Add arc_lookup_test.cc to the autoconf build env. (#517)
1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2011
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_COST_SCALING_H
20 #define LEMON_COST_SCALING_H
22 /// \ingroup min_cost_flow_algs
24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
30 #include <lemon/core.h>
31 #include <lemon/maps.h>
32 #include <lemon/math.h>
33 #include <lemon/static_graph.h>
34 #include <lemon/circulation.h>
35 #include <lemon/bellman_ford.h>
39 /// \brief Default traits class of CostScaling algorithm.
41 /// Default traits class of CostScaling algorithm.
42 /// \tparam GR Digraph type.
43 /// \tparam V The number type used for flow amounts, capacity bounds
44 /// and supply values. By default it is \c int.
45 /// \tparam C The number type used for costs and potentials.
46 /// By default it is the same as \c V.
48 template <typename GR, typename V = int, typename C = V>
50 template < typename GR, typename V = int, typename C = V,
51 bool integer = std::numeric_limits<C>::is_integer >
53 struct CostScalingDefaultTraits
55 /// The type of the digraph
57 /// The type of the flow amounts, capacity bounds and supply values
59 /// The type of the arc costs
62 /// \brief The large cost type used for internal computations
64 /// The large cost type used for internal computations.
65 /// It is \c long \c long if the \c Cost type is integer,
66 /// otherwise it is \c double.
67 /// \c Cost must be convertible to \c LargeCost.
68 typedef double LargeCost;
71 // Default traits class for integer cost types
72 template <typename GR, typename V, typename C>
73 struct CostScalingDefaultTraits<GR, V, C, true>
78 #ifdef LEMON_HAVE_LONG_LONG
79 typedef long long LargeCost;
81 typedef long LargeCost;
86 /// \addtogroup min_cost_flow_algs
89 /// \brief Implementation of the Cost Scaling algorithm for
90 /// finding a \ref min_cost_flow "minimum cost flow".
92 /// \ref CostScaling implements a cost scaling algorithm that performs
93 /// push/augment and relabel operations for finding a \ref min_cost_flow
94 /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95 /// \ref goldberg97efficient, \ref bunnagel98efficient.
96 /// It is a highly efficient primal-dual solution method, which
97 /// can be viewed as the generalization of the \ref Preflow
98 /// "preflow push-relabel" algorithm for the maximum flow problem.
100 /// Most of the parameters of the problem (except for the digraph)
101 /// can be given using separate functions, and the algorithm can be
102 /// executed using the \ref run() function. If some parameters are not
103 /// specified, then default values will be used.
105 /// \tparam GR The digraph type the algorithm runs on.
106 /// \tparam V The number type used for flow amounts, capacity bounds
107 /// and supply values in the algorithm. By default, it is \c int.
108 /// \tparam C The number type used for costs and potentials in the
109 /// algorithm. By default, it is the same as \c V.
110 /// \tparam TR The traits class that defines various types used by the
111 /// algorithm. By default, it is \ref CostScalingDefaultTraits
112 /// "CostScalingDefaultTraits<GR, V, C>".
113 /// In most cases, this parameter should not be set directly,
114 /// consider to use the named template parameters instead.
116 /// \warning Both number types must be signed and all input data must
118 /// \warning This algorithm does not support negative costs for such
119 /// arcs that have infinite upper bound.
121 /// \note %CostScaling provides three different internal methods,
122 /// from which the most efficient one is used by default.
123 /// For more information, see \ref Method.
125 template <typename GR, typename V, typename C, typename TR>
127 template < typename GR, typename V = int, typename C = V,
128 typename TR = CostScalingDefaultTraits<GR, V, C> >
134 /// The type of the digraph
135 typedef typename TR::Digraph Digraph;
136 /// The type of the flow amounts, capacity bounds and supply values
137 typedef typename TR::Value Value;
138 /// The type of the arc costs
139 typedef typename TR::Cost Cost;
141 /// \brief The large cost type
143 /// The large cost type used for internal computations.
144 /// By default, it is \c long \c long if the \c Cost type is integer,
145 /// otherwise it is \c double.
146 typedef typename TR::LargeCost LargeCost;
148 /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
153 /// \brief Problem type constants for the \c run() function.
155 /// Enum type containing the problem type constants that can be
156 /// returned by the \ref run() function of the algorithm.
158 /// The problem has no feasible solution (flow).
160 /// The problem has optimal solution (i.e. it is feasible and
161 /// bounded), and the algorithm has found optimal flow and node
162 /// potentials (primal and dual solutions).
164 /// The digraph contains an arc of negative cost and infinite
165 /// upper bound. It means that the objective function is unbounded
166 /// on that arc, however, note that it could actually be bounded
167 /// over the feasible flows, but this algroithm cannot handle
172 /// \brief Constants for selecting the internal method.
174 /// Enum type containing constants for selecting the internal method
175 /// for the \ref run() function.
177 /// \ref CostScaling provides three internal methods that differ mainly
178 /// in their base operations, which are used in conjunction with the
179 /// relabel operation.
180 /// By default, the so called \ref PARTIAL_AUGMENT
181 /// "Partial Augment-Relabel" method is used, which proved to be
182 /// the most efficient and the most robust on various test inputs.
183 /// However, the other methods can be selected using the \ref run()
184 /// function with the proper parameter.
186 /// Local push operations are used, i.e. flow is moved only on one
187 /// admissible arc at once.
189 /// Augment operations are used, i.e. flow is moved on admissible
190 /// paths from a node with excess to a node with deficit.
192 /// Partial augment operations are used, i.e. flow is moved on
193 /// admissible paths started from a node with excess, but the
194 /// lengths of these paths are limited. This method can be viewed
195 /// as a combined version of the previous two operations.
201 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
203 typedef std::vector<int> IntVector;
204 typedef std::vector<Value> ValueVector;
205 typedef std::vector<Cost> CostVector;
206 typedef std::vector<LargeCost> LargeCostVector;
207 typedef std::vector<char> BoolVector;
208 // Note: vector<char> is used instead of vector<bool> for efficiency reasons
212 template <typename KT, typename VT>
213 class StaticVectorMap {
218 StaticVectorMap(std::vector<Value>& v) : _v(v) {}
220 const Value& operator[](const Key& key) const {
221 return _v[StaticDigraph::id(key)];
224 Value& operator[](const Key& key) {
225 return _v[StaticDigraph::id(key)];
228 void set(const Key& key, const Value& val) {
229 _v[StaticDigraph::id(key)] = val;
233 std::vector<Value>& _v;
236 typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
237 typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
241 // Data related to the underlying digraph
249 // Parameters of the problem
254 // Data structures for storing the digraph
258 IntVector _first_out;
270 ValueVector _res_cap;
271 LargeCostVector _cost;
275 std::deque<int> _active_nodes;
282 IntVector _bucket_next;
283 IntVector _bucket_prev;
287 // Data for a StaticDigraph structure
288 typedef std::pair<int, int> IntPair;
290 std::vector<IntPair> _arc_vec;
291 std::vector<LargeCost> _cost_vec;
292 LargeCostArcMap _cost_map;
293 LargeCostNodeMap _pi_map;
297 /// \brief Constant for infinite upper bounds (capacities).
299 /// Constant for infinite upper bounds (capacities).
300 /// It is \c std::numeric_limits<Value>::infinity() if available,
301 /// \c std::numeric_limits<Value>::max() otherwise.
306 /// \name Named Template Parameters
309 template <typename T>
310 struct SetLargeCostTraits : public Traits {
314 /// \brief \ref named-templ-param "Named parameter" for setting
315 /// \c LargeCost type.
317 /// \ref named-templ-param "Named parameter" for setting \c LargeCost
318 /// type, which is used for internal computations in the algorithm.
319 /// \c Cost must be convertible to \c LargeCost.
320 template <typename T>
322 : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
323 typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
334 /// \brief Constructor.
336 /// The constructor of the class.
338 /// \param graph The digraph the algorithm runs on.
339 CostScaling(const GR& graph) :
340 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
341 _cost_map(_cost_vec), _pi_map(_pi),
342 INF(std::numeric_limits<Value>::has_infinity ?
343 std::numeric_limits<Value>::infinity() :
344 std::numeric_limits<Value>::max())
346 // Check the number types
347 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
348 "The flow type of CostScaling must be signed");
349 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
350 "The cost type of CostScaling must be signed");
352 // Reset data structures
357 /// The parameters of the algorithm can be specified using these
362 /// \brief Set the lower bounds on the arcs.
364 /// This function sets the lower bounds on the arcs.
365 /// If it is not used before calling \ref run(), the lower bounds
366 /// will be set to zero on all arcs.
368 /// \param map An arc map storing the lower bounds.
369 /// Its \c Value type must be convertible to the \c Value type
370 /// of the algorithm.
372 /// \return <tt>(*this)</tt>
373 template <typename LowerMap>
374 CostScaling& lowerMap(const LowerMap& map) {
376 for (ArcIt a(_graph); a != INVALID; ++a) {
377 _lower[_arc_idf[a]] = map[a];
378 _lower[_arc_idb[a]] = map[a];
383 /// \brief Set the upper bounds (capacities) on the arcs.
385 /// This function sets the upper bounds (capacities) on the arcs.
386 /// If it is not used before calling \ref run(), the upper bounds
387 /// will be set to \ref INF on all arcs (i.e. the flow value will be
388 /// unbounded from above).
390 /// \param map An arc map storing the upper bounds.
391 /// Its \c Value type must be convertible to the \c Value type
392 /// of the algorithm.
394 /// \return <tt>(*this)</tt>
395 template<typename UpperMap>
396 CostScaling& upperMap(const UpperMap& map) {
397 for (ArcIt a(_graph); a != INVALID; ++a) {
398 _upper[_arc_idf[a]] = map[a];
403 /// \brief Set the costs of the arcs.
405 /// This function sets the costs of the arcs.
406 /// If it is not used before calling \ref run(), the costs
407 /// will be set to \c 1 on all arcs.
409 /// \param map An arc map storing the costs.
410 /// Its \c Value type must be convertible to the \c Cost type
411 /// of the algorithm.
413 /// \return <tt>(*this)</tt>
414 template<typename CostMap>
415 CostScaling& costMap(const CostMap& map) {
416 for (ArcIt a(_graph); a != INVALID; ++a) {
417 _scost[_arc_idf[a]] = map[a];
418 _scost[_arc_idb[a]] = -map[a];
423 /// \brief Set the supply values of the nodes.
425 /// This function sets the supply values of the nodes.
426 /// If neither this function nor \ref stSupply() is used before
427 /// calling \ref run(), the supply of each node will be set to zero.
429 /// \param map A node map storing the supply values.
430 /// Its \c Value type must be convertible to the \c Value type
431 /// of the algorithm.
433 /// \return <tt>(*this)</tt>
434 template<typename SupplyMap>
435 CostScaling& supplyMap(const SupplyMap& map) {
436 for (NodeIt n(_graph); n != INVALID; ++n) {
437 _supply[_node_id[n]] = map[n];
442 /// \brief Set single source and target nodes and a supply value.
444 /// This function sets a single source node and a single target node
445 /// and the required flow value.
446 /// If neither this function nor \ref supplyMap() is used before
447 /// calling \ref run(), the supply of each node will be set to zero.
449 /// Using this function has the same effect as using \ref supplyMap()
450 /// with such a map in which \c k is assigned to \c s, \c -k is
451 /// assigned to \c t and all other nodes have zero supply value.
453 /// \param s The source node.
454 /// \param t The target node.
455 /// \param k The required amount of flow from node \c s to node \c t
456 /// (i.e. the supply of \c s and the demand of \c t).
458 /// \return <tt>(*this)</tt>
459 CostScaling& stSupply(const Node& s, const Node& t, Value k) {
460 for (int i = 0; i != _res_node_num; ++i) {
463 _supply[_node_id[s]] = k;
464 _supply[_node_id[t]] = -k;
470 /// \name Execution control
471 /// The algorithm can be executed using \ref run().
475 /// \brief Run the algorithm.
477 /// This function runs the algorithm.
478 /// The paramters can be specified using functions \ref lowerMap(),
479 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
482 /// CostScaling<ListDigraph> cs(graph);
483 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
484 /// .supplyMap(sup).run();
487 /// This function can be called more than once. All the given parameters
488 /// are kept for the next call, unless \ref resetParams() or \ref reset()
489 /// is used, thus only the modified parameters have to be set again.
490 /// If the underlying digraph was also modified after the construction
491 /// of the class (or the last \ref reset() call), then the \ref reset()
492 /// function must be called.
494 /// \param method The internal method that will be used in the
495 /// algorithm. For more information, see \ref Method.
496 /// \param factor The cost scaling factor. It must be larger than one.
498 /// \return \c INFEASIBLE if no feasible flow exists,
499 /// \n \c OPTIMAL if the problem has optimal solution
500 /// (i.e. it is feasible and bounded), and the algorithm has found
501 /// optimal flow and node potentials (primal and dual solutions),
502 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
503 /// and infinite upper bound. It means that the objective function
504 /// is unbounded on that arc, however, note that it could actually be
505 /// bounded over the feasible flows, but this algroithm cannot handle
508 /// \see ProblemType, Method
509 /// \see resetParams(), reset()
510 ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
512 ProblemType pt = init();
513 if (pt != OPTIMAL) return pt;
518 /// \brief Reset all the parameters that have been given before.
520 /// This function resets all the paramaters that have been given
521 /// before using functions \ref lowerMap(), \ref upperMap(),
522 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
524 /// It is useful for multiple \ref run() calls. Basically, all the given
525 /// parameters are kept for the next \ref run() call, unless
526 /// \ref resetParams() or \ref reset() is used.
527 /// If the underlying digraph was also modified after the construction
528 /// of the class or the last \ref reset() call, then the \ref reset()
529 /// function must be used, otherwise \ref resetParams() is sufficient.
533 /// CostScaling<ListDigraph> cs(graph);
536 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
537 /// .supplyMap(sup).run();
539 /// // Run again with modified cost map (resetParams() is not called,
540 /// // so only the cost map have to be set again)
542 /// cs.costMap(cost).run();
544 /// // Run again from scratch using resetParams()
545 /// // (the lower bounds will be set to zero on all arcs)
546 /// cs.resetParams();
547 /// cs.upperMap(capacity).costMap(cost)
548 /// .supplyMap(sup).run();
551 /// \return <tt>(*this)</tt>
553 /// \see reset(), run()
554 CostScaling& resetParams() {
555 for (int i = 0; i != _res_node_num; ++i) {
558 int limit = _first_out[_root];
559 for (int j = 0; j != limit; ++j) {
562 _scost[j] = _forward[j] ? 1 : -1;
564 for (int j = limit; j != _res_arc_num; ++j) {
568 _scost[_reverse[j]] = 0;
574 /// \brief Reset all the parameters that have been given before.
576 /// This function resets all the paramaters that have been given
577 /// before using functions \ref lowerMap(), \ref upperMap(),
578 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
580 /// It is useful for multiple run() calls. If this function is not
581 /// used, all the parameters given before are kept for the next
583 /// However, the underlying digraph must not be modified after this
584 /// class have been constructed, since it copies and extends the graph.
585 /// \return <tt>(*this)</tt>
586 CostScaling& reset() {
588 _node_num = countNodes(_graph);
589 _arc_num = countArcs(_graph);
590 _res_node_num = _node_num + 1;
591 _res_arc_num = 2 * (_arc_num + _node_num);
594 _first_out.resize(_res_node_num + 1);
595 _forward.resize(_res_arc_num);
596 _source.resize(_res_arc_num);
597 _target.resize(_res_arc_num);
598 _reverse.resize(_res_arc_num);
600 _lower.resize(_res_arc_num);
601 _upper.resize(_res_arc_num);
602 _scost.resize(_res_arc_num);
603 _supply.resize(_res_node_num);
605 _res_cap.resize(_res_arc_num);
606 _cost.resize(_res_arc_num);
607 _pi.resize(_res_node_num);
608 _excess.resize(_res_node_num);
609 _next_out.resize(_res_node_num);
611 _arc_vec.reserve(_res_arc_num);
612 _cost_vec.reserve(_res_arc_num);
615 int i = 0, j = 0, k = 2 * _arc_num + _node_num;
616 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
620 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
622 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
626 _target[j] = _node_id[_graph.runningNode(a)];
628 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
632 _target[j] = _node_id[_graph.runningNode(a)];
645 _first_out[_res_node_num] = k;
646 for (ArcIt a(_graph); a != INVALID; ++a) {
647 int fi = _arc_idf[a];
648 int bi = _arc_idb[a];
660 /// \name Query Functions
661 /// The results of the algorithm can be obtained using these
663 /// The \ref run() function must be called before using them.
667 /// \brief Return the total cost of the found flow.
669 /// This function returns the total cost of the found flow.
670 /// Its complexity is O(e).
672 /// \note The return type of the function can be specified as a
673 /// template parameter. For example,
675 /// cs.totalCost<double>();
677 /// It is useful if the total cost cannot be stored in the \c Cost
678 /// type of the algorithm, which is the default return type of the
681 /// \pre \ref run() must be called before using this function.
682 template <typename Number>
683 Number totalCost() const {
685 for (ArcIt a(_graph); a != INVALID; ++a) {
687 c += static_cast<Number>(_res_cap[i]) *
688 (-static_cast<Number>(_scost[i]));
694 Cost totalCost() const {
695 return totalCost<Cost>();
699 /// \brief Return the flow on the given arc.
701 /// This function returns the flow on the given arc.
703 /// \pre \ref run() must be called before using this function.
704 Value flow(const Arc& a) const {
705 return _res_cap[_arc_idb[a]];
708 /// \brief Return the flow map (the primal solution).
710 /// This function copies the flow value on each arc into the given
711 /// map. The \c Value type of the algorithm must be convertible to
712 /// the \c Value type of the map.
714 /// \pre \ref run() must be called before using this function.
715 template <typename FlowMap>
716 void flowMap(FlowMap &map) const {
717 for (ArcIt a(_graph); a != INVALID; ++a) {
718 map.set(a, _res_cap[_arc_idb[a]]);
722 /// \brief Return the potential (dual value) of the given node.
724 /// This function returns the potential (dual value) of the
727 /// \pre \ref run() must be called before using this function.
728 Cost potential(const Node& n) const {
729 return static_cast<Cost>(_pi[_node_id[n]]);
732 /// \brief Return the potential map (the dual solution).
734 /// This function copies the potential (dual value) of each node
735 /// into the given map.
736 /// The \c Cost type of the algorithm must be convertible to the
737 /// \c Value type of the map.
739 /// \pre \ref run() must be called before using this function.
740 template <typename PotentialMap>
741 void potentialMap(PotentialMap &map) const {
742 for (NodeIt n(_graph); n != INVALID; ++n) {
743 map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
751 // Initialize the algorithm
753 if (_res_node_num <= 1) return INFEASIBLE;
755 // Check the sum of supply values
757 for (int i = 0; i != _root; ++i) {
758 _sum_supply += _supply[i];
760 if (_sum_supply > 0) return INFEASIBLE;
763 // Initialize vectors
764 for (int i = 0; i != _res_node_num; ++i) {
766 _excess[i] = _supply[i];
769 // Remove infinite upper bounds and check negative arcs
770 const Value MAX = std::numeric_limits<Value>::max();
773 for (int i = 0; i != _root; ++i) {
774 last_out = _first_out[i+1];
775 for (int j = _first_out[i]; j != last_out; ++j) {
777 Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
778 if (c >= MAX) return UNBOUNDED;
780 _excess[_target[j]] += c;
785 for (int i = 0; i != _root; ++i) {
786 last_out = _first_out[i+1];
787 for (int j = _first_out[i]; j != last_out; ++j) {
788 if (_forward[j] && _scost[j] < 0) {
790 if (c >= MAX) return UNBOUNDED;
792 _excess[_target[j]] += c;
797 Value ex, max_cap = 0;
798 for (int i = 0; i != _res_node_num; ++i) {
801 if (ex < 0) max_cap -= ex;
803 for (int j = 0; j != _res_arc_num; ++j) {
804 if (_upper[j] >= MAX) _upper[j] = max_cap;
807 // Initialize the large cost vector and the epsilon parameter
810 for (int i = 0; i != _root; ++i) {
811 last_out = _first_out[i+1];
812 for (int j = _first_out[i]; j != last_out; ++j) {
813 lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
815 if (lc > _epsilon) _epsilon = lc;
820 // Initialize maps for Circulation and remove non-zero lower bounds
821 ConstMap<Arc, Value> low(0);
822 typedef typename Digraph::template ArcMap<Value> ValueArcMap;
823 typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
824 ValueArcMap cap(_graph), flow(_graph);
825 ValueNodeMap sup(_graph);
826 for (NodeIt n(_graph); n != INVALID; ++n) {
827 sup[n] = _supply[_node_id[n]];
830 for (ArcIt a(_graph); a != INVALID; ++a) {
833 cap[a] = _upper[j] - c;
834 sup[_graph.source(a)] -= c;
835 sup[_graph.target(a)] += c;
838 for (ArcIt a(_graph); a != INVALID; ++a) {
839 cap[a] = _upper[_arc_idf[a]];
844 for (NodeIt n(_graph); n != INVALID; ++n) {
845 if (sup[n] > 0) ++_sup_node_num;
848 // Find a feasible flow using Circulation
849 Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
850 circ(_graph, low, cap, sup);
851 if (!circ.flowMap(flow).run()) return INFEASIBLE;
853 // Set residual capacities and handle GEQ supply type
854 if (_sum_supply < 0) {
855 for (ArcIt a(_graph); a != INVALID; ++a) {
857 _res_cap[_arc_idf[a]] = cap[a] - fa;
858 _res_cap[_arc_idb[a]] = fa;
859 sup[_graph.source(a)] -= fa;
860 sup[_graph.target(a)] += fa;
862 for (NodeIt n(_graph); n != INVALID; ++n) {
863 _excess[_node_id[n]] = sup[n];
865 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
867 int ra = _reverse[a];
868 _res_cap[a] = -_sum_supply + 1;
869 _res_cap[ra] = -_excess[u];
875 for (ArcIt a(_graph); a != INVALID; ++a) {
877 _res_cap[_arc_idf[a]] = cap[a] - fa;
878 _res_cap[_arc_idb[a]] = fa;
880 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
881 int ra = _reverse[a];
892 // Execute the algorithm and transform the results
893 void start(Method method) {
894 // Maximum path length for partial augment
895 const int MAX_PATH_LENGTH = 4;
897 // Initialize data structures for buckets
898 _max_rank = _alpha * _res_node_num;
899 _buckets.resize(_max_rank);
900 _bucket_next.resize(_res_node_num + 1);
901 _bucket_prev.resize(_res_node_num + 1);
902 _rank.resize(_res_node_num + 1);
904 // Execute the algorithm
910 startAugment(_res_node_num - 1);
912 case PARTIAL_AUGMENT:
913 startAugment(MAX_PATH_LENGTH);
917 // Compute node potentials for the original costs
920 for (int j = 0; j != _res_arc_num; ++j) {
921 if (_res_cap[j] > 0) {
922 _arc_vec.push_back(IntPair(_source[j], _target[j]));
923 _cost_vec.push_back(_scost[j]);
926 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
928 typename BellmanFord<StaticDigraph, LargeCostArcMap>
929 ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
934 // Handle non-zero lower bounds
936 int limit = _first_out[_root];
937 for (int j = 0; j != limit; ++j) {
938 if (!_forward[j]) _res_cap[j] += _lower[j];
943 // Initialize a cost scaling phase
945 // Saturate arcs not satisfying the optimality condition
946 for (int u = 0; u != _res_node_num; ++u) {
947 int last_out = _first_out[u+1];
948 LargeCost pi_u = _pi[u];
949 for (int a = _first_out[u]; a != last_out; ++a) {
951 if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
952 Value delta = _res_cap[a];
956 _res_cap[_reverse[a]] += delta;
961 // Find active nodes (i.e. nodes with positive excess)
962 for (int u = 0; u != _res_node_num; ++u) {
963 if (_excess[u] > 0) _active_nodes.push_back(u);
966 // Initialize the next arcs
967 for (int u = 0; u != _res_node_num; ++u) {
968 _next_out[u] = _first_out[u];
972 // Early termination heuristic
973 bool earlyTermination() {
974 const double EARLY_TERM_FACTOR = 3.0;
976 // Build a static residual graph
979 for (int j = 0; j != _res_arc_num; ++j) {
980 if (_res_cap[j] > 0) {
981 _arc_vec.push_back(IntPair(_source[j], _target[j]));
982 _cost_vec.push_back(_cost[j] + 1);
985 _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
987 // Run Bellman-Ford algorithm to check if the current flow is optimal
988 BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
991 int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
992 for (int i = 0; i < K && !done; ++i) {
993 done = bf.processNextWeakRound();
998 // Global potential update heuristic
999 void globalUpdate() {
1000 int bucket_end = _root + 1;
1002 // Initialize buckets
1003 for (int r = 0; r != _max_rank; ++r) {
1004 _buckets[r] = bucket_end;
1006 Value total_excess = 0;
1007 for (int i = 0; i != _res_node_num; ++i) {
1008 if (_excess[i] < 0) {
1010 _bucket_next[i] = _buckets[0];
1011 _bucket_prev[_buckets[0]] = i;
1014 total_excess += _excess[i];
1015 _rank[i] = _max_rank;
1018 if (total_excess == 0) return;
1020 // Search the buckets
1022 for ( ; r != _max_rank; ++r) {
1023 while (_buckets[r] != bucket_end) {
1024 // Remove the first node from the current bucket
1025 int u = _buckets[r];
1026 _buckets[r] = _bucket_next[u];
1028 // Search the incomming arcs of u
1029 LargeCost pi_u = _pi[u];
1030 int last_out = _first_out[u+1];
1031 for (int a = _first_out[u]; a != last_out; ++a) {
1032 int ra = _reverse[a];
1033 if (_res_cap[ra] > 0) {
1034 int v = _source[ra];
1035 int old_rank_v = _rank[v];
1036 if (r < old_rank_v) {
1037 // Compute the new rank of v
1038 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1039 int new_rank_v = old_rank_v;
1040 if (nrc < LargeCost(_max_rank))
1041 new_rank_v = r + 1 + int(nrc);
1043 // Change the rank of v
1044 if (new_rank_v < old_rank_v) {
1045 _rank[v] = new_rank_v;
1046 _next_out[v] = _first_out[v];
1048 // Remove v from its old bucket
1049 if (old_rank_v < _max_rank) {
1050 if (_buckets[old_rank_v] == v) {
1051 _buckets[old_rank_v] = _bucket_next[v];
1053 _bucket_next[_bucket_prev[v]] = _bucket_next[v];
1054 _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
1058 // Insert v to its new bucket
1059 _bucket_next[v] = _buckets[new_rank_v];
1060 _bucket_prev[_buckets[new_rank_v]] = v;
1061 _buckets[new_rank_v] = v;
1067 // Finish search if there are no more active nodes
1068 if (_excess[u] > 0) {
1069 total_excess -= _excess[u];
1070 if (total_excess <= 0) break;
1073 if (total_excess <= 0) break;
1077 for (int u = 0; u != _res_node_num; ++u) {
1078 int k = std::min(_rank[u], r);
1080 _pi[u] -= _epsilon * k;
1081 _next_out[u] = _first_out[u];
1086 /// Execute the algorithm performing augment and relabel operations
1087 void startAugment(int max_length) {
1088 // Paramters for heuristics
1089 const int EARLY_TERM_EPSILON_LIMIT = 1000;
1090 const double GLOBAL_UPDATE_FACTOR = 3.0;
1092 const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1093 (_res_node_num + _sup_node_num * _sup_node_num));
1094 int next_update_limit = global_update_freq;
1096 int relabel_cnt = 0;
1098 // Perform cost scaling phases
1099 std::vector<int> path;
1100 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1101 1 : _epsilon / _alpha )
1103 // Early termination heuristic
1104 if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1105 if (earlyTermination()) break;
1108 // Initialize current phase
1111 // Perform partial augment and relabel operations
1113 // Select an active node (FIFO selection)
1114 while (_active_nodes.size() > 0 &&
1115 _excess[_active_nodes.front()] <= 0) {
1116 _active_nodes.pop_front();
1118 if (_active_nodes.size() == 0) break;
1119 int start = _active_nodes.front();
1121 // Find an augmenting path from the start node
1124 while (_excess[tip] >= 0 && int(path.size()) < max_length) {
1126 LargeCost min_red_cost, rc, pi_tip = _pi[tip];
1127 int last_out = _first_out[tip+1];
1128 for (int a = _next_out[tip]; a != last_out; ++a) {
1130 if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
1139 min_red_cost = std::numeric_limits<LargeCost>::max();
1141 int ra = _reverse[path.back()];
1142 min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
1144 for (int a = _first_out[tip]; a != last_out; ++a) {
1145 rc = _cost[a] + pi_tip - _pi[_target[a]];
1146 if (_res_cap[a] > 0 && rc < min_red_cost) {
1150 _pi[tip] -= min_red_cost + _epsilon;
1151 _next_out[tip] = _first_out[tip];
1156 tip = _source[path.back()];
1163 // Augment along the found path (as much flow as possible)
1165 int pa, u, v = start;
1166 for (int i = 0; i != int(path.size()); ++i) {
1170 delta = std::min(_res_cap[pa], _excess[u]);
1171 _res_cap[pa] -= delta;
1172 _res_cap[_reverse[pa]] += delta;
1173 _excess[u] -= delta;
1174 _excess[v] += delta;
1175 if (_excess[v] > 0 && _excess[v] <= delta)
1176 _active_nodes.push_back(v);
1179 // Global update heuristic
1180 if (relabel_cnt >= next_update_limit) {
1182 next_update_limit += global_update_freq;
1188 /// Execute the algorithm performing push and relabel operations
1190 // Paramters for heuristics
1191 const int EARLY_TERM_EPSILON_LIMIT = 1000;
1192 const double GLOBAL_UPDATE_FACTOR = 2.0;
1194 const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1195 (_res_node_num + _sup_node_num * _sup_node_num));
1196 int next_update_limit = global_update_freq;
1198 int relabel_cnt = 0;
1200 // Perform cost scaling phases
1201 BoolVector hyper(_res_node_num, false);
1202 LargeCostVector hyper_cost(_res_node_num);
1203 for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1204 1 : _epsilon / _alpha )
1206 // Early termination heuristic
1207 if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1208 if (earlyTermination()) break;
1211 // Initialize current phase
1214 // Perform push and relabel operations
1215 while (_active_nodes.size() > 0) {
1216 LargeCost min_red_cost, rc, pi_n;
1218 int n, t, a, last_out = _res_arc_num;
1221 // Select an active node (FIFO selection)
1222 n = _active_nodes.front();
1223 last_out = _first_out[n+1];
1226 // Perform push operations if there are admissible arcs
1227 if (_excess[n] > 0) {
1228 for (a = _next_out[n]; a != last_out; ++a) {
1229 if (_res_cap[a] > 0 &&
1230 _cost[a] + pi_n - _pi[_target[a]] < 0) {
1231 delta = std::min(_res_cap[a], _excess[n]);
1234 // Push-look-ahead heuristic
1235 Value ahead = -_excess[t];
1236 int last_out_t = _first_out[t+1];
1237 LargeCost pi_t = _pi[t];
1238 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1239 if (_res_cap[ta] > 0 &&
1240 _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1241 ahead += _res_cap[ta];
1242 if (ahead >= delta) break;
1244 if (ahead < 0) ahead = 0;
1246 // Push flow along the arc
1247 if (ahead < delta && !hyper[t]) {
1248 _res_cap[a] -= ahead;
1249 _res_cap[_reverse[a]] += ahead;
1250 _excess[n] -= ahead;
1251 _excess[t] += ahead;
1252 _active_nodes.push_front(t);
1254 hyper_cost[t] = _cost[a] + pi_n - pi_t;
1258 _res_cap[a] -= delta;
1259 _res_cap[_reverse[a]] += delta;
1260 _excess[n] -= delta;
1261 _excess[t] += delta;
1262 if (_excess[t] > 0 && _excess[t] <= delta)
1263 _active_nodes.push_back(t);
1266 if (_excess[n] == 0) {
1275 // Relabel the node if it is still active (or hyper)
1276 if (_excess[n] > 0 || hyper[n]) {
1277 min_red_cost = hyper[n] ? -hyper_cost[n] :
1278 std::numeric_limits<LargeCost>::max();
1279 for (int a = _first_out[n]; a != last_out; ++a) {
1280 rc = _cost[a] + pi_n - _pi[_target[a]];
1281 if (_res_cap[a] > 0 && rc < min_red_cost) {
1285 _pi[n] -= min_red_cost + _epsilon;
1286 _next_out[n] = _first_out[n];
1291 // Remove nodes that are not active nor hyper
1293 while ( _active_nodes.size() > 0 &&
1294 _excess[_active_nodes.front()] <= 0 &&
1295 !hyper[_active_nodes.front()] ) {
1296 _active_nodes.pop_front();
1299 // Global update heuristic
1300 if (relabel_cnt >= next_update_limit) {
1302 for (int u = 0; u != _res_node_num; ++u)
1304 next_update_limit += global_update_freq;
1310 }; //class CostScaling
1316 #endif //LEMON_COST_SCALING_H