lemon/maps.h
author Balazs Dezso <deba@inf.elte.hu>
Sat, 27 Jun 2009 13:07:26 +0200
changeset 693 7bda7860e0a8
parent 617 4137ef9aacc6
child 694 71939d63ae77
permissions -rw-r--r--
Port iterable maps from SVN 3509 (#73)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAPS_H
    20 #define LEMON_MAPS_H
    21 
    22 #include <iterator>
    23 #include <functional>
    24 #include <vector>
    25 
    26 #include <lemon/core.h>
    27 #include <lemon/smart_graph.h>
    28 
    29 ///\file
    30 ///\ingroup maps
    31 ///\brief Miscellaneous property maps
    32 
    33 #include <map>
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup maps
    38   /// @{
    39 
    40   /// Base class of maps.
    41 
    42   /// Base class of maps. It provides the necessary type definitions
    43   /// required by the map %concepts.
    44   template<typename K, typename V>
    45   class MapBase {
    46   public:
    47     /// \brief The key type of the map.
    48     typedef K Key;
    49     /// \brief The value type of the map.
    50     /// (The type of objects associated with the keys).
    51     typedef V Value;
    52   };
    53 
    54 
    55   /// Null map. (a.k.a. DoNothingMap)
    56 
    57   /// This map can be used if you have to provide a map only for
    58   /// its type definitions, or if you have to provide a writable map,
    59   /// but data written to it is not required (i.e. it will be sent to
    60   /// <tt>/dev/null</tt>).
    61   /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    62   ///
    63   /// \sa ConstMap
    64   template<typename K, typename V>
    65   class NullMap : public MapBase<K, V> {
    66   public:
    67     ///\e
    68     typedef K Key;
    69     ///\e
    70     typedef V Value;
    71 
    72     /// Gives back a default constructed element.
    73     Value operator[](const Key&) const { return Value(); }
    74     /// Absorbs the value.
    75     void set(const Key&, const Value&) {}
    76   };
    77 
    78   /// Returns a \c NullMap class
    79 
    80   /// This function just returns a \c NullMap class.
    81   /// \relates NullMap
    82   template <typename K, typename V>
    83   NullMap<K, V> nullMap() {
    84     return NullMap<K, V>();
    85   }
    86 
    87 
    88   /// Constant map.
    89 
    90   /// This \ref concepts::ReadMap "readable map" assigns a specified
    91   /// value to each key.
    92   ///
    93   /// In other aspects it is equivalent to \c NullMap.
    94   /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
    95   /// concept, but it absorbs the data written to it.
    96   ///
    97   /// The simplest way of using this map is through the constMap()
    98   /// function.
    99   ///
   100   /// \sa NullMap
   101   /// \sa IdentityMap
   102   template<typename K, typename V>
   103   class ConstMap : public MapBase<K, V> {
   104   private:
   105     V _value;
   106   public:
   107     ///\e
   108     typedef K Key;
   109     ///\e
   110     typedef V Value;
   111 
   112     /// Default constructor
   113 
   114     /// Default constructor.
   115     /// The value of the map will be default constructed.
   116     ConstMap() {}
   117 
   118     /// Constructor with specified initial value
   119 
   120     /// Constructor with specified initial value.
   121     /// \param v The initial value of the map.
   122     ConstMap(const Value &v) : _value(v) {}
   123 
   124     /// Gives back the specified value.
   125     Value operator[](const Key&) const { return _value; }
   126 
   127     /// Absorbs the value.
   128     void set(const Key&, const Value&) {}
   129 
   130     /// Sets the value that is assigned to each key.
   131     void setAll(const Value &v) {
   132       _value = v;
   133     }
   134 
   135     template<typename V1>
   136     ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
   137   };
   138 
   139   /// Returns a \c ConstMap class
   140 
   141   /// This function just returns a \c ConstMap class.
   142   /// \relates ConstMap
   143   template<typename K, typename V>
   144   inline ConstMap<K, V> constMap(const V &v) {
   145     return ConstMap<K, V>(v);
   146   }
   147 
   148   template<typename K, typename V>
   149   inline ConstMap<K, V> constMap() {
   150     return ConstMap<K, V>();
   151   }
   152 
   153 
   154   template<typename T, T v>
   155   struct Const {};
   156 
   157   /// Constant map with inlined constant value.
   158 
   159   /// This \ref concepts::ReadMap "readable map" assigns a specified
   160   /// value to each key.
   161   ///
   162   /// In other aspects it is equivalent to \c NullMap.
   163   /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
   164   /// concept, but it absorbs the data written to it.
   165   ///
   166   /// The simplest way of using this map is through the constMap()
   167   /// function.
   168   ///
   169   /// \sa NullMap
   170   /// \sa IdentityMap
   171   template<typename K, typename V, V v>
   172   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
   173   public:
   174     ///\e
   175     typedef K Key;
   176     ///\e
   177     typedef V Value;
   178 
   179     /// Constructor.
   180     ConstMap() {}
   181 
   182     /// Gives back the specified value.
   183     Value operator[](const Key&) const { return v; }
   184 
   185     /// Absorbs the value.
   186     void set(const Key&, const Value&) {}
   187   };
   188 
   189   /// Returns a \c ConstMap class with inlined constant value
   190 
   191   /// This function just returns a \c ConstMap class with inlined
   192   /// constant value.
   193   /// \relates ConstMap
   194   template<typename K, typename V, V v>
   195   inline ConstMap<K, Const<V, v> > constMap() {
   196     return ConstMap<K, Const<V, v> >();
   197   }
   198 
   199 
   200   /// Identity map.
   201 
   202   /// This \ref concepts::ReadMap "read-only map" gives back the given
   203   /// key as value without any modification.
   204   ///
   205   /// \sa ConstMap
   206   template <typename T>
   207   class IdentityMap : public MapBase<T, T> {
   208   public:
   209     ///\e
   210     typedef T Key;
   211     ///\e
   212     typedef T Value;
   213 
   214     /// Gives back the given value without any modification.
   215     Value operator[](const Key &k) const {
   216       return k;
   217     }
   218   };
   219 
   220   /// Returns an \c IdentityMap class
   221 
   222   /// This function just returns an \c IdentityMap class.
   223   /// \relates IdentityMap
   224   template<typename T>
   225   inline IdentityMap<T> identityMap() {
   226     return IdentityMap<T>();
   227   }
   228 
   229 
   230   /// \brief Map for storing values for integer keys from the range
   231   /// <tt>[0..size-1]</tt>.
   232   ///
   233   /// This map is essentially a wrapper for \c std::vector. It assigns
   234   /// values to integer keys from the range <tt>[0..size-1]</tt>.
   235   /// It can be used with some data structures, for example
   236   /// \c UnionFind, \c BinHeap, when the used items are small
   237   /// integers. This map conforms the \ref concepts::ReferenceMap
   238   /// "ReferenceMap" concept.
   239   ///
   240   /// The simplest way of using this map is through the rangeMap()
   241   /// function.
   242   template <typename V>
   243   class RangeMap : public MapBase<int, V> {
   244     template <typename V1>
   245     friend class RangeMap;
   246   private:
   247 
   248     typedef std::vector<V> Vector;
   249     Vector _vector;
   250 
   251   public:
   252 
   253     /// Key type
   254     typedef int Key;
   255     /// Value type
   256     typedef V Value;
   257     /// Reference type
   258     typedef typename Vector::reference Reference;
   259     /// Const reference type
   260     typedef typename Vector::const_reference ConstReference;
   261 
   262     typedef True ReferenceMapTag;
   263 
   264   public:
   265 
   266     /// Constructor with specified default value.
   267     RangeMap(int size = 0, const Value &value = Value())
   268       : _vector(size, value) {}
   269 
   270     /// Constructs the map from an appropriate \c std::vector.
   271     template <typename V1>
   272     RangeMap(const std::vector<V1>& vector)
   273       : _vector(vector.begin(), vector.end()) {}
   274 
   275     /// Constructs the map from another \c RangeMap.
   276     template <typename V1>
   277     RangeMap(const RangeMap<V1> &c)
   278       : _vector(c._vector.begin(), c._vector.end()) {}
   279 
   280     /// Returns the size of the map.
   281     int size() {
   282       return _vector.size();
   283     }
   284 
   285     /// Resizes the map.
   286 
   287     /// Resizes the underlying \c std::vector container, so changes the
   288     /// keyset of the map.
   289     /// \param size The new size of the map. The new keyset will be the
   290     /// range <tt>[0..size-1]</tt>.
   291     /// \param value The default value to assign to the new keys.
   292     void resize(int size, const Value &value = Value()) {
   293       _vector.resize(size, value);
   294     }
   295 
   296   private:
   297 
   298     RangeMap& operator=(const RangeMap&);
   299 
   300   public:
   301 
   302     ///\e
   303     Reference operator[](const Key &k) {
   304       return _vector[k];
   305     }
   306 
   307     ///\e
   308     ConstReference operator[](const Key &k) const {
   309       return _vector[k];
   310     }
   311 
   312     ///\e
   313     void set(const Key &k, const Value &v) {
   314       _vector[k] = v;
   315     }
   316   };
   317 
   318   /// Returns a \c RangeMap class
   319 
   320   /// This function just returns a \c RangeMap class.
   321   /// \relates RangeMap
   322   template<typename V>
   323   inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
   324     return RangeMap<V>(size, value);
   325   }
   326 
   327   /// \brief Returns a \c RangeMap class created from an appropriate
   328   /// \c std::vector
   329 
   330   /// This function just returns a \c RangeMap class created from an
   331   /// appropriate \c std::vector.
   332   /// \relates RangeMap
   333   template<typename V>
   334   inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
   335     return RangeMap<V>(vector);
   336   }
   337 
   338 
   339   /// Map type based on \c std::map
   340 
   341   /// This map is essentially a wrapper for \c std::map with addition
   342   /// that you can specify a default value for the keys that are not
   343   /// stored actually. This value can be different from the default
   344   /// contructed value (i.e. \c %Value()).
   345   /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
   346   /// concept.
   347   ///
   348   /// This map is useful if a default value should be assigned to most of
   349   /// the keys and different values should be assigned only to a few
   350   /// keys (i.e. the map is "sparse").
   351   /// The name of this type also refers to this important usage.
   352   ///
   353   /// Apart form that this map can be used in many other cases since it
   354   /// is based on \c std::map, which is a general associative container.
   355   /// However keep in mind that it is usually not as efficient as other
   356   /// maps.
   357   ///
   358   /// The simplest way of using this map is through the sparseMap()
   359   /// function.
   360   template <typename K, typename V, typename Comp = std::less<K> >
   361   class SparseMap : public MapBase<K, V> {
   362     template <typename K1, typename V1, typename C1>
   363     friend class SparseMap;
   364   public:
   365 
   366     /// Key type
   367     typedef K Key;
   368     /// Value type
   369     typedef V Value;
   370     /// Reference type
   371     typedef Value& Reference;
   372     /// Const reference type
   373     typedef const Value& ConstReference;
   374 
   375     typedef True ReferenceMapTag;
   376 
   377   private:
   378 
   379     typedef std::map<K, V, Comp> Map;
   380     Map _map;
   381     Value _value;
   382 
   383   public:
   384 
   385     /// \brief Constructor with specified default value.
   386     SparseMap(const Value &value = Value()) : _value(value) {}
   387     /// \brief Constructs the map from an appropriate \c std::map, and
   388     /// explicitly specifies a default value.
   389     template <typename V1, typename Comp1>
   390     SparseMap(const std::map<Key, V1, Comp1> &map,
   391               const Value &value = Value())
   392       : _map(map.begin(), map.end()), _value(value) {}
   393 
   394     /// \brief Constructs the map from another \c SparseMap.
   395     template<typename V1, typename Comp1>
   396     SparseMap(const SparseMap<Key, V1, Comp1> &c)
   397       : _map(c._map.begin(), c._map.end()), _value(c._value) {}
   398 
   399   private:
   400 
   401     SparseMap& operator=(const SparseMap&);
   402 
   403   public:
   404 
   405     ///\e
   406     Reference operator[](const Key &k) {
   407       typename Map::iterator it = _map.lower_bound(k);
   408       if (it != _map.end() && !_map.key_comp()(k, it->first))
   409         return it->second;
   410       else
   411         return _map.insert(it, std::make_pair(k, _value))->second;
   412     }
   413 
   414     ///\e
   415     ConstReference operator[](const Key &k) const {
   416       typename Map::const_iterator it = _map.find(k);
   417       if (it != _map.end())
   418         return it->second;
   419       else
   420         return _value;
   421     }
   422 
   423     ///\e
   424     void set(const Key &k, const Value &v) {
   425       typename Map::iterator it = _map.lower_bound(k);
   426       if (it != _map.end() && !_map.key_comp()(k, it->first))
   427         it->second = v;
   428       else
   429         _map.insert(it, std::make_pair(k, v));
   430     }
   431 
   432     ///\e
   433     void setAll(const Value &v) {
   434       _value = v;
   435       _map.clear();
   436     }
   437   };
   438 
   439   /// Returns a \c SparseMap class
   440 
   441   /// This function just returns a \c SparseMap class with specified
   442   /// default value.
   443   /// \relates SparseMap
   444   template<typename K, typename V, typename Compare>
   445   inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
   446     return SparseMap<K, V, Compare>(value);
   447   }
   448 
   449   template<typename K, typename V>
   450   inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
   451     return SparseMap<K, V, std::less<K> >(value);
   452   }
   453 
   454   /// \brief Returns a \c SparseMap class created from an appropriate
   455   /// \c std::map
   456 
   457   /// This function just returns a \c SparseMap class created from an
   458   /// appropriate \c std::map.
   459   /// \relates SparseMap
   460   template<typename K, typename V, typename Compare>
   461   inline SparseMap<K, V, Compare>
   462     sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
   463   {
   464     return SparseMap<K, V, Compare>(map, value);
   465   }
   466 
   467   /// @}
   468 
   469   /// \addtogroup map_adaptors
   470   /// @{
   471 
   472   /// Composition of two maps
   473 
   474   /// This \ref concepts::ReadMap "read-only map" returns the
   475   /// composition of two given maps. That is to say, if \c m1 is of
   476   /// type \c M1 and \c m2 is of \c M2, then for
   477   /// \code
   478   ///   ComposeMap<M1, M2> cm(m1,m2);
   479   /// \endcode
   480   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
   481   ///
   482   /// The \c Key type of the map is inherited from \c M2 and the
   483   /// \c Value type is from \c M1.
   484   /// \c M2::Value must be convertible to \c M1::Key.
   485   ///
   486   /// The simplest way of using this map is through the composeMap()
   487   /// function.
   488   ///
   489   /// \sa CombineMap
   490   template <typename M1, typename M2>
   491   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
   492     const M1 &_m1;
   493     const M2 &_m2;
   494   public:
   495     ///\e
   496     typedef typename M2::Key Key;
   497     ///\e
   498     typedef typename M1::Value Value;
   499 
   500     /// Constructor
   501     ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   502 
   503     ///\e
   504     typename MapTraits<M1>::ConstReturnValue
   505     operator[](const Key &k) const { return _m1[_m2[k]]; }
   506   };
   507 
   508   /// Returns a \c ComposeMap class
   509 
   510   /// This function just returns a \c ComposeMap class.
   511   ///
   512   /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
   513   /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
   514   /// will be equal to <tt>m1[m2[x]]</tt>.
   515   ///
   516   /// \relates ComposeMap
   517   template <typename M1, typename M2>
   518   inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
   519     return ComposeMap<M1, M2>(m1, m2);
   520   }
   521 
   522 
   523   /// Combination of two maps using an STL (binary) functor.
   524 
   525   /// This \ref concepts::ReadMap "read-only map" takes two maps and a
   526   /// binary functor and returns the combination of the two given maps
   527   /// using the functor.
   528   /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
   529   /// and \c f is of \c F, then for
   530   /// \code
   531   ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
   532   /// \endcode
   533   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
   534   ///
   535   /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
   536   /// must be convertible to \c M2::Key) and the \c Value type is \c V.
   537   /// \c M2::Value and \c M1::Value must be convertible to the
   538   /// corresponding input parameter of \c F and the return type of \c F
   539   /// must be convertible to \c V.
   540   ///
   541   /// The simplest way of using this map is through the combineMap()
   542   /// function.
   543   ///
   544   /// \sa ComposeMap
   545   template<typename M1, typename M2, typename F,
   546            typename V = typename F::result_type>
   547   class CombineMap : public MapBase<typename M1::Key, V> {
   548     const M1 &_m1;
   549     const M2 &_m2;
   550     F _f;
   551   public:
   552     ///\e
   553     typedef typename M1::Key Key;
   554     ///\e
   555     typedef V Value;
   556 
   557     /// Constructor
   558     CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
   559       : _m1(m1), _m2(m2), _f(f) {}
   560     ///\e
   561     Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
   562   };
   563 
   564   /// Returns a \c CombineMap class
   565 
   566   /// This function just returns a \c CombineMap class.
   567   ///
   568   /// For example, if \c m1 and \c m2 are both maps with \c double
   569   /// values, then
   570   /// \code
   571   ///   combineMap(m1,m2,std::plus<double>())
   572   /// \endcode
   573   /// is equivalent to
   574   /// \code
   575   ///   addMap(m1,m2)
   576   /// \endcode
   577   ///
   578   /// This function is specialized for adaptable binary function
   579   /// classes and C++ functions.
   580   ///
   581   /// \relates CombineMap
   582   template<typename M1, typename M2, typename F, typename V>
   583   inline CombineMap<M1, M2, F, V>
   584   combineMap(const M1 &m1, const M2 &m2, const F &f) {
   585     return CombineMap<M1, M2, F, V>(m1,m2,f);
   586   }
   587 
   588   template<typename M1, typename M2, typename F>
   589   inline CombineMap<M1, M2, F, typename F::result_type>
   590   combineMap(const M1 &m1, const M2 &m2, const F &f) {
   591     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
   592   }
   593 
   594   template<typename M1, typename M2, typename K1, typename K2, typename V>
   595   inline CombineMap<M1, M2, V (*)(K1, K2), V>
   596   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
   597     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
   598   }
   599 
   600 
   601   /// Converts an STL style (unary) functor to a map
   602 
   603   /// This \ref concepts::ReadMap "read-only map" returns the value
   604   /// of a given functor. Actually, it just wraps the functor and
   605   /// provides the \c Key and \c Value typedefs.
   606   ///
   607   /// Template parameters \c K and \c V will become its \c Key and
   608   /// \c Value. In most cases they have to be given explicitly because
   609   /// a functor typically does not provide \c argument_type and
   610   /// \c result_type typedefs.
   611   /// Parameter \c F is the type of the used functor.
   612   ///
   613   /// The simplest way of using this map is through the functorToMap()
   614   /// function.
   615   ///
   616   /// \sa MapToFunctor
   617   template<typename F,
   618            typename K = typename F::argument_type,
   619            typename V = typename F::result_type>
   620   class FunctorToMap : public MapBase<K, V> {
   621     F _f;
   622   public:
   623     ///\e
   624     typedef K Key;
   625     ///\e
   626     typedef V Value;
   627 
   628     /// Constructor
   629     FunctorToMap(const F &f = F()) : _f(f) {}
   630     ///\e
   631     Value operator[](const Key &k) const { return _f(k); }
   632   };
   633 
   634   /// Returns a \c FunctorToMap class
   635 
   636   /// This function just returns a \c FunctorToMap class.
   637   ///
   638   /// This function is specialized for adaptable binary function
   639   /// classes and C++ functions.
   640   ///
   641   /// \relates FunctorToMap
   642   template<typename K, typename V, typename F>
   643   inline FunctorToMap<F, K, V> functorToMap(const F &f) {
   644     return FunctorToMap<F, K, V>(f);
   645   }
   646 
   647   template <typename F>
   648   inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
   649     functorToMap(const F &f)
   650   {
   651     return FunctorToMap<F, typename F::argument_type,
   652       typename F::result_type>(f);
   653   }
   654 
   655   template <typename K, typename V>
   656   inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
   657     return FunctorToMap<V (*)(K), K, V>(f);
   658   }
   659 
   660 
   661   /// Converts a map to an STL style (unary) functor
   662 
   663   /// This class converts a map to an STL style (unary) functor.
   664   /// That is it provides an <tt>operator()</tt> to read its values.
   665   ///
   666   /// For the sake of convenience it also works as a usual
   667   /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
   668   /// and the \c Key and \c Value typedefs also exist.
   669   ///
   670   /// The simplest way of using this map is through the mapToFunctor()
   671   /// function.
   672   ///
   673   ///\sa FunctorToMap
   674   template <typename M>
   675   class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
   676     const M &_m;
   677   public:
   678     ///\e
   679     typedef typename M::Key Key;
   680     ///\e
   681     typedef typename M::Value Value;
   682 
   683     typedef typename M::Key argument_type;
   684     typedef typename M::Value result_type;
   685 
   686     /// Constructor
   687     MapToFunctor(const M &m) : _m(m) {}
   688     ///\e
   689     Value operator()(const Key &k) const { return _m[k]; }
   690     ///\e
   691     Value operator[](const Key &k) const { return _m[k]; }
   692   };
   693 
   694   /// Returns a \c MapToFunctor class
   695 
   696   /// This function just returns a \c MapToFunctor class.
   697   /// \relates MapToFunctor
   698   template<typename M>
   699   inline MapToFunctor<M> mapToFunctor(const M &m) {
   700     return MapToFunctor<M>(m);
   701   }
   702 
   703 
   704   /// \brief Map adaptor to convert the \c Value type of a map to
   705   /// another type using the default conversion.
   706 
   707   /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
   708   /// "readable map" to another type using the default conversion.
   709   /// The \c Key type of it is inherited from \c M and the \c Value
   710   /// type is \c V.
   711   /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
   712   ///
   713   /// The simplest way of using this map is through the convertMap()
   714   /// function.
   715   template <typename M, typename V>
   716   class ConvertMap : public MapBase<typename M::Key, V> {
   717     const M &_m;
   718   public:
   719     ///\e
   720     typedef typename M::Key Key;
   721     ///\e
   722     typedef V Value;
   723 
   724     /// Constructor
   725 
   726     /// Constructor.
   727     /// \param m The underlying map.
   728     ConvertMap(const M &m) : _m(m) {}
   729 
   730     ///\e
   731     Value operator[](const Key &k) const { return _m[k]; }
   732   };
   733 
   734   /// Returns a \c ConvertMap class
   735 
   736   /// This function just returns a \c ConvertMap class.
   737   /// \relates ConvertMap
   738   template<typename V, typename M>
   739   inline ConvertMap<M, V> convertMap(const M &map) {
   740     return ConvertMap<M, V>(map);
   741   }
   742 
   743 
   744   /// Applies all map setting operations to two maps
   745 
   746   /// This map has two \ref concepts::WriteMap "writable map" parameters
   747   /// and each write request will be passed to both of them.
   748   /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
   749   /// operations will return the corresponding values of \c M1.
   750   ///
   751   /// The \c Key and \c Value types are inherited from \c M1.
   752   /// The \c Key and \c Value of \c M2 must be convertible from those
   753   /// of \c M1.
   754   ///
   755   /// The simplest way of using this map is through the forkMap()
   756   /// function.
   757   template<typename  M1, typename M2>
   758   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
   759     M1 &_m1;
   760     M2 &_m2;
   761   public:
   762     ///\e
   763     typedef typename M1::Key Key;
   764     ///\e
   765     typedef typename M1::Value Value;
   766 
   767     /// Constructor
   768     ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
   769     /// Returns the value associated with the given key in the first map.
   770     Value operator[](const Key &k) const { return _m1[k]; }
   771     /// Sets the value associated with the given key in both maps.
   772     void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
   773   };
   774 
   775   /// Returns a \c ForkMap class
   776 
   777   /// This function just returns a \c ForkMap class.
   778   /// \relates ForkMap
   779   template <typename M1, typename M2>
   780   inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
   781     return ForkMap<M1,M2>(m1,m2);
   782   }
   783 
   784 
   785   /// Sum of two maps
   786 
   787   /// This \ref concepts::ReadMap "read-only map" returns the sum
   788   /// of the values of the two given maps.
   789   /// Its \c Key and \c Value types are inherited from \c M1.
   790   /// The \c Key and \c Value of \c M2 must be convertible to those of
   791   /// \c M1.
   792   ///
   793   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   794   /// \code
   795   ///   AddMap<M1,M2> am(m1,m2);
   796   /// \endcode
   797   /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
   798   ///
   799   /// The simplest way of using this map is through the addMap()
   800   /// function.
   801   ///
   802   /// \sa SubMap, MulMap, DivMap
   803   /// \sa ShiftMap, ShiftWriteMap
   804   template<typename M1, typename M2>
   805   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
   806     const M1 &_m1;
   807     const M2 &_m2;
   808   public:
   809     ///\e
   810     typedef typename M1::Key Key;
   811     ///\e
   812     typedef typename M1::Value Value;
   813 
   814     /// Constructor
   815     AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   816     ///\e
   817     Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
   818   };
   819 
   820   /// Returns an \c AddMap class
   821 
   822   /// This function just returns an \c AddMap class.
   823   ///
   824   /// For example, if \c m1 and \c m2 are both maps with \c double
   825   /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
   826   /// <tt>m1[x]+m2[x]</tt>.
   827   ///
   828   /// \relates AddMap
   829   template<typename M1, typename M2>
   830   inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
   831     return AddMap<M1, M2>(m1,m2);
   832   }
   833 
   834 
   835   /// Difference of two maps
   836 
   837   /// This \ref concepts::ReadMap "read-only map" returns the difference
   838   /// of the values of the two given maps.
   839   /// Its \c Key and \c Value types are inherited from \c M1.
   840   /// The \c Key and \c Value of \c M2 must be convertible to those of
   841   /// \c M1.
   842   ///
   843   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   844   /// \code
   845   ///   SubMap<M1,M2> sm(m1,m2);
   846   /// \endcode
   847   /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
   848   ///
   849   /// The simplest way of using this map is through the subMap()
   850   /// function.
   851   ///
   852   /// \sa AddMap, MulMap, DivMap
   853   template<typename M1, typename M2>
   854   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
   855     const M1 &_m1;
   856     const M2 &_m2;
   857   public:
   858     ///\e
   859     typedef typename M1::Key Key;
   860     ///\e
   861     typedef typename M1::Value Value;
   862 
   863     /// Constructor
   864     SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
   865     ///\e
   866     Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
   867   };
   868 
   869   /// Returns a \c SubMap class
   870 
   871   /// This function just returns a \c SubMap class.
   872   ///
   873   /// For example, if \c m1 and \c m2 are both maps with \c double
   874   /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
   875   /// <tt>m1[x]-m2[x]</tt>.
   876   ///
   877   /// \relates SubMap
   878   template<typename M1, typename M2>
   879   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
   880     return SubMap<M1, M2>(m1,m2);
   881   }
   882 
   883 
   884   /// Product of two maps
   885 
   886   /// This \ref concepts::ReadMap "read-only map" returns the product
   887   /// of the values of the two given maps.
   888   /// Its \c Key and \c Value types are inherited from \c M1.
   889   /// The \c Key and \c Value of \c M2 must be convertible to those of
   890   /// \c M1.
   891   ///
   892   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   893   /// \code
   894   ///   MulMap<M1,M2> mm(m1,m2);
   895   /// \endcode
   896   /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
   897   ///
   898   /// The simplest way of using this map is through the mulMap()
   899   /// function.
   900   ///
   901   /// \sa AddMap, SubMap, DivMap
   902   /// \sa ScaleMap, ScaleWriteMap
   903   template<typename M1, typename M2>
   904   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
   905     const M1 &_m1;
   906     const M2 &_m2;
   907   public:
   908     ///\e
   909     typedef typename M1::Key Key;
   910     ///\e
   911     typedef typename M1::Value Value;
   912 
   913     /// Constructor
   914     MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
   915     ///\e
   916     Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
   917   };
   918 
   919   /// Returns a \c MulMap class
   920 
   921   /// This function just returns a \c MulMap class.
   922   ///
   923   /// For example, if \c m1 and \c m2 are both maps with \c double
   924   /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
   925   /// <tt>m1[x]*m2[x]</tt>.
   926   ///
   927   /// \relates MulMap
   928   template<typename M1, typename M2>
   929   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
   930     return MulMap<M1, M2>(m1,m2);
   931   }
   932 
   933 
   934   /// Quotient of two maps
   935 
   936   /// This \ref concepts::ReadMap "read-only map" returns the quotient
   937   /// of the values of the two given maps.
   938   /// Its \c Key and \c Value types are inherited from \c M1.
   939   /// The \c Key and \c Value of \c M2 must be convertible to those of
   940   /// \c M1.
   941   ///
   942   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
   943   /// \code
   944   ///   DivMap<M1,M2> dm(m1,m2);
   945   /// \endcode
   946   /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
   947   ///
   948   /// The simplest way of using this map is through the divMap()
   949   /// function.
   950   ///
   951   /// \sa AddMap, SubMap, MulMap
   952   template<typename M1, typename M2>
   953   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
   954     const M1 &_m1;
   955     const M2 &_m2;
   956   public:
   957     ///\e
   958     typedef typename M1::Key Key;
   959     ///\e
   960     typedef typename M1::Value Value;
   961 
   962     /// Constructor
   963     DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
   964     ///\e
   965     Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
   966   };
   967 
   968   /// Returns a \c DivMap class
   969 
   970   /// This function just returns a \c DivMap class.
   971   ///
   972   /// For example, if \c m1 and \c m2 are both maps with \c double
   973   /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
   974   /// <tt>m1[x]/m2[x]</tt>.
   975   ///
   976   /// \relates DivMap
   977   template<typename M1, typename M2>
   978   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
   979     return DivMap<M1, M2>(m1,m2);
   980   }
   981 
   982 
   983   /// Shifts a map with a constant.
   984 
   985   /// This \ref concepts::ReadMap "read-only map" returns the sum of
   986   /// the given map and a constant value (i.e. it shifts the map with
   987   /// the constant). Its \c Key and \c Value are inherited from \c M.
   988   ///
   989   /// Actually,
   990   /// \code
   991   ///   ShiftMap<M> sh(m,v);
   992   /// \endcode
   993   /// is equivalent to
   994   /// \code
   995   ///   ConstMap<M::Key, M::Value> cm(v);
   996   ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
   997   /// \endcode
   998   ///
   999   /// The simplest way of using this map is through the shiftMap()
  1000   /// function.
  1001   ///
  1002   /// \sa ShiftWriteMap
  1003   template<typename M, typename C = typename M::Value>
  1004   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
  1005     const M &_m;
  1006     C _v;
  1007   public:
  1008     ///\e
  1009     typedef typename M::Key Key;
  1010     ///\e
  1011     typedef typename M::Value Value;
  1012 
  1013     /// Constructor
  1014 
  1015     /// Constructor.
  1016     /// \param m The undelying map.
  1017     /// \param v The constant value.
  1018     ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
  1019     ///\e
  1020     Value operator[](const Key &k) const { return _m[k]+_v; }
  1021   };
  1022 
  1023   /// Shifts a map with a constant (read-write version).
  1024 
  1025   /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
  1026   /// of the given map and a constant value (i.e. it shifts the map with
  1027   /// the constant). Its \c Key and \c Value are inherited from \c M.
  1028   /// It makes also possible to write the map.
  1029   ///
  1030   /// The simplest way of using this map is through the shiftWriteMap()
  1031   /// function.
  1032   ///
  1033   /// \sa ShiftMap
  1034   template<typename M, typename C = typename M::Value>
  1035   class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1036     M &_m;
  1037     C _v;
  1038   public:
  1039     ///\e
  1040     typedef typename M::Key Key;
  1041     ///\e
  1042     typedef typename M::Value Value;
  1043 
  1044     /// Constructor
  1045 
  1046     /// Constructor.
  1047     /// \param m The undelying map.
  1048     /// \param v The constant value.
  1049     ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
  1050     ///\e
  1051     Value operator[](const Key &k) const { return _m[k]+_v; }
  1052     ///\e
  1053     void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
  1054   };
  1055 
  1056   /// Returns a \c ShiftMap class
  1057 
  1058   /// This function just returns a \c ShiftMap class.
  1059   ///
  1060   /// For example, if \c m is a map with \c double values and \c v is
  1061   /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
  1062   /// <tt>m[x]+v</tt>.
  1063   ///
  1064   /// \relates ShiftMap
  1065   template<typename M, typename C>
  1066   inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
  1067     return ShiftMap<M, C>(m,v);
  1068   }
  1069 
  1070   /// Returns a \c ShiftWriteMap class
  1071 
  1072   /// This function just returns a \c ShiftWriteMap class.
  1073   ///
  1074   /// For example, if \c m is a map with \c double values and \c v is
  1075   /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
  1076   /// <tt>m[x]+v</tt>.
  1077   /// Moreover it makes also possible to write the map.
  1078   ///
  1079   /// \relates ShiftWriteMap
  1080   template<typename M, typename C>
  1081   inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
  1082     return ShiftWriteMap<M, C>(m,v);
  1083   }
  1084 
  1085 
  1086   /// Scales a map with a constant.
  1087 
  1088   /// This \ref concepts::ReadMap "read-only map" returns the value of
  1089   /// the given map multiplied from the left side with a constant value.
  1090   /// Its \c Key and \c Value are inherited from \c M.
  1091   ///
  1092   /// Actually,
  1093   /// \code
  1094   ///   ScaleMap<M> sc(m,v);
  1095   /// \endcode
  1096   /// is equivalent to
  1097   /// \code
  1098   ///   ConstMap<M::Key, M::Value> cm(v);
  1099   ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
  1100   /// \endcode
  1101   ///
  1102   /// The simplest way of using this map is through the scaleMap()
  1103   /// function.
  1104   ///
  1105   /// \sa ScaleWriteMap
  1106   template<typename M, typename C = typename M::Value>
  1107   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
  1108     const M &_m;
  1109     C _v;
  1110   public:
  1111     ///\e
  1112     typedef typename M::Key Key;
  1113     ///\e
  1114     typedef typename M::Value Value;
  1115 
  1116     /// Constructor
  1117 
  1118     /// Constructor.
  1119     /// \param m The undelying map.
  1120     /// \param v The constant value.
  1121     ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
  1122     ///\e
  1123     Value operator[](const Key &k) const { return _v*_m[k]; }
  1124   };
  1125 
  1126   /// Scales a map with a constant (read-write version).
  1127 
  1128   /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
  1129   /// the given map multiplied from the left side with a constant value.
  1130   /// Its \c Key and \c Value are inherited from \c M.
  1131   /// It can also be used as write map if the \c / operator is defined
  1132   /// between \c Value and \c C and the given multiplier is not zero.
  1133   ///
  1134   /// The simplest way of using this map is through the scaleWriteMap()
  1135   /// function.
  1136   ///
  1137   /// \sa ScaleMap
  1138   template<typename M, typename C = typename M::Value>
  1139   class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1140     M &_m;
  1141     C _v;
  1142   public:
  1143     ///\e
  1144     typedef typename M::Key Key;
  1145     ///\e
  1146     typedef typename M::Value Value;
  1147 
  1148     /// Constructor
  1149 
  1150     /// Constructor.
  1151     /// \param m The undelying map.
  1152     /// \param v The constant value.
  1153     ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
  1154     ///\e
  1155     Value operator[](const Key &k) const { return _v*_m[k]; }
  1156     ///\e
  1157     void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
  1158   };
  1159 
  1160   /// Returns a \c ScaleMap class
  1161 
  1162   /// This function just returns a \c ScaleMap class.
  1163   ///
  1164   /// For example, if \c m is a map with \c double values and \c v is
  1165   /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
  1166   /// <tt>v*m[x]</tt>.
  1167   ///
  1168   /// \relates ScaleMap
  1169   template<typename M, typename C>
  1170   inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
  1171     return ScaleMap<M, C>(m,v);
  1172   }
  1173 
  1174   /// Returns a \c ScaleWriteMap class
  1175 
  1176   /// This function just returns a \c ScaleWriteMap class.
  1177   ///
  1178   /// For example, if \c m is a map with \c double values and \c v is
  1179   /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
  1180   /// <tt>v*m[x]</tt>.
  1181   /// Moreover it makes also possible to write the map.
  1182   ///
  1183   /// \relates ScaleWriteMap
  1184   template<typename M, typename C>
  1185   inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
  1186     return ScaleWriteMap<M, C>(m,v);
  1187   }
  1188 
  1189 
  1190   /// Negative of a map
  1191 
  1192   /// This \ref concepts::ReadMap "read-only map" returns the negative
  1193   /// of the values of the given map (using the unary \c - operator).
  1194   /// Its \c Key and \c Value are inherited from \c M.
  1195   ///
  1196   /// If M::Value is \c int, \c double etc., then
  1197   /// \code
  1198   ///   NegMap<M> neg(m);
  1199   /// \endcode
  1200   /// is equivalent to
  1201   /// \code
  1202   ///   ScaleMap<M> neg(m,-1);
  1203   /// \endcode
  1204   ///
  1205   /// The simplest way of using this map is through the negMap()
  1206   /// function.
  1207   ///
  1208   /// \sa NegWriteMap
  1209   template<typename M>
  1210   class NegMap : public MapBase<typename M::Key, typename M::Value> {
  1211     const M& _m;
  1212   public:
  1213     ///\e
  1214     typedef typename M::Key Key;
  1215     ///\e
  1216     typedef typename M::Value Value;
  1217 
  1218     /// Constructor
  1219     NegMap(const M &m) : _m(m) {}
  1220     ///\e
  1221     Value operator[](const Key &k) const { return -_m[k]; }
  1222   };
  1223 
  1224   /// Negative of a map (read-write version)
  1225 
  1226   /// This \ref concepts::ReadWriteMap "read-write map" returns the
  1227   /// negative of the values of the given map (using the unary \c -
  1228   /// operator).
  1229   /// Its \c Key and \c Value are inherited from \c M.
  1230   /// It makes also possible to write the map.
  1231   ///
  1232   /// If M::Value is \c int, \c double etc., then
  1233   /// \code
  1234   ///   NegWriteMap<M> neg(m);
  1235   /// \endcode
  1236   /// is equivalent to
  1237   /// \code
  1238   ///   ScaleWriteMap<M> neg(m,-1);
  1239   /// \endcode
  1240   ///
  1241   /// The simplest way of using this map is through the negWriteMap()
  1242   /// function.
  1243   ///
  1244   /// \sa NegMap
  1245   template<typename M>
  1246   class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
  1247     M &_m;
  1248   public:
  1249     ///\e
  1250     typedef typename M::Key Key;
  1251     ///\e
  1252     typedef typename M::Value Value;
  1253 
  1254     /// Constructor
  1255     NegWriteMap(M &m) : _m(m) {}
  1256     ///\e
  1257     Value operator[](const Key &k) const { return -_m[k]; }
  1258     ///\e
  1259     void set(const Key &k, const Value &v) { _m.set(k, -v); }
  1260   };
  1261 
  1262   /// Returns a \c NegMap class
  1263 
  1264   /// This function just returns a \c NegMap class.
  1265   ///
  1266   /// For example, if \c m is a map with \c double values, then
  1267   /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
  1268   ///
  1269   /// \relates NegMap
  1270   template <typename M>
  1271   inline NegMap<M> negMap(const M &m) {
  1272     return NegMap<M>(m);
  1273   }
  1274 
  1275   /// Returns a \c NegWriteMap class
  1276 
  1277   /// This function just returns a \c NegWriteMap class.
  1278   ///
  1279   /// For example, if \c m is a map with \c double values, then
  1280   /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
  1281   /// Moreover it makes also possible to write the map.
  1282   ///
  1283   /// \relates NegWriteMap
  1284   template <typename M>
  1285   inline NegWriteMap<M> negWriteMap(M &m) {
  1286     return NegWriteMap<M>(m);
  1287   }
  1288 
  1289 
  1290   /// Absolute value of a map
  1291 
  1292   /// This \ref concepts::ReadMap "read-only map" returns the absolute
  1293   /// value of the values of the given map.
  1294   /// Its \c Key and \c Value are inherited from \c M.
  1295   /// \c Value must be comparable to \c 0 and the unary \c -
  1296   /// operator must be defined for it, of course.
  1297   ///
  1298   /// The simplest way of using this map is through the absMap()
  1299   /// function.
  1300   template<typename M>
  1301   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
  1302     const M &_m;
  1303   public:
  1304     ///\e
  1305     typedef typename M::Key Key;
  1306     ///\e
  1307     typedef typename M::Value Value;
  1308 
  1309     /// Constructor
  1310     AbsMap(const M &m) : _m(m) {}
  1311     ///\e
  1312     Value operator[](const Key &k) const {
  1313       Value tmp = _m[k];
  1314       return tmp >= 0 ? tmp : -tmp;
  1315     }
  1316 
  1317   };
  1318 
  1319   /// Returns an \c AbsMap class
  1320 
  1321   /// This function just returns an \c AbsMap class.
  1322   ///
  1323   /// For example, if \c m is a map with \c double values, then
  1324   /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
  1325   /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
  1326   /// negative.
  1327   ///
  1328   /// \relates AbsMap
  1329   template<typename M>
  1330   inline AbsMap<M> absMap(const M &m) {
  1331     return AbsMap<M>(m);
  1332   }
  1333 
  1334   /// @}
  1335 
  1336   // Logical maps and map adaptors:
  1337 
  1338   /// \addtogroup maps
  1339   /// @{
  1340 
  1341   /// Constant \c true map.
  1342 
  1343   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
  1344   /// each key.
  1345   ///
  1346   /// Note that
  1347   /// \code
  1348   ///   TrueMap<K> tm;
  1349   /// \endcode
  1350   /// is equivalent to
  1351   /// \code
  1352   ///   ConstMap<K,bool> tm(true);
  1353   /// \endcode
  1354   ///
  1355   /// \sa FalseMap
  1356   /// \sa ConstMap
  1357   template <typename K>
  1358   class TrueMap : public MapBase<K, bool> {
  1359   public:
  1360     ///\e
  1361     typedef K Key;
  1362     ///\e
  1363     typedef bool Value;
  1364 
  1365     /// Gives back \c true.
  1366     Value operator[](const Key&) const { return true; }
  1367   };
  1368 
  1369   /// Returns a \c TrueMap class
  1370 
  1371   /// This function just returns a \c TrueMap class.
  1372   /// \relates TrueMap
  1373   template<typename K>
  1374   inline TrueMap<K> trueMap() {
  1375     return TrueMap<K>();
  1376   }
  1377 
  1378 
  1379   /// Constant \c false map.
  1380 
  1381   /// This \ref concepts::ReadMap "read-only map" assigns \c false to
  1382   /// each key.
  1383   ///
  1384   /// Note that
  1385   /// \code
  1386   ///   FalseMap<K> fm;
  1387   /// \endcode
  1388   /// is equivalent to
  1389   /// \code
  1390   ///   ConstMap<K,bool> fm(false);
  1391   /// \endcode
  1392   ///
  1393   /// \sa TrueMap
  1394   /// \sa ConstMap
  1395   template <typename K>
  1396   class FalseMap : public MapBase<K, bool> {
  1397   public:
  1398     ///\e
  1399     typedef K Key;
  1400     ///\e
  1401     typedef bool Value;
  1402 
  1403     /// Gives back \c false.
  1404     Value operator[](const Key&) const { return false; }
  1405   };
  1406 
  1407   /// Returns a \c FalseMap class
  1408 
  1409   /// This function just returns a \c FalseMap class.
  1410   /// \relates FalseMap
  1411   template<typename K>
  1412   inline FalseMap<K> falseMap() {
  1413     return FalseMap<K>();
  1414   }
  1415 
  1416   /// @}
  1417 
  1418   /// \addtogroup map_adaptors
  1419   /// @{
  1420 
  1421   /// Logical 'and' of two maps
  1422 
  1423   /// This \ref concepts::ReadMap "read-only map" returns the logical
  1424   /// 'and' of the values of the two given maps.
  1425   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1426   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1427   ///
  1428   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1429   /// \code
  1430   ///   AndMap<M1,M2> am(m1,m2);
  1431   /// \endcode
  1432   /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
  1433   ///
  1434   /// The simplest way of using this map is through the andMap()
  1435   /// function.
  1436   ///
  1437   /// \sa OrMap
  1438   /// \sa NotMap, NotWriteMap
  1439   template<typename M1, typename M2>
  1440   class AndMap : public MapBase<typename M1::Key, bool> {
  1441     const M1 &_m1;
  1442     const M2 &_m2;
  1443   public:
  1444     ///\e
  1445     typedef typename M1::Key Key;
  1446     ///\e
  1447     typedef bool Value;
  1448 
  1449     /// Constructor
  1450     AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1451     ///\e
  1452     Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
  1453   };
  1454 
  1455   /// Returns an \c AndMap class
  1456 
  1457   /// This function just returns an \c AndMap class.
  1458   ///
  1459   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
  1460   /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
  1461   /// <tt>m1[x]&&m2[x]</tt>.
  1462   ///
  1463   /// \relates AndMap
  1464   template<typename M1, typename M2>
  1465   inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
  1466     return AndMap<M1, M2>(m1,m2);
  1467   }
  1468 
  1469 
  1470   /// Logical 'or' of two maps
  1471 
  1472   /// This \ref concepts::ReadMap "read-only map" returns the logical
  1473   /// 'or' of the values of the two given maps.
  1474   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1475   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1476   ///
  1477   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1478   /// \code
  1479   ///   OrMap<M1,M2> om(m1,m2);
  1480   /// \endcode
  1481   /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
  1482   ///
  1483   /// The simplest way of using this map is through the orMap()
  1484   /// function.
  1485   ///
  1486   /// \sa AndMap
  1487   /// \sa NotMap, NotWriteMap
  1488   template<typename M1, typename M2>
  1489   class OrMap : public MapBase<typename M1::Key, bool> {
  1490     const M1 &_m1;
  1491     const M2 &_m2;
  1492   public:
  1493     ///\e
  1494     typedef typename M1::Key Key;
  1495     ///\e
  1496     typedef bool Value;
  1497 
  1498     /// Constructor
  1499     OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1500     ///\e
  1501     Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
  1502   };
  1503 
  1504   /// Returns an \c OrMap class
  1505 
  1506   /// This function just returns an \c OrMap class.
  1507   ///
  1508   /// For example, if \c m1 and \c m2 are both maps with \c bool values,
  1509   /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
  1510   /// <tt>m1[x]||m2[x]</tt>.
  1511   ///
  1512   /// \relates OrMap
  1513   template<typename M1, typename M2>
  1514   inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
  1515     return OrMap<M1, M2>(m1,m2);
  1516   }
  1517 
  1518 
  1519   /// Logical 'not' of a map
  1520 
  1521   /// This \ref concepts::ReadMap "read-only map" returns the logical
  1522   /// negation of the values of the given map.
  1523   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
  1524   ///
  1525   /// The simplest way of using this map is through the notMap()
  1526   /// function.
  1527   ///
  1528   /// \sa NotWriteMap
  1529   template <typename M>
  1530   class NotMap : public MapBase<typename M::Key, bool> {
  1531     const M &_m;
  1532   public:
  1533     ///\e
  1534     typedef typename M::Key Key;
  1535     ///\e
  1536     typedef bool Value;
  1537 
  1538     /// Constructor
  1539     NotMap(const M &m) : _m(m) {}
  1540     ///\e
  1541     Value operator[](const Key &k) const { return !_m[k]; }
  1542   };
  1543 
  1544   /// Logical 'not' of a map (read-write version)
  1545 
  1546   /// This \ref concepts::ReadWriteMap "read-write map" returns the
  1547   /// logical negation of the values of the given map.
  1548   /// Its \c Key is inherited from \c M and its \c Value is \c bool.
  1549   /// It makes also possible to write the map. When a value is set,
  1550   /// the opposite value is set to the original map.
  1551   ///
  1552   /// The simplest way of using this map is through the notWriteMap()
  1553   /// function.
  1554   ///
  1555   /// \sa NotMap
  1556   template <typename M>
  1557   class NotWriteMap : public MapBase<typename M::Key, bool> {
  1558     M &_m;
  1559   public:
  1560     ///\e
  1561     typedef typename M::Key Key;
  1562     ///\e
  1563     typedef bool Value;
  1564 
  1565     /// Constructor
  1566     NotWriteMap(M &m) : _m(m) {}
  1567     ///\e
  1568     Value operator[](const Key &k) const { return !_m[k]; }
  1569     ///\e
  1570     void set(const Key &k, bool v) { _m.set(k, !v); }
  1571   };
  1572 
  1573   /// Returns a \c NotMap class
  1574 
  1575   /// This function just returns a \c NotMap class.
  1576   ///
  1577   /// For example, if \c m is a map with \c bool values, then
  1578   /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
  1579   ///
  1580   /// \relates NotMap
  1581   template <typename M>
  1582   inline NotMap<M> notMap(const M &m) {
  1583     return NotMap<M>(m);
  1584   }
  1585 
  1586   /// Returns a \c NotWriteMap class
  1587 
  1588   /// This function just returns a \c NotWriteMap class.
  1589   ///
  1590   /// For example, if \c m is a map with \c bool values, then
  1591   /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
  1592   /// Moreover it makes also possible to write the map.
  1593   ///
  1594   /// \relates NotWriteMap
  1595   template <typename M>
  1596   inline NotWriteMap<M> notWriteMap(M &m) {
  1597     return NotWriteMap<M>(m);
  1598   }
  1599 
  1600 
  1601   /// Combination of two maps using the \c == operator
  1602 
  1603   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
  1604   /// the keys for which the corresponding values of the two maps are
  1605   /// equal.
  1606   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1607   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1608   ///
  1609   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1610   /// \code
  1611   ///   EqualMap<M1,M2> em(m1,m2);
  1612   /// \endcode
  1613   /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
  1614   ///
  1615   /// The simplest way of using this map is through the equalMap()
  1616   /// function.
  1617   ///
  1618   /// \sa LessMap
  1619   template<typename M1, typename M2>
  1620   class EqualMap : public MapBase<typename M1::Key, bool> {
  1621     const M1 &_m1;
  1622     const M2 &_m2;
  1623   public:
  1624     ///\e
  1625     typedef typename M1::Key Key;
  1626     ///\e
  1627     typedef bool Value;
  1628 
  1629     /// Constructor
  1630     EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1631     ///\e
  1632     Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
  1633   };
  1634 
  1635   /// Returns an \c EqualMap class
  1636 
  1637   /// This function just returns an \c EqualMap class.
  1638   ///
  1639   /// For example, if \c m1 and \c m2 are maps with keys and values of
  1640   /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
  1641   /// <tt>m1[x]==m2[x]</tt>.
  1642   ///
  1643   /// \relates EqualMap
  1644   template<typename M1, typename M2>
  1645   inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
  1646     return EqualMap<M1, M2>(m1,m2);
  1647   }
  1648 
  1649 
  1650   /// Combination of two maps using the \c < operator
  1651 
  1652   /// This \ref concepts::ReadMap "read-only map" assigns \c true to
  1653   /// the keys for which the corresponding value of the first map is
  1654   /// less then the value of the second map.
  1655   /// Its \c Key type is inherited from \c M1 and its \c Value type is
  1656   /// \c bool. \c M2::Key must be convertible to \c M1::Key.
  1657   ///
  1658   /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
  1659   /// \code
  1660   ///   LessMap<M1,M2> lm(m1,m2);
  1661   /// \endcode
  1662   /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
  1663   ///
  1664   /// The simplest way of using this map is through the lessMap()
  1665   /// function.
  1666   ///
  1667   /// \sa EqualMap
  1668   template<typename M1, typename M2>
  1669   class LessMap : public MapBase<typename M1::Key, bool> {
  1670     const M1 &_m1;
  1671     const M2 &_m2;
  1672   public:
  1673     ///\e
  1674     typedef typename M1::Key Key;
  1675     ///\e
  1676     typedef bool Value;
  1677 
  1678     /// Constructor
  1679     LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
  1680     ///\e
  1681     Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
  1682   };
  1683 
  1684   /// Returns an \c LessMap class
  1685 
  1686   /// This function just returns an \c LessMap class.
  1687   ///
  1688   /// For example, if \c m1 and \c m2 are maps with keys and values of
  1689   /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
  1690   /// <tt>m1[x]<m2[x]</tt>.
  1691   ///
  1692   /// \relates LessMap
  1693   template<typename M1, typename M2>
  1694   inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
  1695     return LessMap<M1, M2>(m1,m2);
  1696   }
  1697 
  1698   namespace _maps_bits {
  1699 
  1700     template <typename _Iterator, typename Enable = void>
  1701     struct IteratorTraits {
  1702       typedef typename std::iterator_traits<_Iterator>::value_type Value;
  1703     };
  1704 
  1705     template <typename _Iterator>
  1706     struct IteratorTraits<_Iterator,
  1707       typename exists<typename _Iterator::container_type>::type>
  1708     {
  1709       typedef typename _Iterator::container_type::value_type Value;
  1710     };
  1711 
  1712   }
  1713 
  1714   /// @}
  1715 
  1716   /// \addtogroup maps
  1717   /// @{
  1718 
  1719   /// \brief Writable bool map for logging each \c true assigned element
  1720   ///
  1721   /// A \ref concepts::WriteMap "writable" bool map for logging
  1722   /// each \c true assigned element, i.e it copies subsequently each
  1723   /// keys set to \c true to the given iterator.
  1724   /// The most important usage of it is storing certain nodes or arcs
  1725   /// that were marked \c true by an algorithm.
  1726   ///
  1727   /// There are several algorithms that provide solutions through bool
  1728   /// maps and most of them assign \c true at most once for each key.
  1729   /// In these cases it is a natural request to store each \c true
  1730   /// assigned elements (in order of the assignment), which can be
  1731   /// easily done with LoggerBoolMap.
  1732   ///
  1733   /// The simplest way of using this map is through the loggerBoolMap()
  1734   /// function.
  1735   ///
  1736   /// \tparam IT The type of the iterator.
  1737   /// \tparam KEY The key type of the map. The default value set
  1738   /// according to the iterator type should work in most cases.
  1739   ///
  1740   /// \note The container of the iterator must contain enough space
  1741   /// for the elements or the iterator should be an inserter iterator.
  1742 #ifdef DOXYGEN
  1743   template <typename IT, typename KEY>
  1744 #else
  1745   template <typename IT,
  1746             typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
  1747 #endif
  1748   class LoggerBoolMap : public MapBase<KEY, bool> {
  1749   public:
  1750 
  1751     ///\e
  1752     typedef KEY Key;
  1753     ///\e
  1754     typedef bool Value;
  1755     ///\e
  1756     typedef IT Iterator;
  1757 
  1758     /// Constructor
  1759     LoggerBoolMap(Iterator it)
  1760       : _begin(it), _end(it) {}
  1761 
  1762     /// Gives back the given iterator set for the first key
  1763     Iterator begin() const {
  1764       return _begin;
  1765     }
  1766 
  1767     /// Gives back the the 'after the last' iterator
  1768     Iterator end() const {
  1769       return _end;
  1770     }
  1771 
  1772     /// The set function of the map
  1773     void set(const Key& key, Value value) {
  1774       if (value) {
  1775         *_end++ = key;
  1776       }
  1777     }
  1778 
  1779   private:
  1780     Iterator _begin;
  1781     Iterator _end;
  1782   };
  1783 
  1784   /// Returns a \c LoggerBoolMap class
  1785 
  1786   /// This function just returns a \c LoggerBoolMap class.
  1787   ///
  1788   /// The most important usage of it is storing certain nodes or arcs
  1789   /// that were marked \c true by an algorithm.
  1790   /// For example it makes easier to store the nodes in the processing
  1791   /// order of Dfs algorithm, as the following examples show.
  1792   /// \code
  1793   ///   std::vector<Node> v;
  1794   ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
  1795   /// \endcode
  1796   /// \code
  1797   ///   std::vector<Node> v(countNodes(g));
  1798   ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
  1799   /// \endcode
  1800   ///
  1801   /// \note The container of the iterator must contain enough space
  1802   /// for the elements or the iterator should be an inserter iterator.
  1803   ///
  1804   /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
  1805   /// it cannot be used when a readable map is needed, for example as
  1806   /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
  1807   ///
  1808   /// \relates LoggerBoolMap
  1809   template<typename Iterator>
  1810   inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
  1811     return LoggerBoolMap<Iterator>(it);
  1812   }
  1813 
  1814   /// @}
  1815 
  1816   /// \addtogroup graph_maps
  1817   /// @{
  1818 
  1819   /// \brief Provides an immutable and unique id for each item in a graph.
  1820   ///
  1821   /// IdMap provides a unique and immutable id for each item of the
  1822   /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
  1823   ///  - \b unique: different items get different ids,
  1824   ///  - \b immutable: the id of an item does not change (even if you
  1825   ///    delete other nodes).
  1826   ///
  1827   /// Using this map you get access (i.e. can read) the inner id values of
  1828   /// the items stored in the graph, which is returned by the \c id()
  1829   /// function of the graph. This map can be inverted with its member
  1830   /// class \c InverseMap or with the \c operator() member.
  1831   ///
  1832   /// \tparam GR The graph type.
  1833   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  1834   /// \c GR::Edge).
  1835   ///
  1836   /// \see RangeIdMap
  1837   template <typename GR, typename K>
  1838   class IdMap : public MapBase<K, int> {
  1839   public:
  1840     /// The graph type of IdMap.
  1841     typedef GR Graph;
  1842     typedef GR Digraph;
  1843     /// The key type of IdMap (\c Node, \c Arc or \c Edge).
  1844     typedef K Item;
  1845     /// The key type of IdMap (\c Node, \c Arc or \c Edge).
  1846     typedef K Key;
  1847     /// The value type of IdMap.
  1848     typedef int Value;
  1849 
  1850     /// \brief Constructor.
  1851     ///
  1852     /// Constructor of the map.
  1853     explicit IdMap(const Graph& graph) : _graph(&graph) {}
  1854 
  1855     /// \brief Gives back the \e id of the item.
  1856     ///
  1857     /// Gives back the immutable and unique \e id of the item.
  1858     int operator[](const Item& item) const { return _graph->id(item);}
  1859 
  1860     /// \brief Gives back the \e item by its id.
  1861     ///
  1862     /// Gives back the \e item by its id.
  1863     Item operator()(int id) { return _graph->fromId(id, Item()); }
  1864 
  1865   private:
  1866     const Graph* _graph;
  1867 
  1868   public:
  1869 
  1870     /// \brief This class represents the inverse of its owner (IdMap).
  1871     ///
  1872     /// This class represents the inverse of its owner (IdMap).
  1873     /// \see inverse()
  1874     class InverseMap {
  1875     public:
  1876 
  1877       /// \brief Constructor.
  1878       ///
  1879       /// Constructor for creating an id-to-item map.
  1880       explicit InverseMap(const Graph& graph) : _graph(&graph) {}
  1881 
  1882       /// \brief Constructor.
  1883       ///
  1884       /// Constructor for creating an id-to-item map.
  1885       explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
  1886 
  1887       /// \brief Gives back the given item from its id.
  1888       ///
  1889       /// Gives back the given item from its id.
  1890       Item operator[](int id) const { return _graph->fromId(id, Item());}
  1891 
  1892     private:
  1893       const Graph* _graph;
  1894     };
  1895 
  1896     /// \brief Gives back the inverse of the map.
  1897     ///
  1898     /// Gives back the inverse of the IdMap.
  1899     InverseMap inverse() const { return InverseMap(*_graph);}
  1900   };
  1901 
  1902 
  1903   /// \brief General cross reference graph map type.
  1904 
  1905   /// This class provides simple invertable graph maps.
  1906   /// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap"
  1907   /// and if a key is set to a new value then store it
  1908   /// in the inverse map.
  1909   ///
  1910   /// The values of the map can be accessed
  1911   /// with stl compatible forward iterator.
  1912   ///
  1913   /// \tparam GR The graph type.
  1914   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  1915   /// \c GR::Edge).
  1916   /// \tparam V The value type of the map.
  1917   ///
  1918   /// \see IterableValueMap
  1919   template <typename GR, typename K, typename V>
  1920   class CrossRefMap
  1921     : protected ItemSetTraits<GR, K>::template Map<V>::Type {
  1922   private:
  1923 
  1924     typedef typename ItemSetTraits<GR, K>::
  1925       template Map<V>::Type Map;
  1926 
  1927     typedef std::map<V, K> Container;
  1928     Container _inv_map;
  1929 
  1930   public:
  1931 
  1932     /// The graph type of CrossRefMap.
  1933     typedef GR Graph;
  1934     typedef GR Digraph;
  1935     /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
  1936     typedef K Item;
  1937     /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
  1938     typedef K Key;
  1939     /// The value type of CrossRefMap.
  1940     typedef V Value;
  1941 
  1942     /// \brief Constructor.
  1943     ///
  1944     /// Construct a new CrossRefMap for the given graph.
  1945     explicit CrossRefMap(const Graph& graph) : Map(graph) {}
  1946 
  1947     /// \brief Forward iterator for values.
  1948     ///
  1949     /// This iterator is an stl compatible forward
  1950     /// iterator on the values of the map. The values can
  1951     /// be accessed in the <tt>[beginValue, endValue)</tt> range.
  1952     class ValueIterator
  1953       : public std::iterator<std::forward_iterator_tag, Value> {
  1954       friend class CrossRefMap;
  1955     private:
  1956       ValueIterator(typename Container::const_iterator _it)
  1957         : it(_it) {}
  1958     public:
  1959 
  1960       ValueIterator() {}
  1961 
  1962       ValueIterator& operator++() { ++it; return *this; }
  1963       ValueIterator operator++(int) {
  1964         ValueIterator tmp(*this);
  1965         operator++();
  1966         return tmp;
  1967       }
  1968 
  1969       const Value& operator*() const { return it->first; }
  1970       const Value* operator->() const { return &(it->first); }
  1971 
  1972       bool operator==(ValueIterator jt) const { return it == jt.it; }
  1973       bool operator!=(ValueIterator jt) const { return it != jt.it; }
  1974 
  1975     private:
  1976       typename Container::const_iterator it;
  1977     };
  1978 
  1979     /// \brief Returns an iterator to the first value.
  1980     ///
  1981     /// Returns an stl compatible iterator to the
  1982     /// first value of the map. The values of the
  1983     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
  1984     /// range.
  1985     ValueIterator beginValue() const {
  1986       return ValueIterator(_inv_map.begin());
  1987     }
  1988 
  1989     /// \brief Returns an iterator after the last value.
  1990     ///
  1991     /// Returns an stl compatible iterator after the
  1992     /// last value of the map. The values of the
  1993     /// map can be accessed in the <tt>[beginValue, endValue)</tt>
  1994     /// range.
  1995     ValueIterator endValue() const {
  1996       return ValueIterator(_inv_map.end());
  1997     }
  1998 
  1999     /// \brief Sets the value associated with the given key.
  2000     ///
  2001     /// Sets the value associated with the given key.
  2002     void set(const Key& key, const Value& val) {
  2003       Value oldval = Map::operator[](key);
  2004       typename Container::iterator it = _inv_map.find(oldval);
  2005       if (it != _inv_map.end() && it->second == key) {
  2006         _inv_map.erase(it);
  2007       }
  2008       _inv_map.insert(std::make_pair(val, key));
  2009       Map::set(key, val);
  2010     }
  2011 
  2012     /// \brief Returns the value associated with the given key.
  2013     ///
  2014     /// Returns the value associated with the given key.
  2015     typename MapTraits<Map>::ConstReturnValue
  2016     operator[](const Key& key) const {
  2017       return Map::operator[](key);
  2018     }
  2019 
  2020     /// \brief Gives back the item by its value.
  2021     ///
  2022     /// Gives back the item by its value.
  2023     Key operator()(const Value& key) const {
  2024       typename Container::const_iterator it = _inv_map.find(key);
  2025       return it != _inv_map.end() ? it->second : INVALID;
  2026     }
  2027 
  2028   protected:
  2029 
  2030     /// \brief Erase the key from the map and the inverse map.
  2031     ///
  2032     /// Erase the key from the map and the inverse map. It is called by the
  2033     /// \c AlterationNotifier.
  2034     virtual void erase(const Key& key) {
  2035       Value val = Map::operator[](key);
  2036       typename Container::iterator it = _inv_map.find(val);
  2037       if (it != _inv_map.end() && it->second == key) {
  2038         _inv_map.erase(it);
  2039       }
  2040       Map::erase(key);
  2041     }
  2042 
  2043     /// \brief Erase more keys from the map and the inverse map.
  2044     ///
  2045     /// Erase more keys from the map and the inverse map. It is called by the
  2046     /// \c AlterationNotifier.
  2047     virtual void erase(const std::vector<Key>& keys) {
  2048       for (int i = 0; i < int(keys.size()); ++i) {
  2049         Value val = Map::operator[](keys[i]);
  2050         typename Container::iterator it = _inv_map.find(val);
  2051         if (it != _inv_map.end() && it->second == keys[i]) {
  2052           _inv_map.erase(it);
  2053         }
  2054       }
  2055       Map::erase(keys);
  2056     }
  2057 
  2058     /// \brief Clear the keys from the map and the inverse map.
  2059     ///
  2060     /// Clear the keys from the map and the inverse map. It is called by the
  2061     /// \c AlterationNotifier.
  2062     virtual void clear() {
  2063       _inv_map.clear();
  2064       Map::clear();
  2065     }
  2066 
  2067   public:
  2068 
  2069     /// \brief The inverse map type.
  2070     ///
  2071     /// The inverse of this map. The subscript operator of the map
  2072     /// gives back the item that was last assigned to the value.
  2073     class InverseMap {
  2074     public:
  2075       /// \brief Constructor
  2076       ///
  2077       /// Constructor of the InverseMap.
  2078       explicit InverseMap(const CrossRefMap& inverted)
  2079         : _inverted(inverted) {}
  2080 
  2081       /// The value type of the InverseMap.
  2082       typedef typename CrossRefMap::Key Value;
  2083       /// The key type of the InverseMap.
  2084       typedef typename CrossRefMap::Value Key;
  2085 
  2086       /// \brief Subscript operator.
  2087       ///
  2088       /// Subscript operator. It gives back the item
  2089       /// that was last assigned to the given value.
  2090       Value operator[](const Key& key) const {
  2091         return _inverted(key);
  2092       }
  2093 
  2094     private:
  2095       const CrossRefMap& _inverted;
  2096     };
  2097 
  2098     /// \brief It gives back the read-only inverse map.
  2099     ///
  2100     /// It gives back the read-only inverse map.
  2101     InverseMap inverse() const {
  2102       return InverseMap(*this);
  2103     }
  2104 
  2105   };
  2106 
  2107   /// \brief Provides continuous and unique ID for the
  2108   /// items of a graph.
  2109   ///
  2110   /// RangeIdMap provides a unique and continuous
  2111   /// ID for each item of a given type (\c Node, \c Arc or
  2112   /// \c Edge) in a graph. This id is
  2113   ///  - \b unique: different items get different ids,
  2114   ///  - \b continuous: the range of the ids is the set of integers
  2115   ///    between 0 and \c n-1, where \c n is the number of the items of
  2116   ///    this type (\c Node, \c Arc or \c Edge).
  2117   ///  - So, the ids can change when deleting an item of the same type.
  2118   ///
  2119   /// Thus this id is not (necessarily) the same as what can get using
  2120   /// the \c id() function of the graph or \ref IdMap.
  2121   /// This map can be inverted with its member class \c InverseMap,
  2122   /// or with the \c operator() member.
  2123   ///
  2124   /// \tparam GR The graph type.
  2125   /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
  2126   /// \c GR::Edge).
  2127   ///
  2128   /// \see IdMap
  2129   template <typename GR, typename K>
  2130   class RangeIdMap
  2131     : protected ItemSetTraits<GR, K>::template Map<int>::Type {
  2132 
  2133     typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
  2134 
  2135   public:
  2136     /// The graph type of RangeIdMap.
  2137     typedef GR Graph;
  2138     typedef GR Digraph;
  2139     /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
  2140     typedef K Item;
  2141     /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
  2142     typedef K Key;
  2143     /// The value type of RangeIdMap.
  2144     typedef int Value;
  2145 
  2146     /// \brief Constructor.
  2147     ///
  2148     /// Constructor.
  2149     explicit RangeIdMap(const Graph& gr) : Map(gr) {
  2150       Item it;
  2151       const typename Map::Notifier* nf = Map::notifier();
  2152       for (nf->first(it); it != INVALID; nf->next(it)) {
  2153         Map::set(it, _inv_map.size());
  2154         _inv_map.push_back(it);
  2155       }
  2156     }
  2157 
  2158   protected:
  2159 
  2160     /// \brief Adds a new key to the map.
  2161     ///
  2162     /// Add a new key to the map. It is called by the
  2163     /// \c AlterationNotifier.
  2164     virtual void add(const Item& item) {
  2165       Map::add(item);
  2166       Map::set(item, _inv_map.size());
  2167       _inv_map.push_back(item);
  2168     }
  2169 
  2170     /// \brief Add more new keys to the map.
  2171     ///
  2172     /// Add more new keys to the map. It is called by the
  2173     /// \c AlterationNotifier.
  2174     virtual void add(const std::vector<Item>& items) {
  2175       Map::add(items);
  2176       for (int i = 0; i < int(items.size()); ++i) {
  2177         Map::set(items[i], _inv_map.size());
  2178         _inv_map.push_back(items[i]);
  2179       }
  2180     }
  2181 
  2182     /// \brief Erase the key from the map.
  2183     ///
  2184     /// Erase the key from the map. It is called by the
  2185     /// \c AlterationNotifier.
  2186     virtual void erase(const Item& item) {
  2187       Map::set(_inv_map.back(), Map::operator[](item));
  2188       _inv_map[Map::operator[](item)] = _inv_map.back();
  2189       _inv_map.pop_back();
  2190       Map::erase(item);
  2191     }
  2192 
  2193     /// \brief Erase more keys from the map.
  2194     ///
  2195     /// Erase more keys from the map. It is called by the
  2196     /// \c AlterationNotifier.
  2197     virtual void erase(const std::vector<Item>& items) {
  2198       for (int i = 0; i < int(items.size()); ++i) {
  2199         Map::set(_inv_map.back(), Map::operator[](items[i]));
  2200         _inv_map[Map::operator[](items[i])] = _inv_map.back();
  2201         _inv_map.pop_back();
  2202       }
  2203       Map::erase(items);
  2204     }
  2205 
  2206     /// \brief Build the unique map.
  2207     ///
  2208     /// Build the unique map. It is called by the
  2209     /// \c AlterationNotifier.
  2210     virtual void build() {
  2211       Map::build();
  2212       Item it;
  2213       const typename Map::Notifier* nf = Map::notifier();
  2214       for (nf->first(it); it != INVALID; nf->next(it)) {
  2215         Map::set(it, _inv_map.size());
  2216         _inv_map.push_back(it);
  2217       }
  2218     }
  2219 
  2220     /// \brief Clear the keys from the map.
  2221     ///
  2222     /// Clear the keys from the map. It is called by the
  2223     /// \c AlterationNotifier.
  2224     virtual void clear() {
  2225       _inv_map.clear();
  2226       Map::clear();
  2227     }
  2228 
  2229   public:
  2230 
  2231     /// \brief Returns the maximal value plus one.
  2232     ///
  2233     /// Returns the maximal value plus one in the map.
  2234     unsigned int size() const {
  2235       return _inv_map.size();
  2236     }
  2237 
  2238     /// \brief Swaps the position of the two items in the map.
  2239     ///
  2240     /// Swaps the position of the two items in the map.
  2241     void swap(const Item& p, const Item& q) {
  2242       int pi = Map::operator[](p);
  2243       int qi = Map::operator[](q);
  2244       Map::set(p, qi);
  2245       _inv_map[qi] = p;
  2246       Map::set(q, pi);
  2247       _inv_map[pi] = q;
  2248     }
  2249 
  2250     /// \brief Gives back the \e RangeId of the item
  2251     ///
  2252     /// Gives back the \e RangeId of the item.
  2253     int operator[](const Item& item) const {
  2254       return Map::operator[](item);
  2255     }
  2256 
  2257     /// \brief Gives back the item belonging to a \e RangeId
  2258     ///
  2259     /// Gives back the item belonging to a \e RangeId.
  2260     Item operator()(int id) const {
  2261       return _inv_map[id];
  2262     }
  2263 
  2264   private:
  2265 
  2266     typedef std::vector<Item> Container;
  2267     Container _inv_map;
  2268 
  2269   public:
  2270 
  2271     /// \brief The inverse map type of RangeIdMap.
  2272     ///
  2273     /// The inverse map type of RangeIdMap.
  2274     class InverseMap {
  2275     public:
  2276       /// \brief Constructor
  2277       ///
  2278       /// Constructor of the InverseMap.
  2279       explicit InverseMap(const RangeIdMap& inverted)
  2280         : _inverted(inverted) {}
  2281 
  2282 
  2283       /// The value type of the InverseMap.
  2284       typedef typename RangeIdMap::Key Value;
  2285       /// The key type of the InverseMap.
  2286       typedef typename RangeIdMap::Value Key;
  2287 
  2288       /// \brief Subscript operator.
  2289       ///
  2290       /// Subscript operator. It gives back the item
  2291       /// that the descriptor currently belongs to.
  2292       Value operator[](const Key& key) const {
  2293         return _inverted(key);
  2294       }
  2295 
  2296       /// \brief Size of the map.
  2297       ///
  2298       /// Returns the size of the map.
  2299       unsigned int size() const {
  2300         return _inverted.size();
  2301       }
  2302 
  2303     private:
  2304       const RangeIdMap& _inverted;
  2305     };
  2306 
  2307     /// \brief Gives back the inverse of the map.
  2308     ///
  2309     /// Gives back the inverse of the map.
  2310     const InverseMap inverse() const {
  2311       return InverseMap(*this);
  2312     }
  2313   };
  2314 
  2315   /// \brief Dynamic iterable bool map.
  2316   ///
  2317   /// This class provides a special graph map type which can store for
  2318   /// each graph item(node, arc, edge, etc.) a bool value. For both
  2319   /// the true and the false values it is possible to iterate on the
  2320   /// keys.
  2321   ///
  2322   /// \param GR The graph type.
  2323   /// \param ITEM One of the graph's item types, the key of the map.
  2324   template <typename GR, typename ITEM>
  2325   class IterableBoolMap
  2326     : protected ItemSetTraits<GR, ITEM>::template Map<int>::Type {
  2327   private:
  2328     typedef GR Graph;
  2329 
  2330     typedef typename ItemSetTraits<Graph, ITEM>::ItemIt KeyIt;
  2331     typedef typename ItemSetTraits<GR, ITEM>::template Map<int>::Type Parent;
  2332 
  2333     std::vector<ITEM> _array;
  2334     int _sep;
  2335 
  2336   public:
  2337 
  2338     /// Indicates that the map if reference map.
  2339     typedef True ReferenceMapTag;
  2340 
  2341     /// The key type
  2342     typedef ITEM Key;
  2343     /// The value type
  2344     typedef bool Value;
  2345     /// The const reference type.
  2346     typedef const Value& ConstReference;
  2347 
  2348   private:
  2349 
  2350     int position(const Key& key) const {
  2351       return Parent::operator[](key);
  2352     }
  2353 
  2354   public:
  2355 
  2356     /// \brief Refernce to the value of the map.
  2357     ///
  2358     /// This class is similar to the bool type. It can be converted to
  2359     /// bool and it provides the same operators.
  2360     class Reference {
  2361       friend class IterableBoolMap;
  2362     private:
  2363       Reference(IterableBoolMap& map, const Key& key)
  2364         : _key(key), _map(map) {}
  2365     public:
  2366 
  2367       Reference& operator=(const Reference& value) {
  2368         _map.set(_key, static_cast<bool>(value));
  2369          return *this;
  2370       }
  2371 
  2372       operator bool() const {
  2373         return static_cast<const IterableBoolMap&>(_map)[_key];
  2374       }
  2375 
  2376       Reference& operator=(bool value) {
  2377         _map.set(_key, value);
  2378         return *this;
  2379       }
  2380       Reference& operator&=(bool value) {
  2381         _map.set(_key, _map[_key] & value);
  2382         return *this;
  2383       }
  2384       Reference& operator|=(bool value) {
  2385         _map.set(_key, _map[_key] | value);
  2386         return *this;
  2387       }
  2388       Reference& operator^=(bool value) {
  2389         _map.set(_key, _map[_key] ^ value);
  2390         return *this;
  2391       }
  2392     private:
  2393       Key _key;
  2394       IterableBoolMap& _map;
  2395     };
  2396 
  2397     /// \brief Constructor of the map with a default value.
  2398     ///
  2399     /// Constructor of the map with a default value.
  2400     explicit IterableBoolMap(const Graph& graph, bool def = false)
  2401       : Parent(graph) {
  2402       typename Parent::Notifier* nf = Parent::notifier();
  2403       Key it;
  2404       for (nf->first(it); it != INVALID; nf->next(it)) {
  2405         Parent::set(it, _array.size());
  2406         _array.push_back(it);
  2407       }
  2408       _sep = (def ? _array.size() : 0);
  2409     }
  2410 
  2411     /// \brief Const subscript operator of the map.
  2412     ///
  2413     /// Const subscript operator of the map.
  2414     bool operator[](const Key& key) const {
  2415       return position(key) < _sep;
  2416     }
  2417 
  2418     /// \brief Subscript operator of the map.
  2419     ///
  2420     /// Subscript operator of the map.
  2421     Reference operator[](const Key& key) {
  2422       return Reference(*this, key);
  2423     }
  2424 
  2425     /// \brief Set operation of the map.
  2426     ///
  2427     /// Set operation of the map.
  2428     void set(const Key& key, bool value) {
  2429       int pos = position(key);
  2430       if (value) {
  2431         if (pos < _sep) return;
  2432         Key tmp = _array[_sep];
  2433         _array[_sep] = key;
  2434         Parent::set(key, _sep);
  2435         _array[pos] = tmp;
  2436         Parent::set(tmp, pos);
  2437         ++_sep;
  2438       } else {
  2439         if (pos >= _sep) return;
  2440         --_sep;
  2441         Key tmp = _array[_sep];
  2442         _array[_sep] = key;
  2443         Parent::set(key, _sep);
  2444         _array[pos] = tmp;
  2445         Parent::set(tmp, pos);
  2446       }
  2447     }
  2448 
  2449     /// \brief Set all items.
  2450     ///
  2451     /// Set all items in the map.
  2452     /// \note Constant time operation.
  2453     void setAll(bool value) {
  2454       _sep = (value ? _array.size() : 0);
  2455     }
  2456 
  2457     /// \brief Returns the number of the keys mapped to true.
  2458     ///
  2459     /// Returns the number of the keys mapped to true.
  2460     int trueNum() const {
  2461       return _sep;
  2462     }
  2463 
  2464     /// \brief Returns the number of the keys mapped to false.
  2465     ///
  2466     /// Returns the number of the keys mapped to false.
  2467     int falseNum() const {
  2468       return _array.size() - _sep;
  2469     }
  2470 
  2471     /// \brief Iterator for the keys mapped to true.
  2472     ///
  2473     /// Iterator for the keys mapped to true. It works
  2474     /// like a graph item iterator in the map, it can be converted
  2475     /// the key type of the map, incremented with \c ++ operator, and
  2476     /// if the iterator leave the last valid key it will be equal to
  2477     /// \c INVALID.
  2478     class TrueIt : public Key {
  2479     public:
  2480       typedef Key Parent;
  2481 
  2482       /// \brief Creates an iterator.
  2483       ///
  2484       /// Creates an iterator. It iterates on the
  2485       /// keys which mapped to true.
  2486       /// \param map The IterableIntMap
  2487       explicit TrueIt(const IterableBoolMap& map)
  2488         : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
  2489           _map(&map) {}
  2490 
  2491       /// \brief Invalid constructor \& conversion.
  2492       ///
  2493       /// This constructor initializes the key to be invalid.
  2494       /// \sa Invalid for more details.
  2495       TrueIt(Invalid) : Parent(INVALID), _map(0) {}
  2496 
  2497       /// \brief Increment operator.
  2498       ///
  2499       /// Increment Operator.
  2500       TrueIt& operator++() {
  2501         int pos = _map->position(*this);
  2502         Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
  2503         return *this;
  2504       }
  2505 
  2506 
  2507     private:
  2508       const IterableBoolMap* _map;
  2509     };
  2510 
  2511     /// \brief Iterator for the keys mapped to false.
  2512     ///
  2513     /// Iterator for the keys mapped to false. It works
  2514     /// like a graph item iterator in the map, it can be converted
  2515     /// the key type of the map, incremented with \c ++ operator, and
  2516     /// if the iterator leave the last valid key it will be equal to
  2517     /// \c INVALID.
  2518     class FalseIt : public Key {
  2519     public:
  2520       typedef Key Parent;
  2521 
  2522       /// \brief Creates an iterator.
  2523       ///
  2524       /// Creates an iterator. It iterates on the
  2525       /// keys which mapped to false.
  2526       /// \param map The IterableIntMap
  2527       explicit FalseIt(const IterableBoolMap& map)
  2528         : Parent(map._sep < int(map._array.size()) ?
  2529                  map._array.back() : INVALID), _map(&map) {}
  2530 
  2531       /// \brief Invalid constructor \& conversion.
  2532       ///
  2533       /// This constructor initializes the key to be invalid.
  2534       /// \sa Invalid for more details.
  2535       FalseIt(Invalid) : Parent(INVALID), _map(0) {}
  2536 
  2537       /// \brief Increment operator.
  2538       ///
  2539       /// Increment Operator.
  2540       FalseIt& operator++() {
  2541         int pos = _map->position(*this);
  2542         Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
  2543         return *this;
  2544       }
  2545 
  2546     private:
  2547       const IterableBoolMap* _map;
  2548     };
  2549 
  2550     /// \brief Iterator for the keys mapped to a given value.
  2551     ///
  2552     /// Iterator for the keys mapped to a given value. It works
  2553     /// like a graph item iterator in the map, it can be converted
  2554     /// the key type of the map, incremented with \c ++ operator, and
  2555     /// if the iterator leave the last valid key it will be equal to
  2556     /// \c INVALID.
  2557     class ItemIt : public Key {
  2558     public:
  2559       typedef Key Parent;
  2560 
  2561       /// \brief Creates an iterator.
  2562       ///
  2563       /// Creates an iterator. It iterates on the
  2564       /// keys which mapped to false.
  2565       /// \param map The IterableIntMap
  2566       /// \param value Which elements should be iterated.
  2567       ItemIt(const IterableBoolMap& map, bool value)
  2568         : Parent(value ? 
  2569                  (map._sep > 0 ?
  2570                   map._array[map._sep - 1] : INVALID) :
  2571                  (map._sep < int(map._array.size()) ?
  2572                   map._array.back() : INVALID)), _map(&map) {}
  2573 
  2574       /// \brief Invalid constructor \& conversion.
  2575       ///
  2576       /// This constructor initializes the key to be invalid.
  2577       /// \sa Invalid for more details.
  2578       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
  2579 
  2580       /// \brief Increment operator.
  2581       ///
  2582       /// Increment Operator.
  2583       ItemIt& operator++() {
  2584         int pos = _map->position(*this);
  2585         int _sep = pos >= _map->_sep ? _map->_sep : 0;
  2586         Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
  2587         return *this;
  2588       }
  2589 
  2590     private:
  2591       const IterableBoolMap* _map;
  2592     };
  2593 
  2594   protected:
  2595 
  2596     virtual void add(const Key& key) {
  2597       Parent::add(key);
  2598       Parent::set(key, _array.size());
  2599       _array.push_back(key);
  2600     }
  2601 
  2602     virtual void add(const std::vector<Key>& keys) {
  2603       Parent::add(keys);
  2604       for (int i = 0; i < int(keys.size()); ++i) {
  2605         Parent::set(keys[i], _array.size());
  2606         _array.push_back(keys[i]);
  2607       }
  2608     }
  2609 
  2610     virtual void erase(const Key& key) {
  2611       int pos = position(key);
  2612       if (pos < _sep) {
  2613         --_sep;
  2614         Parent::set(_array[_sep], pos);
  2615         _array[pos] = _array[_sep];
  2616         Parent::set(_array.back(), _sep);
  2617         _array[_sep] = _array.back();
  2618         _array.pop_back();
  2619       } else {
  2620         Parent::set(_array.back(), pos);
  2621         _array[pos] = _array.back();
  2622         _array.pop_back();
  2623       }
  2624       Parent::erase(key);
  2625     }
  2626 
  2627     virtual void erase(const std::vector<Key>& keys) {
  2628       for (int i = 0; i < int(keys.size()); ++i) {
  2629         int pos = position(keys[i]);
  2630         if (pos < _sep) {
  2631           --_sep;
  2632           Parent::set(_array[_sep], pos);
  2633           _array[pos] = _array[_sep];
  2634           Parent::set(_array.back(), _sep);
  2635           _array[_sep] = _array.back();
  2636           _array.pop_back();
  2637         } else {
  2638           Parent::set(_array.back(), pos);
  2639           _array[pos] = _array.back();
  2640           _array.pop_back();
  2641         }
  2642       }
  2643       Parent::erase(keys);
  2644     }
  2645 
  2646     virtual void build() {
  2647       Parent::build();
  2648       typename Parent::Notifier* nf = Parent::notifier();
  2649       Key it;
  2650       for (nf->first(it); it != INVALID; nf->next(it)) {
  2651         Parent::set(it, _array.size());
  2652         _array.push_back(it);
  2653       }
  2654       _sep = 0;
  2655     }
  2656 
  2657     virtual void clear() {
  2658       _array.clear();
  2659       _sep = 0;
  2660       Parent::clear();
  2661     }
  2662 
  2663   };
  2664 
  2665 
  2666   namespace _maps_bits {
  2667     template <typename Item>
  2668     struct IterableIntMapNode {
  2669       IterableIntMapNode() : value(-1) {}
  2670       IterableIntMapNode(int _value) : value(_value) {}
  2671       Item prev, next;
  2672       int value;
  2673     };
  2674   }
  2675 
  2676   ///\ingroup graph_maps
  2677   ///
  2678   /// \brief Dynamic iterable integer map.
  2679   ///
  2680   /// This class provides a special graph map type which can store
  2681   /// for each graph item(node, edge, etc.) an integer value. For each
  2682   /// non negative value it is possible to iterate on the keys which
  2683   /// mapped to the given value.
  2684   ///
  2685   /// \note The size of the data structure depends on the highest
  2686   /// value in the map.
  2687   ///
  2688   /// \param GR The graph type.
  2689   /// \param ITEM One of the graph's item type, the key of the map.
  2690   template <typename GR, typename ITEM>
  2691   class IterableIntMap
  2692     : protected ItemSetTraits<GR, ITEM>::
  2693         template Map<_maps_bits::IterableIntMapNode<ITEM> >::Type {
  2694   public:
  2695     typedef typename ItemSetTraits<GR, ITEM>::
  2696       template Map<_maps_bits::IterableIntMapNode<ITEM> >::Type Parent;
  2697 
  2698     /// The key type
  2699     typedef ITEM Key;
  2700     /// The value type
  2701     typedef int Value;
  2702     /// The graph type
  2703     typedef GR Graph;
  2704 
  2705     /// \brief Constructor of the map.
  2706     ///
  2707     /// Constructor of the map. It set all values to -1.
  2708     explicit IterableIntMap(const Graph& graph)
  2709       : Parent(graph) {}
  2710 
  2711     /// \brief Constructor of the map with a given value.
  2712     ///
  2713     /// Constructor of the map with a given value.
  2714     explicit IterableIntMap(const Graph& graph, int value)
  2715       : Parent(graph, _maps_bits::IterableIntMapNode<ITEM>(value)) {
  2716       if (value >= 0) {
  2717         for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
  2718           lace(it);
  2719         }
  2720       }
  2721     }
  2722 
  2723   private:
  2724 
  2725     void unlace(const Key& key) {
  2726       typename Parent::Value& node = Parent::operator[](key);
  2727       if (node.value < 0) return;
  2728       if (node.prev != INVALID) {
  2729         Parent::operator[](node.prev).next = node.next;
  2730       } else {
  2731         _first[node.value] = node.next;
  2732       }
  2733       if (node.next != INVALID) {
  2734         Parent::operator[](node.next).prev = node.prev;
  2735       }
  2736       while (!_first.empty() && _first.back() == INVALID) {
  2737         _first.pop_back();
  2738       }
  2739     }
  2740 
  2741     void lace(const Key& key) {
  2742       typename Parent::Value& node = Parent::operator[](key);
  2743       if (node.value < 0) return;
  2744       if (node.value >= int(_first.size())) {
  2745         _first.resize(node.value + 1, INVALID);
  2746       }
  2747       node.prev = INVALID;
  2748       node.next = _first[node.value];
  2749       if (node.next != INVALID) {
  2750         Parent::operator[](node.next).prev = key;
  2751       }
  2752       _first[node.value] = key;
  2753     }
  2754 
  2755   public:
  2756 
  2757     /// Indicates that the map if reference map.
  2758     typedef True ReferenceMapTag;
  2759 
  2760     /// \brief Refernce to the value of the map.
  2761     ///
  2762     /// This class is similar to the int type. It can
  2763     /// be converted to int and it has the same operators.
  2764     class Reference {
  2765       friend class IterableIntMap;
  2766     private:
  2767       Reference(IterableIntMap& map, const Key& key)
  2768         : _key(key), _map(map) {}
  2769     public:
  2770 
  2771       Reference& operator=(const Reference& value) {
  2772         _map.set(_key, static_cast<const int&>(value));
  2773          return *this;
  2774       }
  2775 
  2776       operator const int&() const {
  2777         return static_cast<const IterableIntMap&>(_map)[_key];
  2778       }
  2779 
  2780       Reference& operator=(int value) {
  2781         _map.set(_key, value);
  2782         return *this;
  2783       }
  2784       Reference& operator++() {
  2785         _map.set(_key, _map[_key] + 1);
  2786         return *this;
  2787       }
  2788       int operator++(int) {
  2789         int value = _map[_key];
  2790         _map.set(_key, value + 1);
  2791         return value;
  2792       }
  2793       Reference& operator--() {
  2794         _map.set(_key, _map[_key] - 1);
  2795         return *this;
  2796       }
  2797       int operator--(int) {
  2798         int value = _map[_key];
  2799         _map.set(_key, value - 1);
  2800         return value;
  2801       }
  2802       Reference& operator+=(int value) {
  2803         _map.set(_key, _map[_key] + value);
  2804         return *this;
  2805       }
  2806       Reference& operator-=(int value) {
  2807         _map.set(_key, _map[_key] - value);
  2808         return *this;
  2809       }
  2810       Reference& operator*=(int value) {
  2811         _map.set(_key, _map[_key] * value);
  2812         return *this;
  2813       }
  2814       Reference& operator/=(int value) {
  2815         _map.set(_key, _map[_key] / value);
  2816         return *this;
  2817       }
  2818       Reference& operator%=(int value) {
  2819         _map.set(_key, _map[_key] % value);
  2820         return *this;
  2821       }
  2822       Reference& operator&=(int value) {
  2823         _map.set(_key, _map[_key] & value);
  2824         return *this;
  2825       }
  2826       Reference& operator|=(int value) {
  2827         _map.set(_key, _map[_key] | value);
  2828         return *this;
  2829       }
  2830       Reference& operator^=(int value) {
  2831         _map.set(_key, _map[_key] ^ value);
  2832         return *this;
  2833       }
  2834       Reference& operator<<=(int value) {
  2835         _map.set(_key, _map[_key] << value);
  2836         return *this;
  2837       }
  2838       Reference& operator>>=(int value) {
  2839         _map.set(_key, _map[_key] >> value);
  2840         return *this;
  2841       }
  2842 
  2843     private:
  2844       Key _key;
  2845       IterableIntMap& _map;
  2846     };
  2847 
  2848     /// The const reference type.
  2849     typedef const Value& ConstReference;
  2850 
  2851     /// \brief Gives back the maximal value plus one.
  2852     ///
  2853     /// Gives back the maximal value plus one.
  2854     int size() const {
  2855       return _first.size();
  2856     }
  2857 
  2858     /// \brief Set operation of the map.
  2859     ///
  2860     /// Set operation of the map.
  2861     void set(const Key& key, const Value& value) {
  2862       unlace(key);
  2863       Parent::operator[](key).value = value;
  2864       lace(key);
  2865     }
  2866 
  2867     /// \brief Const subscript operator of the map.
  2868     ///
  2869     /// Const subscript operator of the map.
  2870     const Value& operator[](const Key& key) const {
  2871       return Parent::operator[](key).value;
  2872     }
  2873 
  2874     /// \brief Subscript operator of the map.
  2875     ///
  2876     /// Subscript operator of the map.
  2877     Reference operator[](const Key& key) {
  2878       return Reference(*this, key);
  2879     }
  2880 
  2881     /// \brief Iterator for the keys with the same value.
  2882     ///
  2883     /// Iterator for the keys with the same value. It works
  2884     /// like a graph item iterator in the map, it can be converted
  2885     /// the item type of the map, incremented with \c ++ operator, and
  2886     /// if the iterator leave the last valid item it will be equal to
  2887     /// \c INVALID.
  2888     class ItemIt : public ITEM {
  2889     public:
  2890       typedef ITEM Parent;
  2891 
  2892       /// \brief Invalid constructor \& conversion.
  2893       ///
  2894       /// This constructor initializes the item to be invalid.
  2895       /// \sa Invalid for more details.
  2896       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
  2897 
  2898       /// \brief Creates an iterator with a value.
  2899       ///
  2900       /// Creates an iterator with a value. It iterates on the
  2901       /// keys which have the given value.
  2902       /// \param map The IterableIntMap
  2903       /// \param value The value
  2904       ItemIt(const IterableIntMap& map, int value) : _map(&map) {
  2905         if (value < 0 || value >= int(_map->_first.size())) {
  2906           Parent::operator=(INVALID);
  2907         } else {
  2908           Parent::operator=(_map->_first[value]);
  2909         }
  2910       }
  2911 
  2912       /// \brief Increment operator.
  2913       ///
  2914       /// Increment Operator.
  2915       ItemIt& operator++() {
  2916         Parent::operator=(_map->IterableIntMap::Parent::
  2917                           operator[](static_cast<Parent&>(*this)).next);
  2918         return *this;
  2919       }
  2920 
  2921 
  2922     private:
  2923       const IterableIntMap* _map;
  2924     };
  2925 
  2926   protected:
  2927 
  2928     virtual void erase(const Key& key) {
  2929       unlace(key);
  2930       Parent::erase(key);
  2931     }
  2932 
  2933     virtual void erase(const std::vector<Key>& keys) {
  2934       for (int i = 0; i < int(keys.size()); ++i) {
  2935         unlace(keys[i]);
  2936       }
  2937       Parent::erase(keys);
  2938     }
  2939 
  2940     virtual void clear() {
  2941       _first.clear();
  2942       Parent::clear();
  2943     }
  2944 
  2945   private:
  2946     std::vector<ITEM> _first;
  2947   };
  2948 
  2949   namespace _maps_bits {
  2950     template <typename Item, typename Value>
  2951     struct IterableValueMapNode {
  2952       IterableValueMapNode(Value _value = Value()) : value(_value) {}
  2953       Item prev, next;
  2954       Value value;
  2955     };
  2956   }
  2957 
  2958   ///\ingroup graph_maps
  2959   ///
  2960   /// \brief Dynamic iterable map for comparable values.
  2961   ///
  2962   /// This class provides a special graph map type which can store
  2963   /// for each graph item(node, edge, etc.) a value. For each
  2964   /// value it is possible to iterate on the keys which mapped to the
  2965   /// given value. The type stores for each value a linked list with
  2966   /// the items which mapped to the value, and the values are stored
  2967   /// in balanced binary tree. The values of the map can be accessed
  2968   /// with stl compatible forward iterator.
  2969   ///
  2970   /// This type is not reference map so it cannot be modified with
  2971   /// the subscription operator.
  2972   ///
  2973   /// \see InvertableMap
  2974   ///
  2975   /// \param GR The graph type.
  2976   /// \param ITEM One of the graph's item type, the key of the map.
  2977   /// \param VAL Any comparable value type.
  2978   template <typename GR, typename ITEM, typename VAL>
  2979   class IterableValueMap
  2980     : protected ItemSetTraits<GR, ITEM>::
  2981         template Map<_maps_bits::IterableValueMapNode<ITEM, VAL> >::Type {
  2982   public:
  2983     typedef typename ItemSetTraits<GR, ITEM>::
  2984       template Map<_maps_bits::IterableValueMapNode<ITEM, VAL> >::Type Parent;
  2985 
  2986     /// The key type
  2987     typedef ITEM Key;
  2988     /// The value type
  2989     typedef VAL Value;
  2990     /// The graph type
  2991     typedef GR Graph;
  2992 
  2993   public:
  2994 
  2995     /// \brief Constructor of the Map with a given value.
  2996     ///
  2997     /// Constructor of the Map with a given value.
  2998     explicit IterableValueMap(const Graph& graph,
  2999                               const Value& value = Value())
  3000       : Parent(graph, _maps_bits::IterableValueMapNode<ITEM, VAL>(value)) {
  3001       for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
  3002         lace(it);
  3003       }
  3004     }
  3005 
  3006   protected:
  3007 
  3008     void unlace(const Key& key) {
  3009       typename Parent::Value& node = Parent::operator[](key);
  3010       if (node.prev != INVALID) {
  3011         Parent::operator[](node.prev).next = node.next;
  3012       } else {
  3013         if (node.next != INVALID) {
  3014           _first[node.value] = node.next;
  3015         } else {
  3016           _first.erase(node.value);
  3017         }
  3018       }
  3019       if (node.next != INVALID) {
  3020         Parent::operator[](node.next).prev = node.prev;
  3021       }
  3022     }
  3023 
  3024     void lace(const Key& key) {
  3025       typename Parent::Value& node = Parent::operator[](key);
  3026       typename std::map<Value, Key>::iterator it = _first.find(node.value);
  3027       if (it == _first.end()) {
  3028         node.prev = node.next = INVALID;
  3029         if (node.next != INVALID) {
  3030           Parent::operator[](node.next).prev = key;
  3031         }
  3032         _first.insert(std::make_pair(node.value, key));
  3033       } else {
  3034         node.prev = INVALID;
  3035         node.next = it->second;
  3036         if (node.next != INVALID) {
  3037           Parent::operator[](node.next).prev = key;
  3038         }
  3039         it->second = key;
  3040       }
  3041     }
  3042 
  3043   public:
  3044 
  3045     /// \brief Forward iterator for values.
  3046     ///
  3047     /// This iterator is an stl compatible forward
  3048     /// iterator on the values of the map. The values can
  3049     /// be accessed in the [beginValue, endValue) range.
  3050     ///
  3051     class ValueIterator
  3052       : public std::iterator<std::forward_iterator_tag, Value> {
  3053       friend class IterableValueMap;
  3054     private:
  3055       ValueIterator(typename std::map<Value, Key>::const_iterator _it)
  3056         : it(_it) {}
  3057     public:
  3058 
  3059       ValueIterator() {}
  3060 
  3061       ValueIterator& operator++() { ++it; return *this; }
  3062       ValueIterator operator++(int) {
  3063         ValueIterator tmp(*this);
  3064         operator++();
  3065         return tmp;
  3066       }
  3067 
  3068       const Value& operator*() const { return it->first; }
  3069       const Value* operator->() const { return &(it->first); }
  3070 
  3071       bool operator==(ValueIterator jt) const { return it == jt.it; }
  3072       bool operator!=(ValueIterator jt) const { return it != jt.it; }
  3073 
  3074     private:
  3075       typename std::map<Value, Key>::const_iterator it;
  3076     };
  3077 
  3078     /// \brief Returns an iterator to the first value.
  3079     ///
  3080     /// Returns an stl compatible iterator to the
  3081     /// first value of the map. The values of the
  3082     /// map can be accessed in the [beginValue, endValue)
  3083     /// range.
  3084     ValueIterator beginValue() const {
  3085       return ValueIterator(_first.begin());
  3086     }
  3087 
  3088     /// \brief Returns an iterator after the last value.
  3089     ///
  3090     /// Returns an stl compatible iterator after the
  3091     /// last value of the map. The values of the
  3092     /// map can be accessed in the [beginValue, endValue)
  3093     /// range.
  3094     ValueIterator endValue() const {
  3095       return ValueIterator(_first.end());
  3096     }
  3097 
  3098     /// \brief Set operation of the map.
  3099     ///
  3100     /// Set operation of the map.
  3101     void set(const Key& key, const Value& value) {
  3102       unlace(key);
  3103       Parent::operator[](key).value = value;
  3104       lace(key);
  3105     }
  3106 
  3107     /// \brief Const subscript operator of the map.
  3108     ///
  3109     /// Const subscript operator of the map.
  3110     const Value& operator[](const Key& key) const {
  3111       return Parent::operator[](key).value;
  3112     }
  3113 
  3114     /// \brief Iterator for the keys with the same value.
  3115     ///
  3116     /// Iterator for the keys with the same value. It works
  3117     /// like a graph item iterator in the map, it can be converted
  3118     /// the item type of the map, incremented with \c ++ operator, and
  3119     /// if the iterator leave the last valid item it will be equal to
  3120     /// \c INVALID.
  3121     class ItemIt : public ITEM {
  3122     public:
  3123       typedef ITEM Parent;
  3124 
  3125       /// \brief Invalid constructor \& conversion.
  3126       ///
  3127       /// This constructor initializes the item to be invalid.
  3128       /// \sa Invalid for more details.
  3129       ItemIt(Invalid) : Parent(INVALID), _map(0) {}
  3130 
  3131       /// \brief Creates an iterator with a value.
  3132       ///
  3133       /// Creates an iterator with a value. It iterates on the
  3134       /// keys which have the given value.
  3135       /// \param map The IterableValueMap
  3136       /// \param value The value
  3137       ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
  3138         typename std::map<Value, Key>::const_iterator it =
  3139           map._first.find(value);
  3140         if (it == map._first.end()) {
  3141           Parent::operator=(INVALID);
  3142         } else {
  3143           Parent::operator=(it->second);
  3144         }
  3145       }
  3146 
  3147       /// \brief Increment operator.
  3148       ///
  3149       /// Increment Operator.
  3150       ItemIt& operator++() {
  3151         Parent::operator=(_map->IterableValueMap::Parent::
  3152                           operator[](static_cast<Parent&>(*this)).next);
  3153         return *this;
  3154       }
  3155 
  3156 
  3157     private:
  3158       const IterableValueMap* _map;
  3159     };
  3160 
  3161   protected:
  3162 
  3163     virtual void add(const Key& key) {
  3164       Parent::add(key);
  3165       unlace(key);
  3166     }
  3167 
  3168     virtual void add(const std::vector<Key>& keys) {
  3169       Parent::add(keys);
  3170       for (int i = 0; i < int(keys.size()); ++i) {
  3171         lace(keys[i]);
  3172       }
  3173     }
  3174 
  3175     virtual void erase(const Key& key) {
  3176       unlace(key);
  3177       Parent::erase(key);
  3178     }
  3179 
  3180     virtual void erase(const std::vector<Key>& keys) {
  3181       for (int i = 0; i < int(keys.size()); ++i) {
  3182         unlace(keys[i]);
  3183       }
  3184       Parent::erase(keys);
  3185     }
  3186 
  3187     virtual void build() {
  3188       Parent::build();
  3189       for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
  3190         lace(it);
  3191       }
  3192     }
  3193 
  3194     virtual void clear() {
  3195       _first.clear();
  3196       Parent::clear();
  3197     }
  3198 
  3199   private:
  3200     std::map<Value, Key> _first;
  3201   };
  3202 
  3203   /// \brief Map of the source nodes of arcs in a digraph.
  3204   ///
  3205   /// SourceMap provides access for the source node of each arc in a digraph,
  3206   /// which is returned by the \c source() function of the digraph.
  3207   /// \tparam GR The digraph type.
  3208   /// \see TargetMap
  3209   template <typename GR>
  3210   class SourceMap {
  3211   public:
  3212 
  3213     ///\e
  3214     typedef typename GR::Arc Key;
  3215     ///\e
  3216     typedef typename GR::Node Value;
  3217 
  3218     /// \brief Constructor
  3219     ///
  3220     /// Constructor.
  3221     /// \param digraph The digraph that the map belongs to.
  3222     explicit SourceMap(const GR& digraph) : _graph(digraph) {}
  3223 
  3224     /// \brief Returns the source node of the given arc.
  3225     ///
  3226     /// Returns the source node of the given arc.
  3227     Value operator[](const Key& arc) const {
  3228       return _graph.source(arc);
  3229     }
  3230 
  3231   private:
  3232     const GR& _graph;
  3233   };
  3234 
  3235   /// \brief Returns a \c SourceMap class.
  3236   ///
  3237   /// This function just returns an \c SourceMap class.
  3238   /// \relates SourceMap
  3239   template <typename GR>
  3240   inline SourceMap<GR> sourceMap(const GR& graph) {
  3241     return SourceMap<GR>(graph);
  3242   }
  3243 
  3244   /// \brief Map of the target nodes of arcs in a digraph.
  3245   ///
  3246   /// TargetMap provides access for the target node of each arc in a digraph,
  3247   /// which is returned by the \c target() function of the digraph.
  3248   /// \tparam GR The digraph type.
  3249   /// \see SourceMap
  3250   template <typename GR>
  3251   class TargetMap {
  3252   public:
  3253 
  3254     ///\e
  3255     typedef typename GR::Arc Key;
  3256     ///\e
  3257     typedef typename GR::Node Value;
  3258 
  3259     /// \brief Constructor
  3260     ///
  3261     /// Constructor.
  3262     /// \param digraph The digraph that the map belongs to.
  3263     explicit TargetMap(const GR& digraph) : _graph(digraph) {}
  3264 
  3265     /// \brief Returns the target node of the given arc.
  3266     ///
  3267     /// Returns the target node of the given arc.
  3268     Value operator[](const Key& e) const {
  3269       return _graph.target(e);
  3270     }
  3271 
  3272   private:
  3273     const GR& _graph;
  3274   };
  3275 
  3276   /// \brief Returns a \c TargetMap class.
  3277   ///
  3278   /// This function just returns a \c TargetMap class.
  3279   /// \relates TargetMap
  3280   template <typename GR>
  3281   inline TargetMap<GR> targetMap(const GR& graph) {
  3282     return TargetMap<GR>(graph);
  3283   }
  3284 
  3285   /// \brief Map of the "forward" directed arc view of edges in a graph.
  3286   ///
  3287   /// ForwardMap provides access for the "forward" directed arc view of
  3288   /// each edge in a graph, which is returned by the \c direct() function
  3289   /// of the graph with \c true parameter.
  3290   /// \tparam GR The graph type.
  3291   /// \see BackwardMap
  3292   template <typename GR>
  3293   class ForwardMap {
  3294   public:
  3295 
  3296     typedef typename GR::Arc Value;
  3297     typedef typename GR::Edge Key;
  3298 
  3299     /// \brief Constructor
  3300     ///
  3301     /// Constructor.
  3302     /// \param graph The graph that the map belongs to.
  3303     explicit ForwardMap(const GR& graph) : _graph(graph) {}
  3304 
  3305     /// \brief Returns the "forward" directed arc view of the given edge.
  3306     ///
  3307     /// Returns the "forward" directed arc view of the given edge.
  3308     Value operator[](const Key& key) const {
  3309       return _graph.direct(key, true);
  3310     }
  3311 
  3312   private:
  3313     const GR& _graph;
  3314   };
  3315 
  3316   /// \brief Returns a \c ForwardMap class.
  3317   ///
  3318   /// This function just returns an \c ForwardMap class.
  3319   /// \relates ForwardMap
  3320   template <typename GR>
  3321   inline ForwardMap<GR> forwardMap(const GR& graph) {
  3322     return ForwardMap<GR>(graph);
  3323   }
  3324 
  3325   /// \brief Map of the "backward" directed arc view of edges in a graph.
  3326   ///
  3327   /// BackwardMap provides access for the "backward" directed arc view of
  3328   /// each edge in a graph, which is returned by the \c direct() function
  3329   /// of the graph with \c false parameter.
  3330   /// \tparam GR The graph type.
  3331   /// \see ForwardMap
  3332   template <typename GR>
  3333   class BackwardMap {
  3334   public:
  3335 
  3336     typedef typename GR::Arc Value;
  3337     typedef typename GR::Edge Key;
  3338 
  3339     /// \brief Constructor
  3340     ///
  3341     /// Constructor.
  3342     /// \param graph The graph that the map belongs to.
  3343     explicit BackwardMap(const GR& graph) : _graph(graph) {}
  3344 
  3345     /// \brief Returns the "backward" directed arc view of the given edge.
  3346     ///
  3347     /// Returns the "backward" directed arc view of the given edge.
  3348     Value operator[](const Key& key) const {
  3349       return _graph.direct(key, false);
  3350     }
  3351 
  3352   private:
  3353     const GR& _graph;
  3354   };
  3355 
  3356   /// \brief Returns a \c BackwardMap class
  3357 
  3358   /// This function just returns a \c BackwardMap class.
  3359   /// \relates BackwardMap
  3360   template <typename GR>
  3361   inline BackwardMap<GR> backwardMap(const GR& graph) {
  3362     return BackwardMap<GR>(graph);
  3363   }
  3364 
  3365   /// \brief Map of the in-degrees of nodes in a digraph.
  3366   ///
  3367   /// This map returns the in-degree of a node. Once it is constructed,
  3368   /// the degrees are stored in a standard \c NodeMap, so each query is done
  3369   /// in constant time. On the other hand, the values are updated automatically
  3370   /// whenever the digraph changes.
  3371   ///
  3372   /// \warning Besides \c addNode() and \c addArc(), a digraph structure
  3373   /// may provide alternative ways to modify the digraph.
  3374   /// The correct behavior of InDegMap is not guarantied if these additional
  3375   /// features are used. For example the functions
  3376   /// \ref ListDigraph::changeSource() "changeSource()",
  3377   /// \ref ListDigraph::changeTarget() "changeTarget()" and
  3378   /// \ref ListDigraph::reverseArc() "reverseArc()"
  3379   /// of \ref ListDigraph will \e not update the degree values correctly.
  3380   ///
  3381   /// \sa OutDegMap
  3382   template <typename GR>
  3383   class InDegMap
  3384     : protected ItemSetTraits<GR, typename GR::Arc>
  3385       ::ItemNotifier::ObserverBase {
  3386 
  3387   public:
  3388 
  3389     /// The graph type of InDegMap
  3390     typedef GR Graph;
  3391     typedef GR Digraph;
  3392     /// The key type
  3393     typedef typename Digraph::Node Key;
  3394     /// The value type
  3395     typedef int Value;
  3396 
  3397     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
  3398     ::ItemNotifier::ObserverBase Parent;
  3399 
  3400   private:
  3401 
  3402     class AutoNodeMap
  3403       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
  3404     public:
  3405 
  3406       typedef typename ItemSetTraits<Digraph, Key>::
  3407       template Map<int>::Type Parent;
  3408 
  3409       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
  3410 
  3411       virtual void add(const Key& key) {
  3412         Parent::add(key);
  3413         Parent::set(key, 0);
  3414       }
  3415 
  3416       virtual void add(const std::vector<Key>& keys) {
  3417         Parent::add(keys);
  3418         for (int i = 0; i < int(keys.size()); ++i) {
  3419           Parent::set(keys[i], 0);
  3420         }
  3421       }
  3422 
  3423       virtual void build() {
  3424         Parent::build();
  3425         Key it;
  3426         typename Parent::Notifier* nf = Parent::notifier();
  3427         for (nf->first(it); it != INVALID; nf->next(it)) {
  3428           Parent::set(it, 0);
  3429         }
  3430       }
  3431     };
  3432 
  3433   public:
  3434 
  3435     /// \brief Constructor.
  3436     ///
  3437     /// Constructor for creating an in-degree map.
  3438     explicit InDegMap(const Digraph& graph)
  3439       : _digraph(graph), _deg(graph) {
  3440       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
  3441 
  3442       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3443         _deg[it] = countInArcs(_digraph, it);
  3444       }
  3445     }
  3446 
  3447     /// \brief Gives back the in-degree of a Node.
  3448     ///
  3449     /// Gives back the in-degree of a Node.
  3450     int operator[](const Key& key) const {
  3451       return _deg[key];
  3452     }
  3453 
  3454   protected:
  3455 
  3456     typedef typename Digraph::Arc Arc;
  3457 
  3458     virtual void add(const Arc& arc) {
  3459       ++_deg[_digraph.target(arc)];
  3460     }
  3461 
  3462     virtual void add(const std::vector<Arc>& arcs) {
  3463       for (int i = 0; i < int(arcs.size()); ++i) {
  3464         ++_deg[_digraph.target(arcs[i])];
  3465       }
  3466     }
  3467 
  3468     virtual void erase(const Arc& arc) {
  3469       --_deg[_digraph.target(arc)];
  3470     }
  3471 
  3472     virtual void erase(const std::vector<Arc>& arcs) {
  3473       for (int i = 0; i < int(arcs.size()); ++i) {
  3474         --_deg[_digraph.target(arcs[i])];
  3475       }
  3476     }
  3477 
  3478     virtual void build() {
  3479       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3480         _deg[it] = countInArcs(_digraph, it);
  3481       }
  3482     }
  3483 
  3484     virtual void clear() {
  3485       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3486         _deg[it] = 0;
  3487       }
  3488     }
  3489   private:
  3490 
  3491     const Digraph& _digraph;
  3492     AutoNodeMap _deg;
  3493   };
  3494 
  3495   /// \brief Map of the out-degrees of nodes in a digraph.
  3496   ///
  3497   /// This map returns the out-degree of a node. Once it is constructed,
  3498   /// the degrees are stored in a standard \c NodeMap, so each query is done
  3499   /// in constant time. On the other hand, the values are updated automatically
  3500   /// whenever the digraph changes.
  3501   ///
  3502   /// \warning Besides \c addNode() and \c addArc(), a digraph structure
  3503   /// may provide alternative ways to modify the digraph.
  3504   /// The correct behavior of OutDegMap is not guarantied if these additional
  3505   /// features are used. For example the functions
  3506   /// \ref ListDigraph::changeSource() "changeSource()",
  3507   /// \ref ListDigraph::changeTarget() "changeTarget()" and
  3508   /// \ref ListDigraph::reverseArc() "reverseArc()"
  3509   /// of \ref ListDigraph will \e not update the degree values correctly.
  3510   ///
  3511   /// \sa InDegMap
  3512   template <typename GR>
  3513   class OutDegMap
  3514     : protected ItemSetTraits<GR, typename GR::Arc>
  3515       ::ItemNotifier::ObserverBase {
  3516 
  3517   public:
  3518 
  3519     /// The graph type of OutDegMap
  3520     typedef GR Graph;
  3521     typedef GR Digraph;
  3522     /// The key type
  3523     typedef typename Digraph::Node Key;
  3524     /// The value type
  3525     typedef int Value;
  3526 
  3527     typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
  3528     ::ItemNotifier::ObserverBase Parent;
  3529 
  3530   private:
  3531 
  3532     class AutoNodeMap
  3533       : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
  3534     public:
  3535 
  3536       typedef typename ItemSetTraits<Digraph, Key>::
  3537       template Map<int>::Type Parent;
  3538 
  3539       AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
  3540 
  3541       virtual void add(const Key& key) {
  3542         Parent::add(key);
  3543         Parent::set(key, 0);
  3544       }
  3545       virtual void add(const std::vector<Key>& keys) {
  3546         Parent::add(keys);
  3547         for (int i = 0; i < int(keys.size()); ++i) {
  3548           Parent::set(keys[i], 0);
  3549         }
  3550       }
  3551       virtual void build() {
  3552         Parent::build();
  3553         Key it;
  3554         typename Parent::Notifier* nf = Parent::notifier();
  3555         for (nf->first(it); it != INVALID; nf->next(it)) {
  3556           Parent::set(it, 0);
  3557         }
  3558       }
  3559     };
  3560 
  3561   public:
  3562 
  3563     /// \brief Constructor.
  3564     ///
  3565     /// Constructor for creating an out-degree map.
  3566     explicit OutDegMap(const Digraph& graph)
  3567       : _digraph(graph), _deg(graph) {
  3568       Parent::attach(_digraph.notifier(typename Digraph::Arc()));
  3569 
  3570       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3571         _deg[it] = countOutArcs(_digraph, it);
  3572       }
  3573     }
  3574 
  3575     /// \brief Gives back the out-degree of a Node.
  3576     ///
  3577     /// Gives back the out-degree of a Node.
  3578     int operator[](const Key& key) const {
  3579       return _deg[key];
  3580     }
  3581 
  3582   protected:
  3583 
  3584     typedef typename Digraph::Arc Arc;
  3585 
  3586     virtual void add(const Arc& arc) {
  3587       ++_deg[_digraph.source(arc)];
  3588     }
  3589 
  3590     virtual void add(const std::vector<Arc>& arcs) {
  3591       for (int i = 0; i < int(arcs.size()); ++i) {
  3592         ++_deg[_digraph.source(arcs[i])];
  3593       }
  3594     }
  3595 
  3596     virtual void erase(const Arc& arc) {
  3597       --_deg[_digraph.source(arc)];
  3598     }
  3599 
  3600     virtual void erase(const std::vector<Arc>& arcs) {
  3601       for (int i = 0; i < int(arcs.size()); ++i) {
  3602         --_deg[_digraph.source(arcs[i])];
  3603       }
  3604     }
  3605 
  3606     virtual void build() {
  3607       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3608         _deg[it] = countOutArcs(_digraph, it);
  3609       }
  3610     }
  3611 
  3612     virtual void clear() {
  3613       for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
  3614         _deg[it] = 0;
  3615       }
  3616     }
  3617   private:
  3618 
  3619     const Digraph& _digraph;
  3620     AutoNodeMap _deg;
  3621   };
  3622 
  3623   /// \brief Potential difference map
  3624   ///
  3625   /// PotentialDifferenceMap returns the difference between the potentials of
  3626   /// the source and target nodes of each arc in a digraph, i.e. it returns
  3627   /// \code
  3628   ///   potential[gr.target(arc)] - potential[gr.source(arc)].
  3629   /// \endcode
  3630   /// \tparam GR The digraph type.
  3631   /// \tparam POT A node map storing the potentials.
  3632   template <typename GR, typename POT>
  3633   class PotentialDifferenceMap {
  3634   public:
  3635     /// Key type
  3636     typedef typename GR::Arc Key;
  3637     /// Value type
  3638     typedef typename POT::Value Value;
  3639 
  3640     /// \brief Constructor
  3641     ///
  3642     /// Contructor of the map.
  3643     explicit PotentialDifferenceMap(const GR& gr,
  3644                                     const POT& potential)
  3645       : _digraph(gr), _potential(potential) {}
  3646 
  3647     /// \brief Returns the potential difference for the given arc.
  3648     ///
  3649     /// Returns the potential difference for the given arc, i.e.
  3650     /// \code
  3651     ///   potential[gr.target(arc)] - potential[gr.source(arc)].
  3652     /// \endcode
  3653     Value operator[](const Key& arc) const {
  3654       return _potential[_digraph.target(arc)] -
  3655         _potential[_digraph.source(arc)];
  3656     }
  3657 
  3658   private:
  3659     const GR& _digraph;
  3660     const POT& _potential;
  3661   };
  3662 
  3663   /// \brief Returns a PotentialDifferenceMap.
  3664   ///
  3665   /// This function just returns a PotentialDifferenceMap.
  3666   /// \relates PotentialDifferenceMap
  3667   template <typename GR, typename POT>
  3668   PotentialDifferenceMap<GR, POT>
  3669   potentialDifferenceMap(const GR& gr, const POT& potential) {
  3670     return PotentialDifferenceMap<GR, POT>(gr, potential);
  3671   }
  3672 
  3673   /// @}
  3674 }
  3675 
  3676 #endif // LEMON_MAPS_H