a(_graph); a != INVALID; ++a) {
698 _upper[_arc_id[a]] = map[a];
703 /// \brief Set the costs of the arcs.
705 /// This function sets the costs of the arcs.
706 /// If it is not used before calling \ref run(), the costs
707 /// will be set to \c 1 on all arcs.
709 /// \param map An arc map storing the costs.
710 /// Its \c Value type must be convertible to the \c Cost type
711 /// of the algorithm.
713 /// \return <tt>(*this)</tt>
714 template<typename CostMap>
715 NetworkSimplex& costMap(const CostMap& map) {
716 for (ArcIt a(_graph); a != INVALID; ++a) {
717 _cost[_arc_id[a]] = map[a];
722 /// \brief Set the supply values of the nodes.
724 /// This function sets the supply values of the nodes.
725 /// If neither this function nor \ref stSupply() is used before
726 /// calling \ref run(), the supply of each node will be set to zero.
728 /// \param map A node map storing the supply values.
729 /// Its \c Value type must be convertible to the \c Value type
730 /// of the algorithm.
732 /// \return <tt>(*this)</tt>
733 template<typename SupplyMap>
734 NetworkSimplex& supplyMap(const SupplyMap& map) {
735 for (NodeIt n(_graph); n != INVALID; ++n) {
736 _supply[_node_id[n]] = map[n];
741 /// \brief Set single source and target nodes and a supply value.
743 /// This function sets a single source node and a single target node
744 /// and the required flow value.
745 /// If neither this function nor \ref supplyMap() is used before
746 /// calling \ref run(), the supply of each node will be set to zero.
748 /// Using this function has the same effect as using \ref supplyMap()
749 /// with such a map in which \c k is assigned to \c s, \c -k is
750 /// assigned to \c t and all other nodes have zero supply value.
752 /// \param s The source node.
753 /// \param t The target node.
754 /// \param k The required amount of flow from node \c s to node \c t
755 /// (i.e. the supply of \c s and the demand of \c t).
757 /// \return <tt>(*this)</tt>
758 NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
759 for (int i = 0; i != _node_num; ++i) {
762 _supply[_node_id[s]] = k;
763 _supply[_node_id[t]] = -k;
767 /// \brief Set the type of the supply constraints.
769 /// This function sets the type of the supply/demand constraints.
770 /// If it is not used before calling \ref run(), the \ref GEQ supply
771 /// type will be used.
773 /// For more information, see \ref SupplyType.
775 /// \return <tt>(*this)</tt>
776 NetworkSimplex& supplyType(SupplyType supply_type) {
777 _stype = supply_type;
783 /// \name Execution Control
784 /// The algorithm can be executed using \ref run().
788 /// \brief Run the algorithm.
790 /// This function runs the algorithm.
791 /// The paramters can be specified using functions \ref lowerMap(),
792 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
793 /// \ref supplyType().
796 /// NetworkSimplex<ListDigraph> ns(graph);
797 /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
798 /// .supplyMap(sup).run();
801 /// This function can be called more than once. All the given parameters
802 /// are kept for the next call, unless \ref resetParams() or \ref reset()
803 /// is used, thus only the modified parameters have to be set again.
804 /// If the underlying digraph was also modified after the construction
805 /// of the class (or the last \ref reset() call), then the \ref reset()
806 /// function must be called.
808 /// \param pivot_rule The pivot rule that will be used during the
809 /// algorithm. For more information, see \ref PivotRule.
811 /// \return \c INFEASIBLE if no feasible flow exists,
812 /// \n \c OPTIMAL if the problem has optimal solution
813 /// (i.e. it is feasible and bounded), and the algorithm has found
814 /// optimal flow and node potentials (primal and dual solutions),
815 /// \n \c UNBOUNDED if the objective function of the problem is
816 /// unbounded, i.e. there is a directed cycle having negative total
817 /// cost and infinite upper bound.
819 /// \see ProblemType, PivotRule
820 /// \see resetParams(), reset()
821 ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
822 if (!init()) return INFEASIBLE;
823 return start(pivot_rule);
826 /// \brief Reset all the parameters that have been given before.
828 /// This function resets all the paramaters that have been given
829 /// before using functions \ref lowerMap(), \ref upperMap(),
830 /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
832 /// It is useful for multiple \ref run() calls. Basically, all the given
833 /// parameters are kept for the next \ref run() call, unless
834 /// \ref resetParams() or \ref reset() is used.
835 /// If the underlying digraph was also modified after the construction
836 /// of the class or the last \ref reset() call, then the \ref reset()
837 /// function must be used, otherwise \ref resetParams() is sufficient.
841 /// NetworkSimplex<ListDigraph> ns(graph);
844 /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
845 /// .supplyMap(sup).run();
847 /// // Run again with modified cost map (resetParams() is not called,
848 /// // so only the cost map have to be set again)
850 /// ns.costMap(cost).run();
852 /// // Run again from scratch using resetParams()
853 /// // (the lower bounds will be set to zero on all arcs)
854 /// ns.resetParams();
855 /// ns.upperMap(capacity).costMap(cost)
856 /// .supplyMap(sup).run();
859 /// \return <tt>(*this)</tt>
861 /// \see reset(), run()
862 NetworkSimplex& resetParams() {
863 for (int i = 0; i != _node_num; ++i) {
866 for (int i = 0; i != _arc_num; ++i) {
876 /// \brief Reset the internal data structures and all the parameters
877 /// that have been given before.
879 /// This function resets the internal data structures and all the
880 /// paramaters that have been given before using functions \ref lowerMap(),
881 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
882 /// \ref supplyType().
884 /// It is useful for multiple \ref run() calls. Basically, all the given
885 /// parameters are kept for the next \ref run() call, unless
886 /// \ref resetParams() or \ref reset() is used.
887 /// If the underlying digraph was also modified after the construction
888 /// of the class or the last \ref reset() call, then the \ref reset()
889 /// function must be used, otherwise \ref resetParams() is sufficient.
891 /// See \ref resetParams() for examples.
893 /// \return <tt>(*this)</tt>
895 /// \see resetParams(), run()
896 NetworkSimplex& reset() {
898 _node_num = countNodes(_graph);
899 _arc_num = countArcs(_graph);
900 int all_node_num = _node_num + 1;
901 int max_arc_num = _arc_num + 2 * _node_num;
903 _source.resize(max_arc_num);
904 _target.resize(max_arc_num);
906 _lower.resize(_arc_num);
907 _upper.resize(_arc_num);
908 _cap.resize(max_arc_num);
909 _cost.resize(max_arc_num);
910 _supply.resize(all_node_num);
911 _flow.resize(max_arc_num);
912 _pi.resize(all_node_num);
914 _parent.resize(all_node_num);
915 _pred.resize(all_node_num);
916 _forward.resize(all_node_num);
917 _thread.resize(all_node_num);
918 _rev_thread.resize(all_node_num);
919 _succ_num.resize(all_node_num);
920 _last_succ.resize(all_node_num);
921 _state.resize(max_arc_num);
925 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
929 // Store the arcs in a mixed order
930 int k = std::max(int(std::sqrt(double(_arc_num))), 10);
932 for (ArcIt a(_graph); a != INVALID; ++a) {
934 _source[i] = _node_id[_graph.source(a)];
935 _target[i] = _node_id[_graph.target(a)];
936 if ((i += k) >= _arc_num) i = ++j;
939 // Store the arcs in the original order
941 for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
943 _source[i] = _node_id[_graph.source(a)];
944 _target[i] = _node_id[_graph.target(a)];
955 /// \name Query Functions
956 /// The results of the algorithm can be obtained using these
958 /// The \ref run() function must be called before using them.
962 /// \brief Return the total cost of the found flow.
964 /// This function returns the total cost of the found flow.
965 /// Its complexity is O(e).
967 /// \note The return type of the function can be specified as a
968 /// template parameter. For example,
970 /// ns.totalCost<double>();
972 /// It is useful if the total cost cannot be stored in the \c Cost
973 /// type of the algorithm, which is the default return type of the
976 /// \pre \ref run() must be called before using this function.
977 template <typename Number>
978 Number totalCost() const {
980 for (ArcIt a(_graph); a != INVALID; ++a) {
982 c += Number(_flow[i]) * Number(_cost[i]);
988 Cost totalCost() const {
989 return totalCost<Cost>();
993 /// \brief Return the flow on the given arc.
995 /// This function returns the flow on the given arc.
997 /// \pre \ref run() must be called before using this function.
998 Value flow(const Arc& a) const {
999 return _flow[_arc_id[a]];
1002 /// \brief Return the flow map (the primal solution).
1004 /// This function copies the flow value on each arc into the given
1005 /// map. The \c Value type of the algorithm must be convertible to
1006 /// the \c Value type of the map.
1008 /// \pre \ref run() must be called before using this function.
1009 template <typename FlowMap>
1010 void flowMap(FlowMap &map) const {
1011 for (ArcIt a(_graph); a != INVALID; ++a) {
1012 map.set(a, _flow[_arc_id[a]]);
1016 /// \brief Return the potential (dual value) of the given node.
1018 /// This function returns the potential (dual value) of the
1021 /// \pre \ref run() must be called before using this function.
1022 Cost potential(const Node& n) const {
1023 return _pi[_node_id[n]];
1026 /// \brief Return the potential map (the dual solution).
1028 /// This function copies the potential (dual value) of each node
1029 /// into the given map.
1030 /// The \c Cost type of the algorithm must be convertible to the
1031 /// \c Value type of the map.
1033 /// \pre \ref run() must be called before using this function.
1034 template <typename PotentialMap>
1035 void potentialMap(PotentialMap &map) const {
1036 for (NodeIt n(_graph); n != INVALID; ++n) {
1037 map.set(n, _pi[_node_id[n]]);
1045 // Initialize internal data structures
1047 if (_node_num == 0) return false;
1049 // Check the sum of supply values
1051 for (int i = 0; i != _node_num; ++i) {
1052 _sum_supply += _supply[i];
1054 if ( !((_stype == GEQ && _sum_supply <= 0) ||
1055 (_stype == LEQ && _sum_supply >= 0)) ) return false;
1057 // Remove non-zero lower bounds
1059 for (int i = 0; i != _arc_num; ++i) {
1060 Value c = _lower[i];
1062 _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
1064 _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
1066 _supply[_source[i]] -= c;
1067 _supply[_target[i]] += c;
1070 for (int i = 0; i != _arc_num; ++i) {
1071 _cap[i] = _upper[i];
1075 // Initialize artifical cost
1077 if (std::numeric_limits<Cost>::is_exact) {
1078 ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
1081 for (int i = 0; i != _arc_num; ++i) {
1082 if (_cost[i] > ART_COST) ART_COST = _cost[i];
1084 ART_COST = (ART_COST + 1) * _node_num;
1087 // Initialize arc maps
1088 for (int i = 0; i != _arc_num; ++i) {
1090 _state[i] = STATE_LOWER;
1093 // Set data for the artificial root node
1095 _parent[_root] = -1;
1098 _rev_thread[0] = _root;
1099 _succ_num[_root] = _node_num + 1;
1100 _last_succ[_root] = _root - 1;
1101 _supply[_root] = -_sum_supply;
1104 // Add artificial arcs and initialize the spanning tree data structure
1105 if (_sum_supply == 0) {
1106 // EQ supply constraints
1107 _search_arc_num = _arc_num;
1108 _all_arc_num = _arc_num + _node_num;
1109 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1113 _rev_thread[u + 1] = u;
1117 _state[e] = STATE_TREE;
1118 if (_supply[u] >= 0) {
1123 _flow[e] = _supply[u];
1126 _forward[u] = false;
1130 _flow[e] = -_supply[u];
1131 _cost[e] = ART_COST;
1135 else if (_sum_supply > 0) {
1136 // LEQ supply constraints
1137 _search_arc_num = _arc_num + _node_num;
1138 int f = _arc_num + _node_num;
1139 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1142 _rev_thread[u + 1] = u;
1145 if (_supply[u] >= 0) {
1152 _flow[e] = _supply[u];
1154 _state[e] = STATE_TREE;
1156 _forward[u] = false;
1162 _flow[f] = -_supply[u];
1163 _cost[f] = ART_COST;
1164 _state[f] = STATE_TREE;
1170 _state[e] = STATE_LOWER;
1177 // GEQ supply constraints
1178 _search_arc_num = _arc_num + _node_num;
1179 int f = _arc_num + _node_num;
1180 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1183 _rev_thread[u + 1] = u;
1186 if (_supply[u] <= 0) {
1187 _forward[u] = false;
1193 _flow[e] = -_supply[u];
1195 _state[e] = STATE_TREE;
1203 _flow[f] = _supply[u];
1204 _state[f] = STATE_TREE;
1205 _cost[f] = ART_COST;
1211 _state[e] = STATE_LOWER;
1221 // Find the join node
1222 void findJoinNode() {
1223 int u = _source[in_arc];
1224 int v = _target[in_arc];
1226 if (_succ_num[u] < _succ_num[v]) {
1235 // Find the leaving arc of the cycle and returns true if the
1236 // leaving arc is not the same as the entering arc
1237 bool findLeavingArc() {
1238 // Initialize first and second nodes according to the direction
1240 if (_state[in_arc] == STATE_LOWER) {
1241 first = _source[in_arc];
1242 second = _target[in_arc];
1244 first = _target[in_arc];
1245 second = _source[in_arc];
1247 delta = _cap[in_arc];
1252 // Search the cycle along the path form the first node to the root
1253 for (int u = first; u != join; u = _parent[u]) {
1256 _flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]);
1263 // Search the cycle along the path form the second node to the root
1264 for (int u = second; u != join; u = _parent[u]) {
1267 (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e];
1285 // Change _flow and _state vectors
1286 void changeFlow(bool change) {
1287 // Augment along the cycle
1289 Value val = _state[in_arc] * delta;
1290 _flow[in_arc] += val;
1291 for (int u = _source[in_arc]; u != join; u = _parent[u]) {
1292 _flow[_pred[u]] += _forward[u] ? -val : val;
1294 for (int u = _target[in_arc]; u != join; u = _parent[u]) {
1295 _flow[_pred[u]] += _forward[u] ? val : -val;
1298 // Update the state of the entering and leaving arcs
1300 _state[in_arc] = STATE_TREE;
1301 _state[_pred[u_out]] =
1302 (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
1304 _state[in_arc] = -_state[in_arc];
1308 // Update the tree structure
1309 void updateTreeStructure() {
1311 int old_rev_thread = _rev_thread[u_out];
1312 int old_succ_num = _succ_num[u_out];
1313 int old_last_succ = _last_succ[u_out];
1314 v_out = _parent[u_out];
1316 u = _last_succ[u_in]; // the last successor of u_in
1317 right = _thread[u]; // the node after it
1319 // Handle the case when old_rev_thread equals to v_in
1320 // (it also means that join and v_out coincide)
1321 if (old_rev_thread == v_in) {
1322 last = _thread[_last_succ[u_out]];
1324 last = _thread[v_in];
1327 // Update _thread and _parent along the stem nodes (i.e. the nodes
1328 // between u_in and u_out, whose parent have to be changed)
1329 _thread[v_in] = stem = u_in;
1330 _dirty_revs.clear();
1331 _dirty_revs.push_back(v_in);
1333 while (stem != u_out) {
1334 // Insert the next stem node into the thread list
1335 new_stem = _parent[stem];
1336 _thread[u] = new_stem;
1337 _dirty_revs.push_back(u);
1339 // Remove the subtree of stem from the thread list
1340 w = _rev_thread[stem];
1342 _rev_thread[right] = w;
1344 // Change the parent node and shift stem nodes
1345 _parent[stem] = par_stem;
1349 // Update u and right
1350 u = _last_succ[stem] == _last_succ[par_stem] ?
1351 _rev_thread[par_stem] : _last_succ[stem];
1354 _parent[u_out] = par_stem;
1356 _rev_thread[last] = u;
1357 _last_succ[u_out] = u;
1359 // Remove the subtree of u_out from the thread list except for
1360 // the case when old_rev_thread equals to v_in
1361 // (it also means that join and v_out coincide)
1362 if (old_rev_thread != v_in) {
1363 _thread[old_rev_thread] = right;
1364 _rev_thread[right] = old_rev_thread;
1367 // Update _rev_thread using the new _thread values
1368 for (int i = 0; i != int(_dirty_revs.size()); ++i) {
1370 _rev_thread[_thread[u]] = u;
1373 // Update _pred, _forward, _last_succ and _succ_num for the
1374 // stem nodes from u_out to u_in
1375 int tmp_sc = 0, tmp_ls = _last_succ[u_out];
1379 _pred[u] = _pred[w];
1380 _forward[u] = !_forward[w];
1381 tmp_sc += _succ_num[u] - _succ_num[w];
1382 _succ_num[u] = tmp_sc;
1383 _last_succ[w] = tmp_ls;
1386 _pred[u_in] = in_arc;
1387 _forward[u_in] = (u_in == _source[in_arc]);
1388 _succ_num[u_in] = old_succ_num;
1390 // Set limits for updating _last_succ form v_in and v_out
1392 int up_limit_in = -1;
1393 int up_limit_out = -1;
1394 if (_last_succ[join] == v_in) {
1395 up_limit_out = join;
1400 // Update _last_succ from v_in towards the root
1401 for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
1403 _last_succ[u] = _last_succ[u_out];
1405 // Update _last_succ from v_out towards the root
1406 if (join != old_rev_thread && v_in != old_rev_thread) {
1407 for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1409 _last_succ[u] = old_rev_thread;
1412 for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1414 _last_succ[u] = _last_succ[u_out];
1418 // Update _succ_num from v_in to join
1419 for (u = v_in; u != join; u = _parent[u]) {
1420 _succ_num[u] += old_succ_num;
1422 // Update _succ_num from v_out to join
1423 for (u = v_out; u != join; u = _parent[u]) {
1424 _succ_num[u] -= old_succ_num;
1428 // Update potentials
1429 void updatePotential() {
1430 Cost sigma = _forward[u_in] ?
1431 _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
1432 _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
1433 // Update potentials in the subtree, which has been moved
1434 int end = _thread[_last_succ[u_in]];
1435 for (int u = u_in; u != end; u = _thread[u]) {
1440 // Heuristic initial pivots
1441 bool initialPivots() {
1442 Value curr, total = 0;
1443 std::vector<Node> supply_nodes, demand_nodes;
1444 for (NodeIt u(_graph); u != INVALID; ++u) {
1445 curr = _supply[_node_id[u]];
1448 supply_nodes.push_back(u);
1450 else if (curr < 0) {
1451 demand_nodes.push_back(u);
1454 if (_sum_supply > 0) total -= _sum_supply;
1455 if (total <= 0) return true;
1457 IntVector arc_vector;
1458 if (_sum_supply >= 0) {
1459 if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
1460 // Perform a reverse graph search from the sink to the source
1461 typename GR::template NodeMap<bool> reached(_graph, false);
1462 Node s = supply_nodes[0], t = demand_nodes[0];
1463 std::vector<Node> stack;
1466 while (!stack.empty()) {
1467 Node u, v = stack.back();
1470 for (InArcIt a(_graph, v); a != INVALID; ++a) {
1471 if (reached[u = _graph.source(a)]) continue;
1473 if (_cap[j] >= total) {
1474 arc_vector.push_back(j);
1481 // Find the min. cost incomming arc for each demand node
1482 for (int i = 0; i != int(demand_nodes.size()); ++i) {
1483 Node v = demand_nodes[i];
1484 Cost c, min_cost = std::numeric_limits<Cost>::max();
1485 Arc min_arc = INVALID;
1486 for (InArcIt a(_graph, v); a != INVALID; ++a) {
1487 c = _cost[_arc_id[a]];
1493 if (min_arc != INVALID) {
1494 arc_vector.push_back(_arc_id[min_arc]);
1499 // Find the min. cost outgoing arc for each supply node
1500 for (int i = 0; i != int(supply_nodes.size()); ++i) {
1501 Node u = supply_nodes[i];
1502 Cost c, min_cost = std::numeric_limits<Cost>::max();
1503 Arc min_arc = INVALID;
1504 for (OutArcIt a(_graph, u); a != INVALID; ++a) {
1505 c = _cost[_arc_id[a]];
1511 if (min_arc != INVALID) {
1512 arc_vector.push_back(_arc_id[min_arc]);
1517 // Perform heuristic initial pivots
1518 for (int i = 0; i != int(arc_vector.size()); ++i) {
1519 in_arc = arc_vector[i];
1520 if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
1521 _pi[_target[in_arc]]) >= 0) continue;
1523 bool change = findLeavingArc();
1524 if (delta >= MAX) return false;
1527 updateTreeStructure();
1534 // Execute the algorithm
1535 ProblemType start(PivotRule pivot_rule) {
1536 // Select the pivot rule implementation
1537 switch (pivot_rule) {
1538 case FIRST_ELIGIBLE:
1539 return start<FirstEligiblePivotRule>();
1541 return start<BestEligiblePivotRule>();
1543 return start<BlockSearchPivotRule>();
1544 case CANDIDATE_LIST:
1545 return start<CandidateListPivotRule>();
1547 return start<AlteringListPivotRule>();
1549 return INFEASIBLE; // avoid warning
1552 template <typename PivotRuleImpl>
1553 ProblemType start() {
1554 PivotRuleImpl pivot(*this);
1556 // Perform heuristic initial pivots
1557 if (!initialPivots()) return UNBOUNDED;
1559 // Execute the Network Simplex algorithm
1560 while (pivot.findEnteringArc()) {
1562 bool change = findLeavingArc();
1563 if (delta >= MAX) return UNBOUNDED;
1566 updateTreeStructure();
1571 // Check feasibility
1572 for (int e = _search_arc_num; e != _all_arc_num; ++e) {
1573 if (_flow[e] != 0) return INFEASIBLE;
1576 // Transform the solution and the supply map to the original form
1578 for (int i = 0; i != _arc_num; ++i) {
1579 Value c = _lower[i];
1582 _supply[_source[i]] += c;
1583 _supply[_target[i]] -= c;
1588 // Shift potentials to meet the requirements of the GEQ/LEQ type
1589 // optimality conditions
1590 if (_sum_supply == 0) {
1591 if (_stype == GEQ) {
1592 Cost max_pot = -std::numeric_limits<Cost>::max();
1593 for (int i = 0; i != _node_num; ++i) {
1594 if (_pi[i] > max_pot) max_pot = _pi[i];
1597 for (int i = 0; i != _node_num; ++i)
1601 Cost min_pot = std::numeric_limits<Cost>::max();
1602 for (int i = 0; i != _node_num; ++i) {
1603 if (_pi[i] < min_pot) min_pot = _pi[i];
1606 for (int i = 0; i != _node_num; ++i)
1615 }; //class NetworkSimplex
1621 #endif //LEMON_NETWORK_SIMPLEX_H