Use standard #ifndef/#define for avoiding multiple include.
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
 
     3  * This file is a part of LEMON, a generic C++ optimization library.
 
     5  * Copyright (C) 2003-2008
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 #ifndef LEMON_BITS_ARRAY_MAP_H
 
    20 #define LEMON_BITS_ARRAY_MAP_H
 
    24 #include <lemon/bits/traits.h>
 
    25 #include <lemon/bits/alteration_notifier.h>
 
    26 #include <lemon/concept_check.h>
 
    27 #include <lemon/concepts/maps.h>
 
    29 /// \ingroup graphbits
 
    31 /// \brief Graph map based on the array storage.
 
    35   /// \ingroup graphbits
 
    37   /// \brief Graph map based on the array storage.
 
    39   /// The ArrayMap template class is graph map structure what
 
    40   /// automatically updates the map when a key is added to or erased from
 
    41   /// the map. This map uses the allocators to implement
 
    42   /// the container functionality.
 
    44   /// The template parameters are the Graph the current Item type and
 
    45   /// the Value type of the map.
 
    46   template <typename _Graph, typename _Item, typename _Value>
 
    48     : public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
 
    50     /// The graph type of the maps.
 
    52     /// The item type of the map.
 
    54     /// The reference map tag.
 
    55     typedef True ReferenceMapTag;
 
    57     /// The key type of the maps.
 
    59     /// The value type of the map.
 
    62     /// The const reference type of the map.
 
    63     typedef const _Value& ConstReference;
 
    64     /// The reference type of the map.
 
    65     typedef _Value& Reference;
 
    67     /// The notifier type.
 
    68     typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier;
 
    70     /// The MapBase of the Map which imlements the core regisitry function.
 
    71     typedef typename Notifier::ObserverBase Parent;
 
    74     typedef std::allocator<Value> Allocator;
 
    78     /// \brief Graph initialized map constructor.
 
    80     /// Graph initialized map constructor.
 
    81     explicit ArrayMap(const Graph& graph) {
 
    82       Parent::attach(graph.notifier(Item()));
 
    84       Notifier* nf = Parent::notifier();
 
    86       for (nf->first(it); it != INVALID; nf->next(it)) {
 
    88         allocator.construct(&(values[id]), Value());
 
    92     /// \brief Constructor to use default value to initialize the map.
 
    94     /// It constructs a map and initialize all of the the map.
 
    95     ArrayMap(const Graph& graph, const Value& value) {
 
    96       Parent::attach(graph.notifier(Item()));
 
    98       Notifier* nf = Parent::notifier();
 
   100       for (nf->first(it); it != INVALID; nf->next(it)) {
 
   101         int id = nf->id(it);;
 
   102         allocator.construct(&(values[id]), value);
 
   106     /// \brief Constructor to copy a map of the same map type.
 
   108     /// Constructor to copy a map of the same map type.
 
   109     ArrayMap(const ArrayMap& copy) : Parent() {
 
   110       if (copy.attached()) {
 
   111         attach(*copy.notifier());
 
   113       capacity = copy.capacity;
 
   114       if (capacity == 0) return;
 
   115       values = allocator.allocate(capacity);
 
   116       Notifier* nf = Parent::notifier();
 
   118       for (nf->first(it); it != INVALID; nf->next(it)) {
 
   119         int id = nf->id(it);;
 
   120         allocator.construct(&(values[id]), copy.values[id]);
 
   124     /// \brief Assign operator.
 
   126     /// This operator assigns for each item in the map the
 
   127     /// value mapped to the same item in the copied map.
 
   128     /// The parameter map should be indiced with the same
 
   129     /// itemset because this assign operator does not change
 
   130     /// the container of the map.
 
   131     ArrayMap& operator=(const ArrayMap& cmap) {
 
   132       return operator=<ArrayMap>(cmap);
 
   136     /// \brief Template assign operator.
 
   138     /// The given parameter should be conform to the ReadMap
 
   139     /// concecpt and could be indiced by the current item set of
 
   140     /// the NodeMap. In this case the value for each item
 
   141     /// is assigned by the value of the given ReadMap.
 
   142     template <typename CMap>
 
   143     ArrayMap& operator=(const CMap& cmap) {
 
   144       checkConcept<concepts::ReadMap<Key, _Value>, CMap>();
 
   145       const typename Parent::Notifier* nf = Parent::notifier();
 
   147       for (nf->first(it); it != INVALID; nf->next(it)) {
 
   153     /// \brief The destructor of the map.
 
   155     /// The destructor of the map.
 
   156     virtual ~ArrayMap() {
 
   165     using Parent::attach;
 
   166     using Parent::detach;
 
   167     using Parent::attached;
 
   171     /// \brief The subscript operator.
 
   173     /// The subscript operator. The map can be subscripted by the
 
   174     /// actual keys of the graph.
 
   175     Value& operator[](const Key& key) {
 
   176       int id = Parent::notifier()->id(key);
 
   180     /// \brief The const subscript operator.
 
   182     /// The const subscript operator. The map can be subscripted by the
 
   183     /// actual keys of the graph.
 
   184     const Value& operator[](const Key& key) const {
 
   185       int id = Parent::notifier()->id(key);
 
   189     /// \brief Setter function of the map.
 
   191     /// Setter function of the map. Equivalent with map[key] = val.
 
   192     /// This is a compatibility feature with the not dereferable maps.
 
   193     void set(const Key& key, const Value& val) {
 
   199     /// \brief Adds a new key to the map.
 
   201     /// It adds a new key to the map. It called by the observer notifier
 
   202     /// and it overrides the add() member function of the observer base.
 
   203     virtual void add(const Key& key) {
 
   204       Notifier* nf = Parent::notifier();
 
   205       int id = nf->id(key);
 
   206       if (id >= capacity) {
 
   207         int new_capacity = (capacity == 0 ? 1 : capacity);
 
   208         while (new_capacity <= id) {
 
   211         Value* new_values = allocator.allocate(new_capacity);
 
   213         for (nf->first(it); it != INVALID; nf->next(it)) {
 
   214           int jd = nf->id(it);;
 
   216             allocator.construct(&(new_values[jd]), values[jd]);
 
   217             allocator.destroy(&(values[jd]));
 
   220         if (capacity != 0) allocator.deallocate(values, capacity);
 
   222         capacity = new_capacity;
 
   224       allocator.construct(&(values[id]), Value());
 
   227     /// \brief Adds more new keys to the map.
 
   229     /// It adds more new keys to the map. It called by the observer notifier
 
   230     /// and it overrides the add() member function of the observer base.
 
   231     virtual void add(const std::vector<Key>& keys) {
 
   232       Notifier* nf = Parent::notifier();
 
   234       for (int i = 0; i < int(keys.size()); ++i) {
 
   235         int id = nf->id(keys[i]);
 
   240       if (max_id >= capacity) {
 
   241         int new_capacity = (capacity == 0 ? 1 : capacity);
 
   242         while (new_capacity <= max_id) {
 
   245         Value* new_values = allocator.allocate(new_capacity);
 
   247         for (nf->first(it); it != INVALID; nf->next(it)) {
 
   250           for (int i = 0; i < int(keys.size()); ++i) {
 
   251             int jd = nf->id(keys[i]);
 
   258           allocator.construct(&(new_values[id]), values[id]);
 
   259           allocator.destroy(&(values[id]));
 
   261         if (capacity != 0) allocator.deallocate(values, capacity);
 
   263         capacity = new_capacity;
 
   265       for (int i = 0; i < int(keys.size()); ++i) {
 
   266         int id = nf->id(keys[i]);
 
   267         allocator.construct(&(values[id]), Value());
 
   271     /// \brief Erase a key from the map.
 
   273     /// Erase a key from the map. It called by the observer notifier
 
   274     /// and it overrides the erase() member function of the observer base.
 
   275     virtual void erase(const Key& key) {
 
   276       int id = Parent::notifier()->id(key);
 
   277       allocator.destroy(&(values[id]));
 
   280     /// \brief Erase more keys from the map.
 
   282     /// Erase more keys from the map. It called by the observer notifier
 
   283     /// and it overrides the erase() member function of the observer base.
 
   284     virtual void erase(const std::vector<Key>& keys) {
 
   285       for (int i = 0; i < int(keys.size()); ++i) {
 
   286         int id = Parent::notifier()->id(keys[i]);
 
   287         allocator.destroy(&(values[id]));
 
   291     /// \brief Buildes the map.
 
   293     /// It buildes the map. It called by the observer notifier
 
   294     /// and it overrides the build() member function of the observer base.
 
   295     virtual void build() {
 
   296       Notifier* nf = Parent::notifier();
 
   299       for (nf->first(it); it != INVALID; nf->next(it)) {
 
   300         int id = nf->id(it);;
 
   301         allocator.construct(&(values[id]), Value());
 
   305     /// \brief Clear the map.
 
   307     /// It erase all items from the map. It called by the observer notifier
 
   308     /// and it overrides the clear() member function of the observer base.
 
   309     virtual void clear() {
 
   310       Notifier* nf = Parent::notifier();
 
   313         for (nf->first(it); it != INVALID; nf->next(it)) {
 
   315           allocator.destroy(&(values[id]));
 
   317         allocator.deallocate(values, capacity);
 
   324     void allocate_memory() {
 
   325       int max_id = Parent::notifier()->maxId();
 
   332       while (capacity <= max_id) {
 
   335       values = allocator.allocate(capacity);