lemon/kary_heap.h
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 10 Jul 2009 09:15:22 +0200
changeset 704 7124b2581f72
parent 703 bb3392fe91f2
child 706 9314d9339475
permissions -rw-r--r--
Make K a template parameter in KaryHeap (#301)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_KARY_HEAP_H
    20 #define LEMON_KARY_HEAP_H
    21 
    22 ///\ingroup heaps
    23 ///\file
    24 ///\brief Fourary heap implementation.
    25 
    26 #include <vector>
    27 #include <utility>
    28 #include <functional>
    29 
    30 namespace lemon {
    31 
    32   /// \ingroup heaps
    33   ///
    34   ///\brief K-ary heap data structure.
    35   ///
    36   /// This class implements the \e K-ary \e heap data structure.
    37   /// It fully conforms to the \ref concepts::Heap "heap concept".
    38   ///
    39   /// The \ref KaryHeap "K-ary heap" is a generalization of the
    40   /// \ref BinHeap "binary heap" structure, its nodes have at most
    41   /// \c K children, instead of two.
    42   /// \ref BinHeap and \ref FouraryHeap are specialized implementations
    43   /// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively.
    44   ///
    45   /// \tparam PR Type of the priorities of the items.
    46   /// \tparam IM A read-writable item map with \c int values, used
    47   /// internally to handle the cross references.
    48   /// \tparam K The degree of the heap, each node have at most \e K
    49   /// children. The default is 16. Powers of two are suggested to use
    50   /// so that the multiplications and divisions needed to traverse the
    51   /// nodes of the heap could be performed faster.
    52   /// \tparam CMP A functor class for comparing the priorities.
    53   /// The default is \c std::less<PR>.
    54   ///
    55   ///\sa BinHeap
    56   ///\sa FouraryHeap
    57 #ifdef DOXYGEN
    58   template <typename PR, typename IM, int K, typename CMP>
    59 #else
    60   template <typename PR, typename IM, int K = 16,
    61             typename CMP = std::less<PR> >
    62 #endif
    63   class KaryHeap {
    64   public:
    65     /// Type of the item-int map.
    66     typedef IM ItemIntMap;
    67     /// Type of the priorities.
    68     typedef PR Prio;
    69     /// Type of the items stored in the heap.
    70     typedef typename ItemIntMap::Key Item;
    71     /// Type of the item-priority pairs.
    72     typedef std::pair<Item,Prio> Pair;
    73     /// Functor type for comparing the priorities.
    74     typedef CMP Compare;
    75 
    76     /// \brief Type to represent the states of the items.
    77     ///
    78     /// Each item has a state associated to it. It can be "in heap",
    79     /// "pre-heap" or "post-heap". The latter two are indifferent from the
    80     /// heap's point of view, but may be useful to the user.
    81     ///
    82     /// The item-int map must be initialized in such way that it assigns
    83     /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    84     enum State {
    85       IN_HEAP = 0,    ///< = 0.
    86       PRE_HEAP = -1,  ///< = -1.
    87       POST_HEAP = -2  ///< = -2.
    88     };
    89 
    90   private:
    91     std::vector<Pair> _data;
    92     Compare _comp;
    93     ItemIntMap &_iim;
    94 
    95   public:
    96     /// \brief Constructor.
    97     ///
    98     /// Constructor.
    99     /// \param map A map that assigns \c int values to the items.
   100     /// It is used internally to handle the cross references.
   101     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   102     explicit KaryHeap(ItemIntMap &map) : _iim(map) {}
   103 
   104     /// \brief Constructor.
   105     ///
   106     /// Constructor.
   107     /// \param map A map that assigns \c int values to the items.
   108     /// It is used internally to handle the cross references.
   109     /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
   110     /// \param comp The function object used for comparing the priorities.
   111     KaryHeap(ItemIntMap &map, const Compare &comp)
   112       : _iim(map), _comp(comp) {}
   113 
   114     /// \brief The number of items stored in the heap.
   115     ///
   116     /// This function returns the number of items stored in the heap.
   117     int size() const { return _data.size(); }
   118 
   119     /// \brief Check if the heap is empty.
   120     ///
   121     /// This function returns \c true if the heap is empty.
   122     bool empty() const { return _data.empty(); }
   123 
   124     /// \brief Make the heap empty.
   125     ///
   126     /// This functon makes the heap empty.
   127     /// It does not change the cross reference map. If you want to reuse
   128     /// a heap that is not surely empty, you should first clear it and
   129     /// then you should set the cross reference map to \c PRE_HEAP
   130     /// for each item.
   131     void clear() { _data.clear(); }
   132 
   133   private:
   134     int parent(int i) { return (i-1)/K; }
   135     int firstChild(int i) { return K*i+1; }
   136 
   137     bool less(const Pair &p1, const Pair &p2) const {
   138       return _comp(p1.second, p2.second);
   139     }
   140 
   141     int findMin(const int child, const int length) {
   142       int min=child, i=1;
   143       while( i<K && child+i<length ) {
   144         if( less(_data[child+i], _data[min]) )
   145           min=child+i;
   146         ++i;
   147       }
   148       return min;
   149     }
   150 
   151     void bubbleUp(int hole, Pair p) {
   152       int par = parent(hole);
   153       while( hole>0 && less(p,_data[par]) ) {
   154         move(_data[par],hole);
   155         hole = par;
   156         par = parent(hole);
   157       }
   158       move(p, hole);
   159     }
   160 
   161     void bubbleDown(int hole, Pair p, int length) {
   162       if( length>1 ) {
   163         int child = firstChild(hole);
   164         while( child<length ) {
   165           child = findMin(child, length);
   166           if( !less(_data[child], p) )
   167             goto ok;
   168           move(_data[child], hole);
   169           hole = child;
   170           child = firstChild(hole);
   171         }
   172       }
   173     ok:
   174       move(p, hole);
   175     }
   176 
   177     void move(const Pair &p, int i) {
   178       _data[i] = p;
   179       _iim.set(p.first, i);
   180     }
   181 
   182   public:
   183     /// \brief Insert a pair of item and priority into the heap.
   184     ///
   185     /// This function inserts \c p.first to the heap with priority
   186     /// \c p.second.
   187     /// \param p The pair to insert.
   188     /// \pre \c p.first must not be stored in the heap.
   189     void push(const Pair &p) {
   190       int n = _data.size();
   191       _data.resize(n+1);
   192       bubbleUp(n, p);
   193     }
   194 
   195     /// \brief Insert an item into the heap with the given priority.
   196     ///
   197     /// This function inserts the given item into the heap with the
   198     /// given priority.
   199     /// \param i The item to insert.
   200     /// \param p The priority of the item.
   201     /// \pre \e i must not be stored in the heap.
   202     void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
   203 
   204     /// \brief Return the item having minimum priority.
   205     ///
   206     /// This function returns the item having minimum priority.
   207     /// \pre The heap must be non-empty.
   208     Item top() const { return _data[0].first; }
   209 
   210     /// \brief The minimum priority.
   211     ///
   212     /// This function returns the minimum priority.
   213     /// \pre The heap must be non-empty.
   214     Prio prio() const { return _data[0].second; }
   215 
   216     /// \brief Remove the item having minimum priority.
   217     ///
   218     /// This function removes the item having minimum priority.
   219     /// \pre The heap must be non-empty.
   220     void pop() {
   221       int n = _data.size()-1;
   222       _iim.set(_data[0].first, POST_HEAP);
   223       if (n>0) bubbleDown(0, _data[n], n);
   224       _data.pop_back();
   225     }
   226 
   227     /// \brief Remove the given item from the heap.
   228     ///
   229     /// This function removes the given item from the heap if it is
   230     /// already stored.
   231     /// \param i The item to delete.
   232     /// \pre \e i must be in the heap.
   233     void erase(const Item &i) {
   234       int h = _iim[i];
   235       int n = _data.size()-1;
   236       _iim.set(_data[h].first, POST_HEAP);
   237       if( h<n ) {
   238         if( less(_data[parent(h)], _data[n]) )
   239           bubbleDown(h, _data[n], n);
   240         else
   241           bubbleUp(h, _data[n]);
   242       }
   243       _data.pop_back();
   244     }
   245 
   246     /// \brief The priority of the given item.
   247     ///
   248     /// This function returns the priority of the given item.
   249     /// \param i The item.
   250     /// \pre \e i must be in the heap.
   251     Prio operator[](const Item &i) const {
   252       int idx = _iim[i];
   253       return _data[idx].second;
   254     }
   255 
   256     /// \brief Set the priority of an item or insert it, if it is
   257     /// not stored in the heap.
   258     ///
   259     /// This method sets the priority of the given item if it is
   260     /// already stored in the heap. Otherwise it inserts the given
   261     /// item into the heap with the given priority.
   262     /// \param i The item.
   263     /// \param p The priority.
   264     void set(const Item &i, const Prio &p) {
   265       int idx = _iim[i];
   266       if( idx<0 )
   267         push(i,p);
   268       else if( _comp(p, _data[idx].second) )
   269         bubbleUp(idx, Pair(i,p));
   270       else
   271         bubbleDown(idx, Pair(i,p), _data.size());
   272     }
   273 
   274     /// \brief Decrease the priority of an item to the given value.
   275     ///
   276     /// This function decreases the priority of an item to the given value.
   277     /// \param i The item.
   278     /// \param p The priority.
   279     /// \pre \e i must be stored in the heap with priority at least \e p.
   280     void decrease(const Item &i, const Prio &p) {
   281       int idx = _iim[i];
   282       bubbleUp(idx, Pair(i,p));
   283     }
   284 
   285     /// \brief Increase the priority of an item to the given value.
   286     ///
   287     /// This function increases the priority of an item to the given value.
   288     /// \param i The item.
   289     /// \param p The priority.
   290     /// \pre \e i must be stored in the heap with priority at most \e p.
   291     void increase(const Item &i, const Prio &p) {
   292       int idx = _iim[i];
   293       bubbleDown(idx, Pair(i,p), _data.size());
   294     }
   295 
   296     /// \brief Return the state of an item.
   297     ///
   298     /// This method returns \c PRE_HEAP if the given item has never
   299     /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
   300     /// and \c POST_HEAP otherwise.
   301     /// In the latter case it is possible that the item will get back
   302     /// to the heap again.
   303     /// \param i The item.
   304     State state(const Item &i) const {
   305       int s = _iim[i];
   306       if (s>=0) s=0;
   307       return State(s);
   308     }
   309 
   310     /// \brief Set the state of an item in the heap.
   311     ///
   312     /// This function sets the state of the given item in the heap.
   313     /// It can be used to manually clear the heap when it is important
   314     /// to achive better time complexity.
   315     /// \param i The item.
   316     /// \param st The state. It should not be \c IN_HEAP.
   317     void state(const Item& i, State st) {
   318       switch (st) {
   319         case POST_HEAP:
   320         case PRE_HEAP:
   321           if (state(i) == IN_HEAP) erase(i);
   322           _iim[i] = st;
   323           break;
   324         case IN_HEAP:
   325           break;
   326       }
   327     }
   328 
   329     /// \brief Replace an item in the heap.
   330     ///
   331     /// This function replaces item \c i with item \c j.
   332     /// Item \c i must be in the heap, while \c j must be out of the heap.
   333     /// After calling this method, item \c i will be out of the
   334     /// heap and \c j will be in the heap with the same prioriority
   335     /// as item \c i had before.
   336     void replace(const Item& i, const Item& j) {
   337       int idx=_iim[i];
   338       _iim.set(i, _iim[j]);
   339       _iim.set(j, idx);
   340       _data[idx].first=j;
   341     }
   342 
   343   }; // class KaryHeap
   344 
   345 } // namespace lemon
   346 
   347 #endif // LEMON_KARY_HEAP_H