3  * This file is a part of LEMON, a generic C++ optimization library
 
     5  * Copyright (C) 2003-2007
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 #ifndef LEMON_CONCEPT_DIGRAPH_H
 
    20 #define LEMON_CONCEPT_DIGRAPH_H
 
    22 ///\ingroup graph_concepts
 
    24 ///\brief The concept of directed graphs.
 
    26 #include <lemon/bits/invalid.h>
 
    27 #include <lemon/bits/utility.h>
 
    28 #include <lemon/concepts/maps.h>
 
    29 #include <lemon/concept_check.h>
 
    30 #include <lemon/concepts/graph_components.h>
 
    35     /// \ingroup graph_concepts
 
    37     /// \brief Class describing the concept of directed graphs.
 
    39     /// This class describes the \ref concept "concept" of the
 
    40     /// immutable directed digraphs.
 
    42     /// Note that actual digraph implementation like @ref ListDigraph or
 
    43     /// @ref SmartDigraph may have several additional functionality.
 
    48       ///Digraphs are \e not copy constructible. Use DigraphCopy() instead.
 
    50       ///Digraphs are \e not copy constructible. Use DigraphCopy() instead.
 
    52       Digraph(const Digraph &) {};
 
    53       ///\brief Assignment of \ref Digraph "Digraph"s to another ones are
 
    54       ///\e not allowed. Use DigraphCopy() instead.
 
    56       ///Assignment of \ref Digraph "Digraph"s to another ones are
 
    57       ///\e not allowed.  Use DigraphCopy() instead.
 
    59       void operator=(const Digraph &) {}
 
    63       /// Defalult constructor.
 
    65       /// Defalult constructor.
 
    68       /// Class for identifying a node of the digraph
 
    70       /// This class identifies a node of the digraph. It also serves
 
    71       /// as a base class of the node iterators,
 
    72       /// thus they will convert to this type.
 
    75         /// Default constructor
 
    77         /// @warning The default constructor sets the iterator
 
    78         /// to an undefined value.
 
    86         /// Invalid constructor \& conversion.
 
    88         /// This constructor initializes the iterator to be invalid.
 
    89         /// \sa Invalid for more details.
 
    93         /// Two iterators are equal if and only if they point to the
 
    94         /// same object or both are invalid.
 
    95         bool operator==(Node) const { return true; }
 
    97         /// Inequality operator
 
    99         /// \sa operator==(Node n)
 
   101         bool operator!=(Node) const { return true; }
 
   103 	/// Artificial ordering operator.
 
   105 	/// To allow the use of digraph descriptors as key type in std::map or
 
   106 	/// similar associative container we require this.
 
   108 	/// \note This operator only have to define some strict ordering of
 
   109 	/// the items; this order has nothing to do with the iteration
 
   110 	/// ordering of the items.
 
   111 	bool operator<(Node) const { return false; }
 
   115       /// This iterator goes through each node.
 
   117       /// This iterator goes through each node.
 
   118       /// Its usage is quite simple, for example you can count the number
 
   119       /// of nodes in digraph \c g of type \c Digraph like this:
 
   122       /// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count;
 
   124       class NodeIt : public Node {
 
   126         /// Default constructor
 
   128         /// @warning The default constructor sets the iterator
 
   129         /// to an undefined value.
 
   131         /// Copy constructor.
 
   133         /// Copy constructor.
 
   135         NodeIt(const NodeIt& n) : Node(n) { }
 
   136         /// Invalid constructor \& conversion.
 
   138         /// Initialize the iterator to be invalid.
 
   139         /// \sa Invalid for more details.
 
   141         /// Sets the iterator to the first node.
 
   143         /// Sets the iterator to the first node of \c g.
 
   145         NodeIt(const Digraph&) { }
 
   146         /// Node -> NodeIt conversion.
 
   148         /// Sets the iterator to the node of \c the digraph pointed by 
 
   149 	/// the trivial iterator.
 
   150         /// This feature necessitates that each time we 
 
   151         /// iterate the arc-set, the iteration order is the same.
 
   152         NodeIt(const Digraph&, const Node&) { }
 
   155         /// Assign the iterator to the next node.
 
   157         NodeIt& operator++() { return *this; }
 
   161       /// Class for identifying an arc of the digraph
 
   163       /// This class identifies an arc of the digraph. It also serves
 
   164       /// as a base class of the arc iterators,
 
   165       /// thus they will convert to this type.
 
   168         /// Default constructor
 
   170         /// @warning The default constructor sets the iterator
 
   171         /// to an undefined value.
 
   173         /// Copy constructor.
 
   175         /// Copy constructor.
 
   178         /// Initialize the iterator to be invalid.
 
   180         /// Initialize the iterator to be invalid.
 
   183         /// Equality operator
 
   185         /// Two iterators are equal if and only if they point to the
 
   186         /// same object or both are invalid.
 
   187         bool operator==(Arc) const { return true; }
 
   188         /// Inequality operator
 
   190         /// \sa operator==(Arc n)
 
   192         bool operator!=(Arc) const { return true; }
 
   194 	/// Artificial ordering operator.
 
   196 	/// To allow the use of digraph descriptors as key type in std::map or
 
   197 	/// similar associative container we require this.
 
   199 	/// \note This operator only have to define some strict ordering of
 
   200 	/// the items; this order has nothing to do with the iteration
 
   201 	/// ordering of the items.
 
   202 	bool operator<(Arc) const { return false; }
 
   205       /// This iterator goes trough the outgoing arcs of a node.
 
   207       /// This iterator goes trough the \e outgoing arcs of a certain node
 
   209       /// Its usage is quite simple, for example you can count the number
 
   210       /// of outgoing arcs of a node \c n
 
   211       /// in digraph \c g of type \c Digraph as follows.
 
   214       /// for (Digraph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
 
   217       class OutArcIt : public Arc {
 
   219         /// Default constructor
 
   221         /// @warning The default constructor sets the iterator
 
   222         /// to an undefined value.
 
   224         /// Copy constructor.
 
   226         /// Copy constructor.
 
   228         OutArcIt(const OutArcIt& e) : Arc(e) { }
 
   229         /// Initialize the iterator to be invalid.
 
   231         /// Initialize the iterator to be invalid.
 
   233         OutArcIt(Invalid) { }
 
   234         /// This constructor sets the iterator to the first outgoing arc.
 
   236         /// This constructor sets the iterator to the first outgoing arc of
 
   238         OutArcIt(const Digraph&, const Node&) { }
 
   239         /// Arc -> OutArcIt conversion
 
   241         /// Sets the iterator to the value of the trivial iterator.
 
   242 	/// This feature necessitates that each time we 
 
   243         /// iterate the arc-set, the iteration order is the same.
 
   244         OutArcIt(const Digraph&, const Arc&) { }
 
   247         /// Assign the iterator to the next 
 
   248         /// outgoing arc of the corresponding node.
 
   249         OutArcIt& operator++() { return *this; }
 
   252       /// This iterator goes trough the incoming arcs of a node.
 
   254       /// This iterator goes trough the \e incoming arcs of a certain node
 
   256       /// Its usage is quite simple, for example you can count the number
 
   257       /// of outgoing arcs of a node \c n
 
   258       /// in digraph \c g of type \c Digraph as follows.
 
   261       /// for(Digraph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
 
   264       class InArcIt : public Arc {
 
   266         /// Default constructor
 
   268         /// @warning The default constructor sets the iterator
 
   269         /// to an undefined value.
 
   271         /// Copy constructor.
 
   273         /// Copy constructor.
 
   275         InArcIt(const InArcIt& e) : Arc(e) { }
 
   276         /// Initialize the iterator to be invalid.
 
   278         /// Initialize the iterator to be invalid.
 
   281         /// This constructor sets the iterator to first incoming arc.
 
   283         /// This constructor set the iterator to the first incoming arc of
 
   285         InArcIt(const Digraph&, const Node&) { }
 
   286         /// Arc -> InArcIt conversion
 
   288         /// Sets the iterator to the value of the trivial iterator \c e.
 
   289         /// This feature necessitates that each time we 
 
   290         /// iterate the arc-set, the iteration order is the same.
 
   291         InArcIt(const Digraph&, const Arc&) { }
 
   292         /// Next incoming arc
 
   294         /// Assign the iterator to the next inarc of the corresponding node.
 
   296         InArcIt& operator++() { return *this; }
 
   298       /// This iterator goes through each arc.
 
   300       /// This iterator goes through each arc of a digraph.
 
   301       /// Its usage is quite simple, for example you can count the number
 
   302       /// of arcs in a digraph \c g of type \c Digraph as follows:
 
   305       /// for(Digraph::ArcIt e(g); e!=INVALID; ++e) ++count;
 
   307       class ArcIt : public Arc {
 
   309         /// Default constructor
 
   311         /// @warning The default constructor sets the iterator
 
   312         /// to an undefined value.
 
   314         /// Copy constructor.
 
   316         /// Copy constructor.
 
   318         ArcIt(const ArcIt& e) : Arc(e) { }
 
   319         /// Initialize the iterator to be invalid.
 
   321         /// Initialize the iterator to be invalid.
 
   324         /// This constructor sets the iterator to the first arc.
 
   326         /// This constructor sets the iterator to the first arc of \c g.
 
   327         ///@param g the digraph
 
   328         ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
 
   329         /// Arc -> ArcIt conversion
 
   331         /// Sets the iterator to the value of the trivial iterator \c e.
 
   332         /// This feature necessitates that each time we 
 
   333         /// iterate the arc-set, the iteration order is the same.
 
   334         ArcIt(const Digraph&, const Arc&) { } 
 
   337         /// Assign the iterator to the next arc.
 
   338         ArcIt& operator++() { return *this; }
 
   340       ///Gives back the target node of an arc.
 
   342       ///Gives back the target node of an arc.
 
   344       Node target(Arc) const { return INVALID; }
 
   345       ///Gives back the source node of an arc.
 
   347       ///Gives back the source node of an arc.
 
   349       Node source(Arc) const { return INVALID; }
 
   351       /// \brief Returns the ID of the node.
 
   352       int id(Node) const { return -1; } 
 
   354       /// \brief Returns the ID of the arc.
 
   355       int id(Arc) const { return -1; } 
 
   357       /// \brief Returns the node with the given ID.
 
   359       /// \pre The argument should be a valid node ID in the graph.
 
   360       Node nodeFromId(int) const { return INVALID; } 
 
   362       /// \brief Returns the arc with the given ID.
 
   364       /// \pre The argument should be a valid arc ID in the graph.
 
   365       Arc arcFromId(int) const { return INVALID; } 
 
   367       /// \brief Returns an upper bound on the node IDs.
 
   368       int maxNodeId() const { return -1; } 
 
   370       /// \brief Returns an upper bound on the arc IDs.
 
   371       int maxArcId() const { return -1; } 
 
   373       void first(Node&) const {}
 
   374       void next(Node&) const {}
 
   376       void first(Arc&) const {}
 
   377       void next(Arc&) const {}
 
   380       void firstIn(Arc&, const Node&) const {}
 
   381       void nextIn(Arc&) const {}
 
   383       void firstOut(Arc&, const Node&) const {}
 
   384       void nextOut(Arc&) const {}
 
   386       // The second parameter is dummy.
 
   387       Node fromId(int, Node) const { return INVALID; }
 
   388       // The second parameter is dummy.
 
   389       Arc fromId(int, Arc) const { return INVALID; }
 
   392       int maxId(Node) const { return -1; } 
 
   394       int maxId(Arc) const { return -1; } 
 
   396       /// \brief The base node of the iterator.
 
   398       /// Gives back the base node of the iterator.
 
   399       /// It is always the target of the pointed arc.
 
   400       Node baseNode(const InArcIt&) const { return INVALID; }
 
   402       /// \brief The running node of the iterator.
 
   404       /// Gives back the running node of the iterator.
 
   405       /// It is always the source of the pointed arc.
 
   406       Node runningNode(const InArcIt&) const { return INVALID; }
 
   408       /// \brief The base node of the iterator.
 
   410       /// Gives back the base node of the iterator.
 
   411       /// It is always the source of the pointed arc.
 
   412       Node baseNode(const OutArcIt&) const { return INVALID; }
 
   414       /// \brief The running node of the iterator.
 
   416       /// Gives back the running node of the iterator.
 
   417       /// It is always the target of the pointed arc.
 
   418       Node runningNode(const OutArcIt&) const { return INVALID; }
 
   420       /// \brief The opposite node on the given arc.
 
   422       /// Gives back the opposite node on the given arc.
 
   423       Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
 
   425       /// \brief Read write map of the nodes to type \c T.
 
   427       /// ReadWrite map of the nodes to type \c T.
 
   430       class NodeMap : public ReadWriteMap< Node, T > {
 
   434         NodeMap(const Digraph&) { }
 
   436         NodeMap(const Digraph&, T) { }
 
   439         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   440         ///Assignment operator
 
   441         template <typename CMap>
 
   442         NodeMap& operator=(const CMap&) { 
 
   443           checkConcept<ReadMap<Node, T>, CMap>();
 
   448       /// \brief Read write map of the arcs to type \c T.
 
   450       /// Reference map of the arcs to type \c T.
 
   453       class ArcMap : public ReadWriteMap<Arc,T> {
 
   457         ArcMap(const Digraph&) { }
 
   459         ArcMap(const Digraph&, T) { }
 
   461         ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
 
   462         ///Assignment operator
 
   463         template <typename CMap>
 
   464         ArcMap& operator=(const CMap&) { 
 
   465           checkConcept<ReadMap<Arc, T>, CMap>();
 
   470       template <typename RDigraph>
 
   473           checkConcept<IterableDigraphComponent<>, Digraph>();
 
   474 	  checkConcept<IDableDigraphComponent<>, Digraph>();
 
   475           checkConcept<MappableDigraphComponent<>, Digraph>();
 
   481   } //namespace concepts  
 
   486 #endif // LEMON_CONCEPT_DIGRAPH_H