1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
23 #include <lemon/list_graph.h>
24 #include <lemon/lgf_reader.h>
26 #include <lemon/network_simplex.h>
28 #include <lemon/concepts/digraph.h>
29 #include <lemon/concept_check.h>
31 #include "test_tools.h"
33 using namespace lemon;
37 "label sup1 sup2 sup3 sup4 sup5 sup6\n"
38 " 1 20 27 0 30 20 30\n"
47 " 10 -2 0 0 0 -7 -2\n"
49 " 12 -20 -27 0 -30 -30 -20\n"
52 " cost cap low1 low2 low3\n"
62 " 5 11 120 12 0 0 0\n"
72 "11 10 20 14 0 6 -20\n"
73 "12 11 30 10 0 0 -10\n"
86 // Check the interface of an MCF algorithm
87 template <typename GR, typename Value, typename Cost>
92 template <typename MCF>
95 checkConcept<concepts::Digraph, GR>();
97 const Constraints& me = *this;
100 const MCF& const_mcf = mcf;
107 .stSupply(me.n, me.n, me.k)
110 c = const_mcf.totalCost();
111 x = const_mcf.template totalCost<double>();
112 v = const_mcf.flow(me.a);
113 c = const_mcf.potential(me.n);
114 const_mcf.flowMap(fm);
115 const_mcf.potentialMap(pm);
118 typedef typename GR::Node Node;
119 typedef typename GR::Arc Arc;
120 typedef concepts::ReadMap<Node, Value> NM;
121 typedef concepts::ReadMap<Arc, Value> VAM;
122 typedef concepts::ReadMap<Arc, Cost> CAM;
123 typedef concepts::WriteMap<Arc, Value> FlowMap;
124 typedef concepts::WriteMap<Node, Cost> PotMap;
139 typename MCF::Value v;
140 typename MCF::Cost c;
146 // Check the feasibility of the given flow (primal soluiton)
147 template < typename GR, typename LM, typename UM,
148 typename SM, typename FM >
149 bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
150 const SM& supply, const FM& flow,
151 SupplyType type = EQ )
153 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
155 for (ArcIt e(gr); e != INVALID; ++e) {
156 if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
159 for (NodeIt n(gr); n != INVALID; ++n) {
160 typename SM::Value sum = 0;
161 for (OutArcIt e(gr, n); e != INVALID; ++e)
163 for (InArcIt e(gr, n); e != INVALID; ++e)
165 bool b = (type == EQ && sum == supply[n]) ||
166 (type == GEQ && sum >= supply[n]) ||
167 (type == LEQ && sum <= supply[n]);
168 if (!b) return false;
174 // Check the feasibility of the given potentials (dual soluiton)
175 // using the "Complementary Slackness" optimality condition
176 template < typename GR, typename LM, typename UM,
177 typename CM, typename SM, typename FM, typename PM >
178 bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
179 const CM& cost, const SM& supply, const FM& flow,
180 const PM& pi, SupplyType type )
182 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
185 for (ArcIt e(gr); opt && e != INVALID; ++e) {
186 typename CM::Value red_cost =
187 cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
188 opt = red_cost == 0 ||
189 (red_cost > 0 && flow[e] == lower[e]) ||
190 (red_cost < 0 && flow[e] == upper[e]);
193 for (NodeIt n(gr); opt && n != INVALID; ++n) {
194 typename SM::Value sum = 0;
195 for (OutArcIt e(gr, n); e != INVALID; ++e)
197 for (InArcIt e(gr, n); e != INVALID; ++e)
200 opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0);
202 opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0);
209 // Check whether the dual cost is equal to the primal cost
210 template < typename GR, typename LM, typename UM,
211 typename CM, typename SM, typename PM >
212 bool checkDualCost( const GR& gr, const LM& lower, const UM& upper,
213 const CM& cost, const SM& supply, const PM& pi,
214 typename CM::Value total )
216 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
218 typename CM::Value dual_cost = 0;
220 for (NodeIt n(gr); n != INVALID; ++n) {
221 red_supply[n] = supply[n];
223 for (ArcIt a(gr); a != INVALID; ++a) {
225 dual_cost += lower[a] * cost[a];
226 red_supply[gr.source(a)] -= lower[a];
227 red_supply[gr.target(a)] += lower[a];
231 for (NodeIt n(gr); n != INVALID; ++n) {
232 dual_cost -= red_supply[n] * pi[n];
234 for (ArcIt a(gr); a != INVALID; ++a) {
235 typename CM::Value red_cost =
236 cost[a] + pi[gr.source(a)] - pi[gr.target(a)];
237 dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0);
240 return dual_cost == total;
243 // Run a minimum cost flow algorithm and check the results
244 template < typename MCF, typename GR,
245 typename LM, typename UM,
246 typename CM, typename SM,
248 void checkMcf( const MCF& mcf, PT mcf_result,
249 const GR& gr, const LM& lower, const UM& upper,
250 const CM& cost, const SM& supply,
251 PT result, bool optimal, typename CM::Value total,
252 const std::string &test_id = "",
253 SupplyType type = EQ )
255 check(mcf_result == result, "Wrong result " + test_id);
257 typename GR::template ArcMap<typename SM::Value> flow(gr);
258 typename GR::template NodeMap<typename CM::Value> pi(gr);
260 mcf.potentialMap(pi);
261 check(checkFlow(gr, lower, upper, supply, flow, type),
262 "The flow is not feasible " + test_id);
263 check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
264 check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type),
265 "Wrong potentials " + test_id);
266 check(checkDualCost(gr, lower, upper, cost, supply, pi, total),
267 "Wrong dual cost " + test_id);
273 // Check the interfaces
275 typedef concepts::Digraph GR;
276 checkConcept< McfClassConcept<GR, int, int>,
277 NetworkSimplex<GR> >();
278 checkConcept< McfClassConcept<GR, double, double>,
279 NetworkSimplex<GR, double> >();
280 checkConcept< McfClassConcept<GR, int, double>,
281 NetworkSimplex<GR, int, double> >();
284 // Run various MCF tests
285 typedef ListDigraph Digraph;
286 DIGRAPH_TYPEDEFS(ListDigraph);
288 // Read the test digraph
290 Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr);
291 Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr);
292 ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
295 std::istringstream input(test_lgf);
296 DigraphReader<Digraph>(gr, input)
312 // Build test digraphs with negative costs
314 Node n1 = neg_gr.addNode();
315 Node n2 = neg_gr.addNode();
316 Node n3 = neg_gr.addNode();
317 Node n4 = neg_gr.addNode();
318 Node n5 = neg_gr.addNode();
319 Node n6 = neg_gr.addNode();
320 Node n7 = neg_gr.addNode();
322 Arc a1 = neg_gr.addArc(n1, n2);
323 Arc a2 = neg_gr.addArc(n1, n3);
324 Arc a3 = neg_gr.addArc(n2, n4);
325 Arc a4 = neg_gr.addArc(n3, n4);
326 Arc a5 = neg_gr.addArc(n3, n2);
327 Arc a6 = neg_gr.addArc(n5, n3);
328 Arc a7 = neg_gr.addArc(n5, n6);
329 Arc a8 = neg_gr.addArc(n6, n7);
330 Arc a9 = neg_gr.addArc(n7, n5);
332 Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0);
333 ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000);
334 Digraph::NodeMap<int> neg_s(neg_gr, 0);
353 Digraph::NodeMap<int> negs_s(negs_gr);
354 Digraph::ArcMap<int> negs_c(negs_gr);
355 ConstMap<Arc, int> negs_l(0), negs_u(1000);
356 n1 = negs_gr.addNode();
357 n2 = negs_gr.addNode();
360 negs_c[negs_gr.addArc(n1, n2)] = -1;
363 // A. Test NetworkSimplex with the default pivot rule
365 NetworkSimplex<Digraph> mcf(gr);
367 // Check the equality form
368 mcf.upperMap(u).costMap(c);
369 checkMcf(mcf, mcf.supplyMap(s1).run(),
370 gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1");
371 checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
372 gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2");
374 checkMcf(mcf, mcf.supplyMap(s1).run(),
375 gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3");
376 checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
377 gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4");
379 checkMcf(mcf, mcf.supplyMap(s1).run(),
380 gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5");
381 checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(),
382 gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6");
384 checkMcf(mcf, mcf.run(),
385 gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7");
386 checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(),
387 gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8");
388 mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
389 checkMcf(mcf, mcf.run(),
390 gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9");
392 // Check the GEQ form
393 mcf.reset().upperMap(u).costMap(c).supplyMap(s5);
394 checkMcf(mcf, mcf.run(),
395 gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ);
396 mcf.supplyType(mcf.GEQ);
397 checkMcf(mcf, mcf.lowerMap(l2).run(),
398 gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ);
400 checkMcf(mcf, mcf.run(),
401 gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ);
403 // Check the LEQ form
404 mcf.reset().supplyType(mcf.LEQ);
405 mcf.upperMap(u).costMap(c).supplyMap(s6);
406 checkMcf(mcf, mcf.run(),
407 gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ);
408 checkMcf(mcf, mcf.lowerMap(l2).run(),
409 gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ);
411 checkMcf(mcf, mcf.run(),
412 gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ);
414 // Check negative costs
415 NetworkSimplex<Digraph> neg_mcf(neg_gr);
416 neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s);
417 checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1,
418 neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16");
419 neg_mcf.upperMap(neg_u2);
420 checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2,
421 neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17");
422 neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s);
423 checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1,
424 neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18");
426 NetworkSimplex<Digraph> negs_mcf(negs_gr);
427 negs_mcf.costMap(negs_c).supplyMap(negs_s);
428 checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u,
429 negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ);
432 // B. Test NetworkSimplex with each pivot rule
434 NetworkSimplex<Digraph> mcf(gr);
435 mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2);
437 checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE),
438 gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1");
439 checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE),
440 gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2");
441 checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH),
442 gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3");
443 checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST),
444 gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4");
445 checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST),
446 gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5");