1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
 
     3  * This file is a part of LEMON, a generic C++ optimization library.
 
     5  * Copyright (C) 2003-2009
 
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
 
     9  * Permission to use, modify and distribute this software is granted
 
    10  * provided that this copyright notice appears in all copies. For
 
    11  * precise terms see the accompanying LICENSE file.
 
    13  * This software is provided "AS IS" with no warranty of any kind,
 
    14  * express or implied, and with no claim as to its suitability for any
 
    19 ///\ingroup graph_concepts
 
    21 ///\brief The concept of Undirected Graphs.
 
    23 #ifndef LEMON_CONCEPTS_GRAPH_H
 
    24 #define LEMON_CONCEPTS_GRAPH_H
 
    26 #include <lemon/concepts/graph_components.h>
 
    27 #include <lemon/core.h>
 
    32     /// \ingroup graph_concepts
 
    34     /// \brief Class describing the concept of Undirected Graphs.
 
    36     /// This class describes the common interface of all Undirected
 
    39     /// As all concept describing classes it provides only interface
 
    40     /// without any sensible implementation. So any algorithm for
 
    41     /// undirected graph should compile with this class, but it will not
 
    42     /// run properly, of course.
 
    44     /// The LEMON undirected graphs also fulfill the concept of
 
    45     /// directed graphs (\ref lemon::concepts::Digraph "Digraph
 
    46     /// Concept"). Each edges can be seen as two opposite
 
    47     /// directed arc and consequently the undirected graph can be
 
    48     /// seen as the direceted graph of these directed arcs. The
 
    49     /// Graph has the Edge inner class for the edges and
 
    50     /// the Arc type for the directed arcs. The Arc type is
 
    51     /// convertible to Edge or inherited from it so from a directed
 
    52     /// arc we can get the represented edge.
 
    54     /// In the sense of the LEMON each edge has a default
 
    55     /// direction (it should be in every computer implementation,
 
    56     /// because the order of edge's nodes defines an
 
    57     /// orientation). With the default orientation we can define that
 
    58     /// the directed arc is forward or backward directed. With the \c
 
    59     /// direction() and \c direct() function we can get the direction
 
    60     /// of the directed arc and we can direct an edge.
 
    62     /// The EdgeIt is an iterator for the edges. We can use
 
    63     /// the EdgeMap to map values for the edges. The InArcIt and
 
    64     /// OutArcIt iterates on the same edges but with opposite
 
    65     /// direction. The IncEdgeIt iterates also on the same edges
 
    66     /// as the OutArcIt and InArcIt but it is not convertible to Arc just
 
    70       /// \brief The undirected graph should be tagged by the
 
    73       /// The undirected graph should be tagged by the UndirectedTag. This
 
    74       /// tag helps the enable_if technics to make compile time
 
    75       /// specializations for undirected graphs.
 
    76       typedef True UndirectedTag;
 
    78       /// \brief The base type of node iterators,
 
    79       /// or in other words, the trivial node iterator.
 
    81       /// This is the base type of each node iterator,
 
    82       /// thus each kind of node iterator converts to this.
 
    83       /// More precisely each kind of node iterator should be inherited
 
    84       /// from the trivial node iterator.
 
    87         /// Default constructor
 
    89         /// @warning The default constructor sets the iterator
 
    90         /// to an undefined value.
 
    98         /// Invalid constructor \& conversion.
 
   100         /// This constructor initializes the iterator to be invalid.
 
   101         /// \sa Invalid for more details.
 
   103         /// Equality operator
 
   105         /// Two iterators are equal if and only if they point to the
 
   106         /// same object or both are invalid.
 
   107         bool operator==(Node) const { return true; }
 
   109         /// Inequality operator
 
   111         /// \sa operator==(Node n)
 
   113         bool operator!=(Node) const { return true; }
 
   115         /// Artificial ordering operator.
 
   117         /// To allow the use of graph descriptors as key type in std::map or
 
   118         /// similar associative container we require this.
 
   120         /// \note This operator only have to define some strict ordering of
 
   121         /// the items; this order has nothing to do with the iteration
 
   122         /// ordering of the items.
 
   123         bool operator<(Node) const { return false; }
 
   127       /// This iterator goes through each node.
 
   129       /// This iterator goes through each node.
 
   130       /// Its usage is quite simple, for example you can count the number
 
   131       /// of nodes in graph \c g of type \c Graph like this:
 
   134       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
 
   136       class NodeIt : public Node {
 
   138         /// Default constructor
 
   140         /// @warning The default constructor sets the iterator
 
   141         /// to an undefined value.
 
   143         /// Copy constructor.
 
   145         /// Copy constructor.
 
   147         NodeIt(const NodeIt& n) : Node(n) { }
 
   148         /// Invalid constructor \& conversion.
 
   150         /// Initialize the iterator to be invalid.
 
   151         /// \sa Invalid for more details.
 
   153         /// Sets the iterator to the first node.
 
   155         /// Sets the iterator to the first node of \c g.
 
   157         NodeIt(const Graph&) { }
 
   158         /// Node -> NodeIt conversion.
 
   160         /// Sets the iterator to the node of \c the graph pointed by
 
   161         /// the trivial iterator.
 
   162         /// This feature necessitates that each time we
 
   163         /// iterate the arc-set, the iteration order is the same.
 
   164         NodeIt(const Graph&, const Node&) { }
 
   167         /// Assign the iterator to the next node.
 
   169         NodeIt& operator++() { return *this; }
 
   173       /// The base type of the edge iterators.
 
   175       /// The base type of the edge iterators.
 
   179         /// Default constructor
 
   181         /// @warning The default constructor sets the iterator
 
   182         /// to an undefined value.
 
   184         /// Copy constructor.
 
   186         /// Copy constructor.
 
   188         Edge(const Edge&) { }
 
   189         /// Initialize the iterator to be invalid.
 
   191         /// Initialize the iterator to be invalid.
 
   194         /// Equality operator
 
   196         /// Two iterators are equal if and only if they point to the
 
   197         /// same object or both are invalid.
 
   198         bool operator==(Edge) const { return true; }
 
   199         /// Inequality operator
 
   201         /// \sa operator==(Edge n)
 
   203         bool operator!=(Edge) const { return true; }
 
   205         /// Artificial ordering operator.
 
   207         /// To allow the use of graph descriptors as key type in std::map or
 
   208         /// similar associative container we require this.
 
   210         /// \note This operator only have to define some strict ordering of
 
   211         /// the items; this order has nothing to do with the iteration
 
   212         /// ordering of the items.
 
   213         bool operator<(Edge) const { return false; }
 
   216       /// This iterator goes through each edge.
 
   218       /// This iterator goes through each edge of a graph.
 
   219       /// Its usage is quite simple, for example you can count the number
 
   220       /// of edges in a graph \c g of type \c Graph as follows:
 
   223       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
 
   225       class EdgeIt : public Edge {
 
   227         /// Default constructor
 
   229         /// @warning The default constructor sets the iterator
 
   230         /// to an undefined value.
 
   232         /// Copy constructor.
 
   234         /// Copy constructor.
 
   236         EdgeIt(const EdgeIt& e) : Edge(e) { }
 
   237         /// Initialize the iterator to be invalid.
 
   239         /// Initialize the iterator to be invalid.
 
   242         /// This constructor sets the iterator to the first edge.
 
   244         /// This constructor sets the iterator to the first edge.
 
   245         EdgeIt(const Graph&) { }
 
   246         /// Edge -> EdgeIt conversion
 
   248         /// Sets the iterator to the value of the trivial iterator.
 
   249         /// This feature necessitates that each time we
 
   250         /// iterate the edge-set, the iteration order is the
 
   252         EdgeIt(const Graph&, const Edge&) { }
 
   255         /// Assign the iterator to the next edge.
 
   256         EdgeIt& operator++() { return *this; }
 
   259       /// \brief This iterator goes trough the incident undirected
 
   262       /// This iterator goes trough the incident edges
 
   263       /// of a certain node of a graph. You should assume that the
 
   264       /// loop arcs will be iterated twice.
 
   266       /// Its usage is quite simple, for example you can compute the
 
   267       /// degree (i.e. count the number of incident arcs of a node \c n
 
   268       /// in graph \c g of type \c Graph as follows.
 
   272       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
 
   274       class IncEdgeIt : public Edge {
 
   276         /// Default constructor
 
   278         /// @warning The default constructor sets the iterator
 
   279         /// to an undefined value.
 
   281         /// Copy constructor.
 
   283         /// Copy constructor.
 
   285         IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
 
   286         /// Initialize the iterator to be invalid.
 
   288         /// Initialize the iterator to be invalid.
 
   290         IncEdgeIt(Invalid) { }
 
   291         /// This constructor sets the iterator to first incident arc.
 
   293         /// This constructor set the iterator to the first incident arc of
 
   295         IncEdgeIt(const Graph&, const Node&) { }
 
   296         /// Edge -> IncEdgeIt conversion
 
   298         /// Sets the iterator to the value of the trivial iterator \c e.
 
   299         /// This feature necessitates that each time we
 
   300         /// iterate the arc-set, the iteration order is the same.
 
   301         IncEdgeIt(const Graph&, const Edge&) { }
 
   302         /// Next incident arc
 
   304         /// Assign the iterator to the next incident arc
 
   305         /// of the corresponding node.
 
   306         IncEdgeIt& operator++() { return *this; }
 
   309       /// The directed arc type.
 
   311       /// The directed arc type. It can be converted to the
 
   312       /// edge or it should be inherited from the undirected
 
   314       class Arc : public Edge {
 
   316         /// Default constructor
 
   318         /// @warning The default constructor sets the iterator
 
   319         /// to an undefined value.
 
   321         /// Copy constructor.
 
   323         /// Copy constructor.
 
   325         Arc(const Arc& e) : Edge(e) { }
 
   326         /// Initialize the iterator to be invalid.
 
   328         /// Initialize the iterator to be invalid.
 
   331         /// Equality operator
 
   333         /// Two iterators are equal if and only if they point to the
 
   334         /// same object or both are invalid.
 
   335         bool operator==(Arc) const { return true; }
 
   336         /// Inequality operator
 
   338         /// \sa operator==(Arc n)
 
   340         bool operator!=(Arc) const { return true; }
 
   342         /// Artificial ordering operator.
 
   344         /// To allow the use of graph descriptors as key type in std::map or
 
   345         /// similar associative container we require this.
 
   347         /// \note This operator only have to define some strict ordering of
 
   348         /// the items; this order has nothing to do with the iteration
 
   349         /// ordering of the items.
 
   350         bool operator<(Arc) const { return false; }
 
   353       /// This iterator goes through each directed arc.
 
   355       /// This iterator goes through each arc of a graph.
 
   356       /// Its usage is quite simple, for example you can count the number
 
   357       /// of arcs in a graph \c g of type \c Graph as follows:
 
   360       /// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count;
 
   362       class ArcIt : public Arc {
 
   364         /// Default constructor
 
   366         /// @warning The default constructor sets the iterator
 
   367         /// to an undefined value.
 
   369         /// Copy constructor.
 
   371         /// Copy constructor.
 
   373         ArcIt(const ArcIt& e) : Arc(e) { }
 
   374         /// Initialize the iterator to be invalid.
 
   376         /// Initialize the iterator to be invalid.
 
   379         /// This constructor sets the iterator to the first arc.
 
   381         /// This constructor sets the iterator to the first arc of \c g.
 
   382         ///@param g the graph
 
   383         ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
 
   384         /// Arc -> ArcIt conversion
 
   386         /// Sets the iterator to the value of the trivial iterator \c e.
 
   387         /// This feature necessitates that each time we
 
   388         /// iterate the arc-set, the iteration order is the same.
 
   389         ArcIt(const Graph&, const Arc&) { }
 
   392         /// Assign the iterator to the next arc.
 
   393         ArcIt& operator++() { return *this; }
 
   396       /// This iterator goes trough the outgoing directed arcs of a node.
 
   398       /// This iterator goes trough the \e outgoing arcs of a certain node
 
   400       /// Its usage is quite simple, for example you can count the number
 
   401       /// of outgoing arcs of a node \c n
 
   402       /// in graph \c g of type \c Graph as follows.
 
   405       /// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
 
   408       class OutArcIt : public Arc {
 
   410         /// Default constructor
 
   412         /// @warning The default constructor sets the iterator
 
   413         /// to an undefined value.
 
   415         /// Copy constructor.
 
   417         /// Copy constructor.
 
   419         OutArcIt(const OutArcIt& e) : Arc(e) { }
 
   420         /// Initialize the iterator to be invalid.
 
   422         /// Initialize the iterator to be invalid.
 
   424         OutArcIt(Invalid) { }
 
   425         /// This constructor sets the iterator to the first outgoing arc.
 
   427         /// This constructor sets the iterator to the first outgoing arc of
 
   430         ///@param g the graph
 
   431         OutArcIt(const Graph& n, const Node& g) {
 
   432           ignore_unused_variable_warning(n);
 
   433           ignore_unused_variable_warning(g);
 
   435         /// Arc -> OutArcIt conversion
 
   437         /// Sets the iterator to the value of the trivial iterator.
 
   438         /// This feature necessitates that each time we
 
   439         /// iterate the arc-set, the iteration order is the same.
 
   440         OutArcIt(const Graph&, const Arc&) { }
 
   443         /// Assign the iterator to the next
 
   444         /// outgoing arc of the corresponding node.
 
   445         OutArcIt& operator++() { return *this; }
 
   448       /// This iterator goes trough the incoming directed arcs of a node.
 
   450       /// This iterator goes trough the \e incoming arcs of a certain node
 
   452       /// Its usage is quite simple, for example you can count the number
 
   453       /// of outgoing arcs of a node \c n
 
   454       /// in graph \c g of type \c Graph as follows.
 
   457       /// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
 
   460       class InArcIt : public Arc {
 
   462         /// Default constructor
 
   464         /// @warning The default constructor sets the iterator
 
   465         /// to an undefined value.
 
   467         /// Copy constructor.
 
   469         /// Copy constructor.
 
   471         InArcIt(const InArcIt& e) : Arc(e) { }
 
   472         /// Initialize the iterator to be invalid.
 
   474         /// Initialize the iterator to be invalid.
 
   477         /// This constructor sets the iterator to first incoming arc.
 
   479         /// This constructor set the iterator to the first incoming arc of
 
   482         ///@param g the graph
 
   483         InArcIt(const Graph& g, const Node& n) {
 
   484           ignore_unused_variable_warning(n);
 
   485           ignore_unused_variable_warning(g);
 
   487         /// Arc -> InArcIt conversion
 
   489         /// Sets the iterator to the value of the trivial iterator \c e.
 
   490         /// This feature necessitates that each time we
 
   491         /// iterate the arc-set, the iteration order is the same.
 
   492         InArcIt(const Graph&, const Arc&) { }
 
   493         /// Next incoming arc
 
   495         /// Assign the iterator to the next inarc of the corresponding node.
 
   497         InArcIt& operator++() { return *this; }
 
   500       /// \brief Read write map of the nodes to type \c T.
 
   502       /// ReadWrite map of the nodes to type \c T.
 
   505       class NodeMap : public ReadWriteMap< Node, T >
 
   510         NodeMap(const Graph&) { }
 
   512         NodeMap(const Graph&, T) { }
 
   516         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
 
   517         ///Assignment operator
 
   518         template <typename CMap>
 
   519         NodeMap& operator=(const CMap&) {
 
   520           checkConcept<ReadMap<Node, T>, CMap>();
 
   525       /// \brief Read write map of the directed arcs to type \c T.
 
   527       /// Reference map of the directed arcs to type \c T.
 
   530       class ArcMap : public ReadWriteMap<Arc,T>
 
   535         ArcMap(const Graph&) { }
 
   537         ArcMap(const Graph&, T) { }
 
   540         ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
 
   541         ///Assignment operator
 
   542         template <typename CMap>
 
   543         ArcMap& operator=(const CMap&) {
 
   544           checkConcept<ReadMap<Arc, T>, CMap>();
 
   549       /// Read write map of the edges to type \c T.
 
   551       /// Reference map of the arcs to type \c T.
 
   554       class EdgeMap : public ReadWriteMap<Edge,T>
 
   559         EdgeMap(const Graph&) { }
 
   561         EdgeMap(const Graph&, T) { }
 
   564         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) {}
 
   565         ///Assignment operator
 
   566         template <typename CMap>
 
   567         EdgeMap& operator=(const CMap&) {
 
   568           checkConcept<ReadMap<Edge, T>, CMap>();
 
   573       /// \brief Direct the given edge.
 
   575       /// Direct the given edge. The returned arc source
 
   576       /// will be the given node.
 
   577       Arc direct(const Edge&, const Node&) const {
 
   581       /// \brief Direct the given edge.
 
   583       /// Direct the given edge. The returned arc
 
   584       /// represents the given edge and the direction comes
 
   585       /// from the bool parameter. The source of the edge and
 
   586       /// the directed arc is the same when the given bool is true.
 
   587       Arc direct(const Edge&, bool) const {
 
   591       /// \brief Returns true if the arc has default orientation.
 
   593       /// Returns whether the given directed arc is same orientation as
 
   594       /// the corresponding edge's default orientation.
 
   595       bool direction(Arc) const { return true; }
 
   597       /// \brief Returns the opposite directed arc.
 
   599       /// Returns the opposite directed arc.
 
   600       Arc oppositeArc(Arc) const { return INVALID; }
 
   602       /// \brief Opposite node on an arc
 
   604       /// \return The opposite of the given node on the given edge.
 
   605       Node oppositeNode(Node, Edge) const { return INVALID; }
 
   607       /// \brief First node of the edge.
 
   609       /// \return The first node of the given edge.
 
   611       /// Naturally edges don't have direction and thus
 
   612       /// don't have source and target node. However we use \c u() and \c v()
 
   613       /// methods to query the two nodes of the arc. The direction of the
 
   614       /// arc which arises this way is called the inherent direction of the
 
   615       /// edge, and is used to define the "default" direction
 
   616       /// of the directed versions of the arcs.
 
   619       Node u(Edge) const { return INVALID; }
 
   621       /// \brief Second node of the edge.
 
   623       /// \return The second node of the given edge.
 
   625       /// Naturally edges don't have direction and thus
 
   626       /// don't have source and target node. However we use \c u() and \c v()
 
   627       /// methods to query the two nodes of the arc. The direction of the
 
   628       /// arc which arises this way is called the inherent direction of the
 
   629       /// edge, and is used to define the "default" direction
 
   630       /// of the directed versions of the arcs.
 
   633       Node v(Edge) const { return INVALID; }
 
   635       /// \brief Source node of the directed arc.
 
   636       Node source(Arc) const { return INVALID; }
 
   638       /// \brief Target node of the directed arc.
 
   639       Node target(Arc) const { return INVALID; }
 
   641       /// \brief Returns the id of the node.
 
   642       int id(Node) const { return -1; }
 
   644       /// \brief Returns the id of the edge.
 
   645       int id(Edge) const { return -1; }
 
   647       /// \brief Returns the id of the arc.
 
   648       int id(Arc) const { return -1; }
 
   650       /// \brief Returns the node with the given id.
 
   652       /// \pre The argument should be a valid node id in the graph.
 
   653       Node nodeFromId(int) const { return INVALID; }
 
   655       /// \brief Returns the edge with the given id.
 
   657       /// \pre The argument should be a valid edge id in the graph.
 
   658       Edge edgeFromId(int) const { return INVALID; }
 
   660       /// \brief Returns the arc with the given id.
 
   662       /// \pre The argument should be a valid arc id in the graph.
 
   663       Arc arcFromId(int) const { return INVALID; }
 
   665       /// \brief Returns an upper bound on the node IDs.
 
   666       int maxNodeId() const { return -1; }
 
   668       /// \brief Returns an upper bound on the edge IDs.
 
   669       int maxEdgeId() const { return -1; }
 
   671       /// \brief Returns an upper bound on the arc IDs.
 
   672       int maxArcId() const { return -1; }
 
   674       void first(Node&) const {}
 
   675       void next(Node&) const {}
 
   677       void first(Edge&) const {}
 
   678       void next(Edge&) const {}
 
   680       void first(Arc&) const {}
 
   681       void next(Arc&) const {}
 
   683       void firstOut(Arc&, Node) const {}
 
   684       void nextOut(Arc&) const {}
 
   686       void firstIn(Arc&, Node) const {}
 
   687       void nextIn(Arc&) const {}
 
   689       void firstInc(Edge &, bool &, const Node &) const {}
 
   690       void nextInc(Edge &, bool &) const {}
 
   692       // The second parameter is dummy.
 
   693       Node fromId(int, Node) const { return INVALID; }
 
   694       // The second parameter is dummy.
 
   695       Edge fromId(int, Edge) const { return INVALID; }
 
   696       // The second parameter is dummy.
 
   697       Arc fromId(int, Arc) const { return INVALID; }
 
   700       int maxId(Node) const { return -1; }
 
   702       int maxId(Edge) const { return -1; }
 
   704       int maxId(Arc) const { return -1; }
 
   706       /// \brief Base node of the iterator
 
   708       /// Returns the base node (the source in this case) of the iterator
 
   709       Node baseNode(OutArcIt e) const {
 
   712       /// \brief Running node of the iterator
 
   714       /// Returns the running node (the target in this case) of the
 
   716       Node runningNode(OutArcIt e) const {
 
   720       /// \brief Base node of the iterator
 
   722       /// Returns the base node (the target in this case) of the iterator
 
   723       Node baseNode(InArcIt e) const {
 
   726       /// \brief Running node of the iterator
 
   728       /// Returns the running node (the source in this case) of the
 
   730       Node runningNode(InArcIt e) const {
 
   734       /// \brief Base node of the iterator
 
   736       /// Returns the base node of the iterator
 
   737       Node baseNode(IncEdgeIt) const {
 
   741       /// \brief Running node of the iterator
 
   743       /// Returns the running node of the iterator
 
   744       Node runningNode(IncEdgeIt) const {
 
   748       template <typename _Graph>
 
   751           checkConcept<IterableGraphComponent<>, _Graph>();
 
   752           checkConcept<IDableGraphComponent<>, _Graph>();
 
   753           checkConcept<MappableGraphComponent<>, _Graph>();