lemon/cost_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Thu, 12 Nov 2009 23:29:42 +0100
changeset 808 9c428bb2b105
child 809 22bb98ca0101
permissions -rw-r--r--
Port CostScaling from SVN -r3524 (#180)
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/adaptors.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \addtogroup min_cost_flow_algs
    40   /// @{
    41 
    42   /// \brief Implementation of the cost scaling algorithm for finding a
    43   /// minimum cost flow.
    44   ///
    45   /// \ref CostScaling implements the cost scaling algorithm performing
    46   /// augment/push and relabel operations for finding a minimum cost
    47   /// flow.
    48   ///
    49   /// \tparam Digraph The digraph type the algorithm runs on.
    50   /// \tparam LowerMap The type of the lower bound map.
    51   /// \tparam CapacityMap The type of the capacity (upper bound) map.
    52   /// \tparam CostMap The type of the cost (length) map.
    53   /// \tparam SupplyMap The type of the supply map.
    54   ///
    55   /// \warning
    56   /// - Arc capacities and costs should be \e non-negative \e integers.
    57   /// - Supply values should be \e signed \e integers.
    58   /// - The value types of the maps should be convertible to each other.
    59   /// - \c CostMap::Value must be signed type.
    60   ///
    61   /// \note Arc costs are multiplied with the number of nodes during
    62   /// the algorithm so overflow problems may arise more easily than with
    63   /// other minimum cost flow algorithms.
    64   /// If it is available, <tt>long long int</tt> type is used instead of
    65   /// <tt>long int</tt> in the inside computations.
    66   ///
    67   /// \author Peter Kovacs
    68   template < typename Digraph,
    69              typename LowerMap = typename Digraph::template ArcMap<int>,
    70              typename CapacityMap = typename Digraph::template ArcMap<int>,
    71              typename CostMap = typename Digraph::template ArcMap<int>,
    72              typename SupplyMap = typename Digraph::template NodeMap<int> >
    73   class CostScaling
    74   {
    75     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
    76 
    77     typedef typename CapacityMap::Value Capacity;
    78     typedef typename CostMap::Value Cost;
    79     typedef typename SupplyMap::Value Supply;
    80     typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap;
    81     typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap;
    82 
    83     typedef ResidualDigraph< const Digraph,
    84                              CapacityArcMap, CapacityArcMap > ResDigraph;
    85     typedef typename ResDigraph::Arc ResArc;
    86 
    87 #if defined __GNUC__ && !defined __STRICT_ANSI__
    88     typedef long long int LCost;
    89 #else
    90     typedef long int LCost;
    91 #endif
    92     typedef typename Digraph::template ArcMap<LCost> LargeCostMap;
    93 
    94   public:
    95 
    96     /// The type of the flow map.
    97     typedef typename Digraph::template ArcMap<Capacity> FlowMap;
    98     /// The type of the potential map.
    99     typedef typename Digraph::template NodeMap<LCost> PotentialMap;
   100 
   101   private:
   102 
   103     /// \brief Map adaptor class for handling residual arc costs.
   104     ///
   105     /// Map adaptor class for handling residual arc costs.
   106     template <typename Map>
   107     class ResidualCostMap : public MapBase<ResArc, typename Map::Value>
   108     {
   109     private:
   110 
   111       const Map &_cost_map;
   112 
   113     public:
   114 
   115       ///\e
   116       ResidualCostMap(const Map &cost_map) :
   117         _cost_map(cost_map) {}
   118 
   119       ///\e
   120       inline typename Map::Value operator[](const ResArc &e) const {
   121         return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e];
   122       }
   123 
   124     }; //class ResidualCostMap
   125 
   126     /// \brief Map adaptor class for handling reduced arc costs.
   127     ///
   128     /// Map adaptor class for handling reduced arc costs.
   129     class ReducedCostMap : public MapBase<Arc, LCost>
   130     {
   131     private:
   132 
   133       const Digraph &_gr;
   134       const LargeCostMap &_cost_map;
   135       const PotentialMap &_pot_map;
   136 
   137     public:
   138 
   139       ///\e
   140       ReducedCostMap( const Digraph &gr,
   141                       const LargeCostMap &cost_map,
   142                       const PotentialMap &pot_map ) :
   143         _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
   144 
   145       ///\e
   146       inline LCost operator[](const Arc &e) const {
   147         return _cost_map[e] + _pot_map[_gr.source(e)]
   148                             - _pot_map[_gr.target(e)];
   149       }
   150 
   151     }; //class ReducedCostMap
   152 
   153   private:
   154 
   155     // The digraph the algorithm runs on
   156     const Digraph &_graph;
   157     // The original lower bound map
   158     const LowerMap *_lower;
   159     // The modified capacity map
   160     CapacityArcMap _capacity;
   161     // The original cost map
   162     const CostMap &_orig_cost;
   163     // The scaled cost map
   164     LargeCostMap _cost;
   165     // The modified supply map
   166     SupplyNodeMap _supply;
   167     bool _valid_supply;
   168 
   169     // Arc map of the current flow
   170     FlowMap *_flow;
   171     bool _local_flow;
   172     // Node map of the current potentials
   173     PotentialMap *_potential;
   174     bool _local_potential;
   175 
   176     // The residual cost map
   177     ResidualCostMap<LargeCostMap> _res_cost;
   178     // The residual digraph
   179     ResDigraph *_res_graph;
   180     // The reduced cost map
   181     ReducedCostMap *_red_cost;
   182     // The excess map
   183     SupplyNodeMap _excess;
   184     // The epsilon parameter used for cost scaling
   185     LCost _epsilon;
   186     // The scaling factor
   187     int _alpha;
   188 
   189   public:
   190 
   191     /// \brief General constructor (with lower bounds).
   192     ///
   193     /// General constructor (with lower bounds).
   194     ///
   195     /// \param digraph The digraph the algorithm runs on.
   196     /// \param lower The lower bounds of the arcs.
   197     /// \param capacity The capacities (upper bounds) of the arcs.
   198     /// \param cost The cost (length) values of the arcs.
   199     /// \param supply The supply values of the nodes (signed).
   200     CostScaling( const Digraph &digraph,
   201                  const LowerMap &lower,
   202                  const CapacityMap &capacity,
   203                  const CostMap &cost,
   204                  const SupplyMap &supply ) :
   205       _graph(digraph), _lower(&lower), _capacity(digraph), _orig_cost(cost),
   206       _cost(digraph), _supply(digraph), _flow(NULL), _local_flow(false),
   207       _potential(NULL), _local_potential(false), _res_cost(_cost),
   208       _res_graph(NULL), _red_cost(NULL), _excess(digraph, 0)
   209     {
   210       // Check the sum of supply values
   211       Supply sum = 0;
   212       for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
   213       _valid_supply = sum == 0;
   214       
   215       for (ArcIt e(_graph); e != INVALID; ++e) _capacity[e] = capacity[e];
   216       for (NodeIt n(_graph); n != INVALID; ++n) _supply[n] = supply[n];
   217 
   218       // Remove non-zero lower bounds
   219       for (ArcIt e(_graph); e != INVALID; ++e) {
   220         if (lower[e] != 0) {
   221           _capacity[e] -= lower[e];
   222           _supply[_graph.source(e)] -= lower[e];
   223           _supply[_graph.target(e)] += lower[e];
   224         }
   225       }
   226     }
   227 /*
   228     /// \brief General constructor (without lower bounds).
   229     ///
   230     /// General constructor (without lower bounds).
   231     ///
   232     /// \param digraph The digraph the algorithm runs on.
   233     /// \param capacity The capacities (upper bounds) of the arcs.
   234     /// \param cost The cost (length) values of the arcs.
   235     /// \param supply The supply values of the nodes (signed).
   236     CostScaling( const Digraph &digraph,
   237                  const CapacityMap &capacity,
   238                  const CostMap &cost,
   239                  const SupplyMap &supply ) :
   240       _graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost),
   241       _cost(digraph), _supply(supply), _flow(NULL), _local_flow(false),
   242       _potential(NULL), _local_potential(false), _res_cost(_cost),
   243       _res_graph(NULL), _red_cost(NULL), _excess(digraph, 0)
   244     {
   245       // Check the sum of supply values
   246       Supply sum = 0;
   247       for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
   248       _valid_supply = sum == 0;
   249     }
   250 
   251     /// \brief Simple constructor (with lower bounds).
   252     ///
   253     /// Simple constructor (with lower bounds).
   254     ///
   255     /// \param digraph The digraph the algorithm runs on.
   256     /// \param lower The lower bounds of the arcs.
   257     /// \param capacity The capacities (upper bounds) of the arcs.
   258     /// \param cost The cost (length) values of the arcs.
   259     /// \param s The source node.
   260     /// \param t The target node.
   261     /// \param flow_value The required amount of flow from node \c s
   262     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   263     CostScaling( const Digraph &digraph,
   264                  const LowerMap &lower,
   265                  const CapacityMap &capacity,
   266                  const CostMap &cost,
   267                  Node s, Node t,
   268                  Supply flow_value ) :
   269       _graph(digraph), _lower(&lower), _capacity(capacity), _orig_cost(cost),
   270       _cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false),
   271       _potential(NULL), _local_potential(false), _res_cost(_cost),
   272       _res_graph(NULL), _red_cost(NULL), _excess(digraph, 0)
   273     {
   274       // Remove non-zero lower bounds
   275       _supply[s] =  flow_value;
   276       _supply[t] = -flow_value;
   277       for (ArcIt e(_graph); e != INVALID; ++e) {
   278         if (lower[e] != 0) {
   279           _capacity[e] -= lower[e];
   280           _supply[_graph.source(e)] -= lower[e];
   281           _supply[_graph.target(e)] += lower[e];
   282         }
   283       }
   284       _valid_supply = true;
   285     }
   286 
   287     /// \brief Simple constructor (without lower bounds).
   288     ///
   289     /// Simple constructor (without lower bounds).
   290     ///
   291     /// \param digraph The digraph the algorithm runs on.
   292     /// \param capacity The capacities (upper bounds) of the arcs.
   293     /// \param cost The cost (length) values of the arcs.
   294     /// \param s The source node.
   295     /// \param t The target node.
   296     /// \param flow_value The required amount of flow from node \c s
   297     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   298     CostScaling( const Digraph &digraph,
   299                  const CapacityMap &capacity,
   300                  const CostMap &cost,
   301                  Node s, Node t,
   302                  Supply flow_value ) :
   303       _graph(digraph), _lower(NULL), _capacity(capacity), _orig_cost(cost),
   304       _cost(digraph), _supply(digraph, 0), _flow(NULL), _local_flow(false),
   305       _potential(NULL), _local_potential(false), _res_cost(_cost),
   306       _res_graph(NULL), _red_cost(NULL), _excess(digraph, 0)
   307     {
   308       _supply[s] =  flow_value;
   309       _supply[t] = -flow_value;
   310       _valid_supply = true;
   311     }
   312 */
   313     /// Destructor.
   314     ~CostScaling() {
   315       if (_local_flow) delete _flow;
   316       if (_local_potential) delete _potential;
   317       delete _res_graph;
   318       delete _red_cost;
   319     }
   320 
   321     /// \brief Set the flow map.
   322     ///
   323     /// Set the flow map.
   324     ///
   325     /// \return \c (*this)
   326     CostScaling& flowMap(FlowMap &map) {
   327       if (_local_flow) {
   328         delete _flow;
   329         _local_flow = false;
   330       }
   331       _flow = &map;
   332       return *this;
   333     }
   334 
   335     /// \brief Set the potential map.
   336     ///
   337     /// Set the potential map.
   338     ///
   339     /// \return \c (*this)
   340     CostScaling& potentialMap(PotentialMap &map) {
   341       if (_local_potential) {
   342         delete _potential;
   343         _local_potential = false;
   344       }
   345       _potential = &map;
   346       return *this;
   347     }
   348 
   349     /// \name Execution control
   350 
   351     /// @{
   352 
   353     /// \brief Run the algorithm.
   354     ///
   355     /// Run the algorithm.
   356     ///
   357     /// \param partial_augment By default the algorithm performs
   358     /// partial augment and relabel operations in the cost scaling
   359     /// phases. Set this parameter to \c false for using local push and
   360     /// relabel operations instead.
   361     ///
   362     /// \return \c true if a feasible flow can be found.
   363     bool run(bool partial_augment = true) {
   364       if (partial_augment) {
   365         return init() && startPartialAugment();
   366       } else {
   367         return init() && startPushRelabel();
   368       }
   369     }
   370 
   371     /// @}
   372 
   373     /// \name Query Functions
   374     /// The result of the algorithm can be obtained using these
   375     /// functions.\n
   376     /// \ref lemon::CostScaling::run() "run()" must be called before
   377     /// using them.
   378 
   379     /// @{
   380 
   381     /// \brief Return a const reference to the arc map storing the
   382     /// found flow.
   383     ///
   384     /// Return a const reference to the arc map storing the found flow.
   385     ///
   386     /// \pre \ref run() must be called before using this function.
   387     const FlowMap& flowMap() const {
   388       return *_flow;
   389     }
   390 
   391     /// \brief Return a const reference to the node map storing the
   392     /// found potentials (the dual solution).
   393     ///
   394     /// Return a const reference to the node map storing the found
   395     /// potentials (the dual solution).
   396     ///
   397     /// \pre \ref run() must be called before using this function.
   398     const PotentialMap& potentialMap() const {
   399       return *_potential;
   400     }
   401 
   402     /// \brief Return the flow on the given arc.
   403     ///
   404     /// Return the flow on the given arc.
   405     ///
   406     /// \pre \ref run() must be called before using this function.
   407     Capacity flow(const Arc& arc) const {
   408       return (*_flow)[arc];
   409     }
   410 
   411     /// \brief Return the potential of the given node.
   412     ///
   413     /// Return the potential of the given node.
   414     ///
   415     /// \pre \ref run() must be called before using this function.
   416     Cost potential(const Node& node) const {
   417       return (*_potential)[node];
   418     }
   419 
   420     /// \brief Return the total cost of the found flow.
   421     ///
   422     /// Return the total cost of the found flow. The complexity of the
   423     /// function is \f$ O(e) \f$.
   424     ///
   425     /// \pre \ref run() must be called before using this function.
   426     Cost totalCost() const {
   427       Cost c = 0;
   428       for (ArcIt e(_graph); e != INVALID; ++e)
   429         c += (*_flow)[e] * _orig_cost[e];
   430       return c;
   431     }
   432 
   433     /// @}
   434 
   435   private:
   436 
   437     /// Initialize the algorithm.
   438     bool init() {
   439       if (!_valid_supply) return false;
   440       // The scaling factor
   441       _alpha = 8;
   442 
   443       // Initialize flow and potential maps
   444       if (!_flow) {
   445         _flow = new FlowMap(_graph);
   446         _local_flow = true;
   447       }
   448       if (!_potential) {
   449         _potential = new PotentialMap(_graph);
   450         _local_potential = true;
   451       }
   452 
   453       _red_cost = new ReducedCostMap(_graph, _cost, *_potential);
   454       _res_graph = new ResDigraph(_graph, _capacity, *_flow);
   455 
   456       // Initialize the scaled cost map and the epsilon parameter
   457       Cost max_cost = 0;
   458       int node_num = countNodes(_graph);
   459       for (ArcIt e(_graph); e != INVALID; ++e) {
   460         _cost[e] = LCost(_orig_cost[e]) * node_num * _alpha;
   461         if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e];
   462       }
   463       _epsilon = max_cost * node_num;
   464 
   465       // Find a feasible flow using Circulation
   466       Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap,
   467                    SupplyMap >
   468         circulation( _graph, constMap<Arc>(Capacity(0)), _capacity,
   469                      _supply );
   470       return circulation.flowMap(*_flow).run();
   471     }
   472 
   473     /// Execute the algorithm performing partial augmentation and
   474     /// relabel operations.
   475     bool startPartialAugment() {
   476       // Paramters for heuristics
   477 //      const int BF_HEURISTIC_EPSILON_BOUND = 1000;
   478 //      const int BF_HEURISTIC_BOUND_FACTOR  = 3;
   479       // Maximum augment path length
   480       const int MAX_PATH_LENGTH = 4;
   481 
   482       // Variables
   483       typename Digraph::template NodeMap<Arc> pred_arc(_graph);
   484       typename Digraph::template NodeMap<bool> forward(_graph);
   485       typename Digraph::template NodeMap<OutArcIt> next_out(_graph);
   486       typename Digraph::template NodeMap<InArcIt> next_in(_graph);
   487       typename Digraph::template NodeMap<bool> next_dir(_graph);
   488       std::deque<Node> active_nodes;
   489       std::vector<Node> path_nodes;
   490 
   491 //      int node_num = countNodes(_graph);
   492       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
   493                                         1 : _epsilon / _alpha )
   494       {
   495 /*
   496         // "Early Termination" heuristic: use Bellman-Ford algorithm
   497         // to check if the current flow is optimal
   498         if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
   499           typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap;
   500           ShiftCostMap shift_cost(_res_cost, 1);
   501           BellmanFord<ResDigraph, ShiftCostMap> bf(*_res_graph, shift_cost);
   502           bf.init(0);
   503           bool done = false;
   504           int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num));
   505           for (int i = 0; i < K && !done; ++i)
   506             done = bf.processNextWeakRound();
   507           if (done) break;
   508         }
   509 */
   510         // Saturate arcs not satisfying the optimality condition
   511         Capacity delta;
   512         for (ArcIt e(_graph); e != INVALID; ++e) {
   513           if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   514             delta = _capacity[e] - (*_flow)[e];
   515             _excess[_graph.source(e)] -= delta;
   516             _excess[_graph.target(e)] += delta;
   517             (*_flow)[e] = _capacity[e];
   518           }
   519           if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   520             _excess[_graph.target(e)] -= (*_flow)[e];
   521             _excess[_graph.source(e)] += (*_flow)[e];
   522             (*_flow)[e] = 0;
   523           }
   524         }
   525 
   526         // Find active nodes (i.e. nodes with positive excess)
   527         for (NodeIt n(_graph); n != INVALID; ++n) {
   528           if (_excess[n] > 0) active_nodes.push_back(n);
   529         }
   530 
   531         // Initialize the next arc maps
   532         for (NodeIt n(_graph); n != INVALID; ++n) {
   533           next_out[n] = OutArcIt(_graph, n);
   534           next_in[n] = InArcIt(_graph, n);
   535           next_dir[n] = true;
   536         }
   537 
   538         // Perform partial augment and relabel operations
   539         while (active_nodes.size() > 0) {
   540           // Select an active node (FIFO selection)
   541           if (_excess[active_nodes[0]] <= 0) {
   542             active_nodes.pop_front();
   543             continue;
   544           }
   545           Node start = active_nodes[0];
   546           path_nodes.clear();
   547           path_nodes.push_back(start);
   548 
   549           // Find an augmenting path from the start node
   550           Node u, tip = start;
   551           LCost min_red_cost;
   552           while ( _excess[tip] >= 0 &&
   553                   int(path_nodes.size()) <= MAX_PATH_LENGTH )
   554           {
   555             if (next_dir[tip]) {
   556               for (OutArcIt e = next_out[tip]; e != INVALID; ++e) {
   557                 if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   558                   u = _graph.target(e);
   559                   pred_arc[u] = e;
   560                   forward[u] = true;
   561                   next_out[tip] = e;
   562                   tip = u;
   563                   path_nodes.push_back(tip);
   564                   goto next_step;
   565                 }
   566               }
   567               next_dir[tip] = false;
   568             }
   569             for (InArcIt e = next_in[tip]; e != INVALID; ++e) {
   570               if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   571                 u = _graph.source(e);
   572                 pred_arc[u] = e;
   573                 forward[u] = false;
   574                 next_in[tip] = e;
   575                 tip = u;
   576                 path_nodes.push_back(tip);
   577                 goto next_step;
   578               }
   579             }
   580 
   581             // Relabel tip node
   582             min_red_cost = std::numeric_limits<LCost>::max() / 2;
   583             for (OutArcIt oe(_graph, tip); oe != INVALID; ++oe) {
   584               if ( _capacity[oe] - (*_flow)[oe] > 0 &&
   585                    (*_red_cost)[oe] < min_red_cost )
   586                 min_red_cost = (*_red_cost)[oe];
   587             }
   588             for (InArcIt ie(_graph, tip); ie != INVALID; ++ie) {
   589               if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost)
   590                 min_red_cost = -(*_red_cost)[ie];
   591             }
   592             (*_potential)[tip] -= min_red_cost + _epsilon;
   593 
   594             // Reset the next arc maps
   595             next_out[tip] = OutArcIt(_graph, tip);
   596             next_in[tip] = InArcIt(_graph, tip);
   597             next_dir[tip] = true;
   598 
   599             // Step back
   600             if (tip != start) {
   601               path_nodes.pop_back();
   602               tip = path_nodes[path_nodes.size()-1];
   603             }
   604 
   605           next_step:
   606             continue;
   607           }
   608 
   609           // Augment along the found path (as much flow as possible)
   610           Capacity delta;
   611           for (int i = 1; i < int(path_nodes.size()); ++i) {
   612             u = path_nodes[i];
   613             delta = forward[u] ?
   614               _capacity[pred_arc[u]] - (*_flow)[pred_arc[u]] :
   615               (*_flow)[pred_arc[u]];
   616             delta = std::min(delta, _excess[path_nodes[i-1]]);
   617             (*_flow)[pred_arc[u]] += forward[u] ? delta : -delta;
   618             _excess[path_nodes[i-1]] -= delta;
   619             _excess[u] += delta;
   620             if (_excess[u] > 0 && _excess[u] <= delta) active_nodes.push_back(u);
   621           }
   622         }
   623       }
   624 
   625       // Compute node potentials for the original costs
   626       ResidualCostMap<CostMap> res_cost(_orig_cost);
   627       BellmanFord< ResDigraph, ResidualCostMap<CostMap> >
   628         bf(*_res_graph, res_cost);
   629       bf.init(0); bf.start();
   630       for (NodeIt n(_graph); n != INVALID; ++n)
   631         (*_potential)[n] = bf.dist(n);
   632 
   633       // Handle non-zero lower bounds
   634       if (_lower) {
   635         for (ArcIt e(_graph); e != INVALID; ++e)
   636           (*_flow)[e] += (*_lower)[e];
   637       }
   638       return true;
   639     }
   640 
   641     /// Execute the algorithm performing push and relabel operations.
   642     bool startPushRelabel() {
   643       // Paramters for heuristics
   644 //      const int BF_HEURISTIC_EPSILON_BOUND = 1000;
   645 //      const int BF_HEURISTIC_BOUND_FACTOR  = 3;
   646 
   647       typename Digraph::template NodeMap<bool> hyper(_graph, false);
   648       typename Digraph::template NodeMap<Arc> pred_arc(_graph);
   649       typename Digraph::template NodeMap<bool> forward(_graph);
   650       typename Digraph::template NodeMap<OutArcIt> next_out(_graph);
   651       typename Digraph::template NodeMap<InArcIt> next_in(_graph);
   652       typename Digraph::template NodeMap<bool> next_dir(_graph);
   653       std::deque<Node> active_nodes;
   654 
   655 //      int node_num = countNodes(_graph);
   656       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
   657                                         1 : _epsilon / _alpha )
   658       {
   659 /*
   660         // "Early Termination" heuristic: use Bellman-Ford algorithm
   661         // to check if the current flow is optimal
   662         if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
   663           typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap;
   664           ShiftCostMap shift_cost(_res_cost, 1);
   665           BellmanFord<ResDigraph, ShiftCostMap> bf(*_res_graph, shift_cost);
   666           bf.init(0);
   667           bool done = false;
   668           int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num));
   669           for (int i = 0; i < K && !done; ++i)
   670             done = bf.processNextWeakRound();
   671           if (done) break;
   672         }
   673 */
   674 
   675         // Saturate arcs not satisfying the optimality condition
   676         Capacity delta;
   677         for (ArcIt e(_graph); e != INVALID; ++e) {
   678           if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   679             delta = _capacity[e] - (*_flow)[e];
   680             _excess[_graph.source(e)] -= delta;
   681             _excess[_graph.target(e)] += delta;
   682             (*_flow)[e] = _capacity[e];
   683           }
   684           if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   685             _excess[_graph.target(e)] -= (*_flow)[e];
   686             _excess[_graph.source(e)] += (*_flow)[e];
   687             (*_flow)[e] = 0;
   688           }
   689         }
   690 
   691         // Find active nodes (i.e. nodes with positive excess)
   692         for (NodeIt n(_graph); n != INVALID; ++n) {
   693           if (_excess[n] > 0) active_nodes.push_back(n);
   694         }
   695 
   696         // Initialize the next arc maps
   697         for (NodeIt n(_graph); n != INVALID; ++n) {
   698           next_out[n] = OutArcIt(_graph, n);
   699           next_in[n] = InArcIt(_graph, n);
   700           next_dir[n] = true;
   701         }
   702 
   703         // Perform push and relabel operations
   704         while (active_nodes.size() > 0) {
   705           // Select an active node (FIFO selection)
   706           Node n = active_nodes[0], t;
   707           bool relabel_enabled = true;
   708 
   709           // Perform push operations if there are admissible arcs
   710           if (_excess[n] > 0 && next_dir[n]) {
   711             OutArcIt e = next_out[n];
   712             for ( ; e != INVALID; ++e) {
   713               if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   714                 delta = std::min(_capacity[e] - (*_flow)[e], _excess[n]);
   715                 t = _graph.target(e);
   716 
   717                 // Push-look-ahead heuristic
   718                 Capacity ahead = -_excess[t];
   719                 for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) {
   720                   if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0)
   721                     ahead += _capacity[oe] - (*_flow)[oe];
   722                 }
   723                 for (InArcIt ie(_graph, t); ie != INVALID; ++ie) {
   724                   if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0)
   725                     ahead += (*_flow)[ie];
   726                 }
   727                 if (ahead < 0) ahead = 0;
   728 
   729                 // Push flow along the arc
   730                 if (ahead < delta) {
   731                   (*_flow)[e] += ahead;
   732                   _excess[n] -= ahead;
   733                   _excess[t] += ahead;
   734                   active_nodes.push_front(t);
   735                   hyper[t] = true;
   736                   relabel_enabled = false;
   737                   break;
   738                 } else {
   739                   (*_flow)[e] += delta;
   740                   _excess[n] -= delta;
   741                   _excess[t] += delta;
   742                   if (_excess[t] > 0 && _excess[t] <= delta)
   743                     active_nodes.push_back(t);
   744                 }
   745 
   746                 if (_excess[n] == 0) break;
   747               }
   748             }
   749             if (e != INVALID) {
   750               next_out[n] = e;
   751             } else {
   752               next_dir[n] = false;
   753             }
   754           }
   755 
   756           if (_excess[n] > 0 && !next_dir[n]) {
   757             InArcIt e = next_in[n];
   758             for ( ; e != INVALID; ++e) {
   759               if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   760                 delta = std::min((*_flow)[e], _excess[n]);
   761                 t = _graph.source(e);
   762 
   763                 // Push-look-ahead heuristic
   764                 Capacity ahead = -_excess[t];
   765                 for (OutArcIt oe(_graph, t); oe != INVALID; ++oe) {
   766                   if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0)
   767                     ahead += _capacity[oe] - (*_flow)[oe];
   768                 }
   769                 for (InArcIt ie(_graph, t); ie != INVALID; ++ie) {
   770                   if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0)
   771                     ahead += (*_flow)[ie];
   772                 }
   773                 if (ahead < 0) ahead = 0;
   774 
   775                 // Push flow along the arc
   776                 if (ahead < delta) {
   777                   (*_flow)[e] -= ahead;
   778                   _excess[n] -= ahead;
   779                   _excess[t] += ahead;
   780                   active_nodes.push_front(t);
   781                   hyper[t] = true;
   782                   relabel_enabled = false;
   783                   break;
   784                 } else {
   785                   (*_flow)[e] -= delta;
   786                   _excess[n] -= delta;
   787                   _excess[t] += delta;
   788                   if (_excess[t] > 0 && _excess[t] <= delta)
   789                     active_nodes.push_back(t);
   790                 }
   791 
   792                 if (_excess[n] == 0) break;
   793               }
   794             }
   795             next_in[n] = e;
   796           }
   797 
   798           // Relabel the node if it is still active (or hyper)
   799           if (relabel_enabled && (_excess[n] > 0 || hyper[n])) {
   800             LCost min_red_cost = std::numeric_limits<LCost>::max() / 2;
   801             for (OutArcIt oe(_graph, n); oe != INVALID; ++oe) {
   802               if ( _capacity[oe] - (*_flow)[oe] > 0 &&
   803                    (*_red_cost)[oe] < min_red_cost )
   804                 min_red_cost = (*_red_cost)[oe];
   805             }
   806             for (InArcIt ie(_graph, n); ie != INVALID; ++ie) {
   807               if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost)
   808                 min_red_cost = -(*_red_cost)[ie];
   809             }
   810             (*_potential)[n] -= min_red_cost + _epsilon;
   811             hyper[n] = false;
   812 
   813             // Reset the next arc maps
   814             next_out[n] = OutArcIt(_graph, n);
   815             next_in[n] = InArcIt(_graph, n);
   816             next_dir[n] = true;
   817           }
   818 
   819           // Remove nodes that are not active nor hyper
   820           while ( active_nodes.size() > 0 &&
   821                   _excess[active_nodes[0]] <= 0 &&
   822                   !hyper[active_nodes[0]] ) {
   823             active_nodes.pop_front();
   824           }
   825         }
   826       }
   827 
   828       // Compute node potentials for the original costs
   829       ResidualCostMap<CostMap> res_cost(_orig_cost);
   830       BellmanFord< ResDigraph, ResidualCostMap<CostMap> >
   831         bf(*_res_graph, res_cost);
   832       bf.init(0); bf.start();
   833       for (NodeIt n(_graph); n != INVALID; ++n)
   834         (*_potential)[n] = bf.dist(n);
   835 
   836       // Handle non-zero lower bounds
   837       if (_lower) {
   838         for (ArcIt e(_graph); e != INVALID; ++e)
   839           (*_flow)[e] += (*_lower)[e];
   840       }
   841       return true;
   842     }
   843 
   844   }; //class CostScaling
   845 
   846   ///@}
   847 
   848 } //namespace lemon
   849 
   850 #endif //LEMON_COST_SCALING_H