3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_CAPACITY_SCALING_H
20 #define LEMON_CAPACITY_SCALING_H
22 /// \ingroup min_cost_flow_algs
25 /// \brief Capacity Scaling algorithm for finding a minimum cost flow.
29 #include <lemon/core.h>
30 #include <lemon/bin_heap.h>
34 /// \brief Default traits class of CapacityScaling algorithm.
36 /// Default traits class of CapacityScaling algorithm.
37 /// \tparam GR Digraph type.
38 /// \tparam V The number type used for flow amounts, capacity bounds
39 /// and supply values. By default it is \c int.
40 /// \tparam C The number type used for costs and potentials.
41 /// By default it is the same as \c V.
42 template <typename GR, typename V = int, typename C = V>
43 struct CapacityScalingDefaultTraits
45 /// The type of the digraph
47 /// The type of the flow amounts, capacity bounds and supply values
49 /// The type of the arc costs
52 /// \brief The type of the heap used for internal Dijkstra computations.
54 /// The type of the heap used for internal Dijkstra computations.
55 /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
56 /// its priority type must be \c Cost and its cross reference type
57 /// must be \ref RangeMap "RangeMap<int>".
58 typedef BinHeap<Cost, RangeMap<int> > Heap;
61 /// \addtogroup min_cost_flow_algs
64 /// \brief Implementation of the Capacity Scaling algorithm for
65 /// finding a \ref min_cost_flow "minimum cost flow".
67 /// \ref CapacityScaling implements the capacity scaling version
68 /// of the successive shortest path algorithm for finding a
69 /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
70 /// \ref edmondskarp72theoretical. It is an efficient dual
73 /// Most of the parameters of the problem (except for the digraph)
74 /// can be given using separate functions, and the algorithm can be
75 /// executed using the \ref run() function. If some parameters are not
76 /// specified, then default values will be used.
78 /// \tparam GR The digraph type the algorithm runs on.
79 /// \tparam V The number type used for flow amounts, capacity bounds
80 /// and supply values in the algorithm. By default it is \c int.
81 /// \tparam C The number type used for costs and potentials in the
82 /// algorithm. By default it is the same as \c V.
84 /// \warning Both number types must be signed and all input data must
86 /// \warning This algorithm does not support negative costs for such
87 /// arcs that have infinite upper bound.
89 template <typename GR, typename V, typename C, typename TR>
91 template < typename GR, typename V = int, typename C = V,
92 typename TR = CapacityScalingDefaultTraits<GR, V, C> >
98 /// The type of the digraph
99 typedef typename TR::Digraph Digraph;
100 /// The type of the flow amounts, capacity bounds and supply values
101 typedef typename TR::Value Value;
102 /// The type of the arc costs
103 typedef typename TR::Cost Cost;
105 /// The type of the heap used for internal Dijkstra computations
106 typedef typename TR::Heap Heap;
108 /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
113 /// \brief Problem type constants for the \c run() function.
115 /// Enum type containing the problem type constants that can be
116 /// returned by the \ref run() function of the algorithm.
118 /// The problem has no feasible solution (flow).
120 /// The problem has optimal solution (i.e. it is feasible and
121 /// bounded), and the algorithm has found optimal flow and node
122 /// potentials (primal and dual solutions).
124 /// The digraph contains an arc of negative cost and infinite
125 /// upper bound. It means that the objective function is unbounded
126 /// on that arc, however, note that it could actually be bounded
127 /// over the feasible flows, but this algroithm cannot handle
134 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
136 typedef std::vector<int> IntVector;
137 typedef std::vector<char> BoolVector;
138 typedef std::vector<Value> ValueVector;
139 typedef std::vector<Cost> CostVector;
143 // Data related to the underlying digraph
150 // Parameters of the problem
154 // Data structures for storing the digraph
158 IntVector _first_out;
170 ValueVector _res_cap;
173 IntVector _excess_nodes;
174 IntVector _deficit_nodes;
182 /// \brief Constant for infinite upper bounds (capacities).
184 /// Constant for infinite upper bounds (capacities).
185 /// It is \c std::numeric_limits<Value>::infinity() if available,
186 /// \c std::numeric_limits<Value>::max() otherwise.
191 // Special implementation of the Dijkstra algorithm for finding
192 // shortest paths in the residual network of the digraph with
193 // respect to the reduced arc costs and modifying the node
194 // potentials according to the found distance labels.
195 class ResidualDijkstra
201 const IntVector &_first_out;
202 const IntVector &_target;
203 const CostVector &_cost;
204 const ValueVector &_res_cap;
205 const ValueVector &_excess;
209 IntVector _proc_nodes;
214 ResidualDijkstra(CapacityScaling& cs) :
215 _node_num(cs._node_num), _geq(cs._sum_supply < 0),
216 _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
217 _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
218 _pred(cs._pred), _dist(cs._node_num)
221 int run(int s, Value delta = 1) {
222 RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
223 Heap heap(heap_cross_ref);
229 while (!heap.empty() && _excess[heap.top()] > -delta) {
230 int u = heap.top(), v;
231 Cost d = heap.prio() + _pi[u], dn;
232 _dist[u] = heap.prio();
233 _proc_nodes.push_back(u);
236 // Traverse outgoing residual arcs
237 int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
238 for (int a = _first_out[u]; a != last_out; ++a) {
239 if (_res_cap[a] < delta) continue;
241 switch (heap.state(v)) {
243 heap.push(v, d + _cost[a] - _pi[v]);
247 dn = d + _cost[a] - _pi[v];
249 heap.decrease(v, dn);
253 case Heap::POST_HEAP:
258 if (heap.empty()) return -1;
260 // Update potentials of processed nodes
262 Cost dt = heap.prio();
263 for (int i = 0; i < int(_proc_nodes.size()); ++i) {
264 _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
270 }; //class ResidualDijkstra
274 /// \name Named Template Parameters
277 template <typename T>
278 struct SetHeapTraits : public Traits {
282 /// \brief \ref named-templ-param "Named parameter" for setting
285 /// \ref named-templ-param "Named parameter" for setting \c Heap
286 /// type, which is used for internal Dijkstra computations.
287 /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
288 /// its priority type must be \c Cost and its cross reference type
289 /// must be \ref RangeMap "RangeMap<int>".
290 template <typename T>
292 : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
293 typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
300 /// \brief Constructor.
302 /// The constructor of the class.
304 /// \param graph The digraph the algorithm runs on.
305 CapacityScaling(const GR& graph) :
306 _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
307 INF(std::numeric_limits<Value>::has_infinity ?
308 std::numeric_limits<Value>::infinity() :
309 std::numeric_limits<Value>::max())
311 // Check the number types
312 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
313 "The flow type of CapacityScaling must be signed");
314 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
315 "The cost type of CapacityScaling must be signed");
318 _node_num = countNodes(_graph);
319 _arc_num = countArcs(_graph);
320 _res_arc_num = 2 * (_arc_num + _node_num);
324 _first_out.resize(_node_num + 1);
325 _forward.resize(_res_arc_num);
326 _source.resize(_res_arc_num);
327 _target.resize(_res_arc_num);
328 _reverse.resize(_res_arc_num);
330 _lower.resize(_res_arc_num);
331 _upper.resize(_res_arc_num);
332 _cost.resize(_res_arc_num);
333 _supply.resize(_node_num);
335 _res_cap.resize(_res_arc_num);
336 _pi.resize(_node_num);
337 _excess.resize(_node_num);
338 _pred.resize(_node_num);
341 int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
342 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
346 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
348 for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
352 _target[j] = _node_id[_graph.runningNode(a)];
354 for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
358 _target[j] = _node_id[_graph.runningNode(a)];
371 _first_out[_node_num] = k;
372 for (ArcIt a(_graph); a != INVALID; ++a) {
373 int fi = _arc_idf[a];
374 int bi = _arc_idb[a];
384 /// The parameters of the algorithm can be specified using these
389 /// \brief Set the lower bounds on the arcs.
391 /// This function sets the lower bounds on the arcs.
392 /// If it is not used before calling \ref run(), the lower bounds
393 /// will be set to zero on all arcs.
395 /// \param map An arc map storing the lower bounds.
396 /// Its \c Value type must be convertible to the \c Value type
397 /// of the algorithm.
399 /// \return <tt>(*this)</tt>
400 template <typename LowerMap>
401 CapacityScaling& lowerMap(const LowerMap& map) {
403 for (ArcIt a(_graph); a != INVALID; ++a) {
404 _lower[_arc_idf[a]] = map[a];
405 _lower[_arc_idb[a]] = map[a];
410 /// \brief Set the upper bounds (capacities) on the arcs.
412 /// This function sets the upper bounds (capacities) on the arcs.
413 /// If it is not used before calling \ref run(), the upper bounds
414 /// will be set to \ref INF on all arcs (i.e. the flow value will be
415 /// unbounded from above).
417 /// \param map An arc map storing the upper bounds.
418 /// Its \c Value type must be convertible to the \c Value type
419 /// of the algorithm.
421 /// \return <tt>(*this)</tt>
422 template<typename UpperMap>
423 CapacityScaling& upperMap(const UpperMap& map) {
424 for (ArcIt a(_graph); a != INVALID; ++a) {
425 _upper[_arc_idf[a]] = map[a];
430 /// \brief Set the costs of the arcs.
432 /// This function sets the costs of the arcs.
433 /// If it is not used before calling \ref run(), the costs
434 /// will be set to \c 1 on all arcs.
436 /// \param map An arc map storing the costs.
437 /// Its \c Value type must be convertible to the \c Cost type
438 /// of the algorithm.
440 /// \return <tt>(*this)</tt>
441 template<typename CostMap>
442 CapacityScaling& costMap(const CostMap& map) {
443 for (ArcIt a(_graph); a != INVALID; ++a) {
444 _cost[_arc_idf[a]] = map[a];
445 _cost[_arc_idb[a]] = -map[a];
450 /// \brief Set the supply values of the nodes.
452 /// This function sets the supply values of the nodes.
453 /// If neither this function nor \ref stSupply() is used before
454 /// calling \ref run(), the supply of each node will be set to zero.
456 /// \param map A node map storing the supply values.
457 /// Its \c Value type must be convertible to the \c Value type
458 /// of the algorithm.
460 /// \return <tt>(*this)</tt>
461 template<typename SupplyMap>
462 CapacityScaling& supplyMap(const SupplyMap& map) {
463 for (NodeIt n(_graph); n != INVALID; ++n) {
464 _supply[_node_id[n]] = map[n];
469 /// \brief Set single source and target nodes and a supply value.
471 /// This function sets a single source node and a single target node
472 /// and the required flow value.
473 /// If neither this function nor \ref supplyMap() is used before
474 /// calling \ref run(), the supply of each node will be set to zero.
476 /// Using this function has the same effect as using \ref supplyMap()
477 /// with such a map in which \c k is assigned to \c s, \c -k is
478 /// assigned to \c t and all other nodes have zero supply value.
480 /// \param s The source node.
481 /// \param t The target node.
482 /// \param k The required amount of flow from node \c s to node \c t
483 /// (i.e. the supply of \c s and the demand of \c t).
485 /// \return <tt>(*this)</tt>
486 CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
487 for (int i = 0; i != _node_num; ++i) {
490 _supply[_node_id[s]] = k;
491 _supply[_node_id[t]] = -k;
497 /// \name Execution control
498 /// The algorithm can be executed using \ref run().
502 /// \brief Run the algorithm.
504 /// This function runs the algorithm.
505 /// The paramters can be specified using functions \ref lowerMap(),
506 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
509 /// CapacityScaling<ListDigraph> cs(graph);
510 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
511 /// .supplyMap(sup).run();
514 /// This function can be called more than once. All the parameters
515 /// that have been given are kept for the next call, unless
516 /// \ref reset() is called, thus only the modified parameters
517 /// have to be set again. See \ref reset() for examples.
518 /// However, the underlying digraph must not be modified after this
519 /// class have been constructed, since it copies and extends the graph.
521 /// \param factor The capacity scaling factor. It must be larger than
522 /// one to use scaling. If it is less or equal to one, then scaling
523 /// will be disabled.
525 /// \return \c INFEASIBLE if no feasible flow exists,
526 /// \n \c OPTIMAL if the problem has optimal solution
527 /// (i.e. it is feasible and bounded), and the algorithm has found
528 /// optimal flow and node potentials (primal and dual solutions),
529 /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
530 /// and infinite upper bound. It means that the objective function
531 /// is unbounded on that arc, however, note that it could actually be
532 /// bounded over the feasible flows, but this algroithm cannot handle
536 ProblemType run(int factor = 4) {
538 ProblemType pt = init();
539 if (pt != OPTIMAL) return pt;
543 /// \brief Reset all the parameters that have been given before.
545 /// This function resets all the paramaters that have been given
546 /// before using functions \ref lowerMap(), \ref upperMap(),
547 /// \ref costMap(), \ref supplyMap(), \ref stSupply().
549 /// It is useful for multiple run() calls. If this function is not
550 /// used, all the parameters given before are kept for the next
552 /// However, the underlying digraph must not be modified after this
553 /// class have been constructed, since it copies and extends the graph.
557 /// CapacityScaling<ListDigraph> cs(graph);
560 /// cs.lowerMap(lower).upperMap(upper).costMap(cost)
561 /// .supplyMap(sup).run();
563 /// // Run again with modified cost map (reset() is not called,
564 /// // so only the cost map have to be set again)
566 /// cs.costMap(cost).run();
568 /// // Run again from scratch using reset()
569 /// // (the lower bounds will be set to zero on all arcs)
571 /// cs.upperMap(capacity).costMap(cost)
572 /// .supplyMap(sup).run();
575 /// \return <tt>(*this)</tt>
576 CapacityScaling& reset() {
577 for (int i = 0; i != _node_num; ++i) {
580 for (int j = 0; j != _res_arc_num; ++j) {
583 _cost[j] = _forward[j] ? 1 : -1;
591 /// \name Query Functions
592 /// The results of the algorithm can be obtained using these
594 /// The \ref run() function must be called before using them.
598 /// \brief Return the total cost of the found flow.
600 /// This function returns the total cost of the found flow.
601 /// Its complexity is O(e).
603 /// \note The return type of the function can be specified as a
604 /// template parameter. For example,
606 /// cs.totalCost<double>();
608 /// It is useful if the total cost cannot be stored in the \c Cost
609 /// type of the algorithm, which is the default return type of the
612 /// \pre \ref run() must be called before using this function.
613 template <typename Number>
614 Number totalCost() const {
616 for (ArcIt a(_graph); a != INVALID; ++a) {
618 c += static_cast<Number>(_res_cap[i]) *
619 (-static_cast<Number>(_cost[i]));
625 Cost totalCost() const {
626 return totalCost<Cost>();
630 /// \brief Return the flow on the given arc.
632 /// This function returns the flow on the given arc.
634 /// \pre \ref run() must be called before using this function.
635 Value flow(const Arc& a) const {
636 return _res_cap[_arc_idb[a]];
639 /// \brief Return the flow map (the primal solution).
641 /// This function copies the flow value on each arc into the given
642 /// map. The \c Value type of the algorithm must be convertible to
643 /// the \c Value type of the map.
645 /// \pre \ref run() must be called before using this function.
646 template <typename FlowMap>
647 void flowMap(FlowMap &map) const {
648 for (ArcIt a(_graph); a != INVALID; ++a) {
649 map.set(a, _res_cap[_arc_idb[a]]);
653 /// \brief Return the potential (dual value) of the given node.
655 /// This function returns the potential (dual value) of the
658 /// \pre \ref run() must be called before using this function.
659 Cost potential(const Node& n) const {
660 return _pi[_node_id[n]];
663 /// \brief Return the potential map (the dual solution).
665 /// This function copies the potential (dual value) of each node
666 /// into the given map.
667 /// The \c Cost type of the algorithm must be convertible to the
668 /// \c Value type of the map.
670 /// \pre \ref run() must be called before using this function.
671 template <typename PotentialMap>
672 void potentialMap(PotentialMap &map) const {
673 for (NodeIt n(_graph); n != INVALID; ++n) {
674 map.set(n, _pi[_node_id[n]]);
682 // Initialize the algorithm
684 if (_node_num == 0) return INFEASIBLE;
686 // Check the sum of supply values
688 for (int i = 0; i != _root; ++i) {
689 _sum_supply += _supply[i];
691 if (_sum_supply > 0) return INFEASIBLE;
693 // Initialize vectors
694 for (int i = 0; i != _root; ++i) {
696 _excess[i] = _supply[i];
699 // Remove non-zero lower bounds
700 const Value MAX = std::numeric_limits<Value>::max();
703 for (int i = 0; i != _root; ++i) {
704 last_out = _first_out[i+1];
705 for (int j = _first_out[i]; j != last_out; ++j) {
709 _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
711 _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
714 _excess[_target[j]] += c;
721 for (int j = 0; j != _res_arc_num; ++j) {
722 _res_cap[j] = _forward[j] ? _upper[j] : 0;
726 // Handle negative costs
727 for (int i = 0; i != _root; ++i) {
728 last_out = _first_out[i+1] - 1;
729 for (int j = _first_out[i]; j != last_out; ++j) {
730 Value rc = _res_cap[j];
731 if (_cost[j] < 0 && rc > 0) {
732 if (rc >= MAX) return UNBOUNDED;
734 _excess[_target[j]] += rc;
736 _res_cap[_reverse[j]] += rc;
741 // Handle GEQ supply type
742 if (_sum_supply < 0) {
744 _excess[_root] = -_sum_supply;
745 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
746 int ra = _reverse[a];
747 _res_cap[a] = -_sum_supply + 1;
755 for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
756 int ra = _reverse[a];
764 // Initialize delta value
767 Value max_sup = 0, max_dem = 0;
768 for (int i = 0; i != _node_num; ++i) {
769 Value ex = _excess[i];
770 if ( ex > max_sup) max_sup = ex;
771 if (-ex > max_dem) max_dem = -ex;
774 for (int j = 0; j != _res_arc_num; ++j) {
775 if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
777 max_sup = std::min(std::min(max_sup, max_dem), max_cap);
778 for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
787 ProblemType start() {
788 // Execute the algorithm
791 pt = startWithScaling();
793 pt = startWithoutScaling();
795 // Handle non-zero lower bounds
797 int limit = _first_out[_root];
798 for (int j = 0; j != limit; ++j) {
799 if (!_forward[j]) _res_cap[j] += _lower[j];
803 // Shift potentials if necessary
804 Cost pr = _pi[_root];
805 if (_sum_supply < 0 || pr > 0) {
806 for (int i = 0; i != _node_num; ++i) {
814 // Execute the capacity scaling algorithm
815 ProblemType startWithScaling() {
816 // Perform capacity scaling phases
818 ResidualDijkstra _dijkstra(*this);
820 // Saturate all arcs not satisfying the optimality condition
822 for (int u = 0; u != _node_num; ++u) {
823 last_out = _sum_supply < 0 ?
824 _first_out[u+1] : _first_out[u+1] - 1;
825 for (int a = _first_out[u]; a != last_out; ++a) {
827 Cost c = _cost[a] + _pi[u] - _pi[v];
828 Value rc = _res_cap[a];
829 if (c < 0 && rc >= _delta) {
833 _res_cap[_reverse[a]] += rc;
838 // Find excess nodes and deficit nodes
839 _excess_nodes.clear();
840 _deficit_nodes.clear();
841 for (int u = 0; u != _node_num; ++u) {
842 Value ex = _excess[u];
843 if (ex >= _delta) _excess_nodes.push_back(u);
844 if (ex <= -_delta) _deficit_nodes.push_back(u);
846 int next_node = 0, next_def_node = 0;
848 // Find augmenting shortest paths
849 while (next_node < int(_excess_nodes.size())) {
850 // Check deficit nodes
852 bool delta_deficit = false;
853 for ( ; next_def_node < int(_deficit_nodes.size());
855 if (_excess[_deficit_nodes[next_def_node]] <= -_delta) {
856 delta_deficit = true;
860 if (!delta_deficit) break;
863 // Run Dijkstra in the residual network
864 s = _excess_nodes[next_node];
865 if ((t = _dijkstra.run(s, _delta)) == -1) {
873 // Augment along a shortest path from s to t
874 Value d = std::min(_excess[s], -_excess[t]);
878 while ((a = _pred[u]) != -1) {
879 if (_res_cap[a] < d) d = _res_cap[a];
884 while ((a = _pred[u]) != -1) {
886 _res_cap[_reverse[a]] += d;
892 if (_excess[s] < _delta) ++next_node;
895 if (_delta == 1) break;
896 _delta = _delta <= _factor ? 1 : _delta / _factor;
902 // Execute the successive shortest path algorithm
903 ProblemType startWithoutScaling() {
905 _excess_nodes.clear();
906 for (int i = 0; i != _node_num; ++i) {
907 if (_excess[i] > 0) _excess_nodes.push_back(i);
909 if (_excess_nodes.size() == 0) return OPTIMAL;
912 // Find shortest paths
914 ResidualDijkstra _dijkstra(*this);
915 while ( _excess[_excess_nodes[next_node]] > 0 ||
916 ++next_node < int(_excess_nodes.size()) )
918 // Run Dijkstra in the residual network
919 s = _excess_nodes[next_node];
920 if ((t = _dijkstra.run(s)) == -1) return INFEASIBLE;
922 // Augment along a shortest path from s to t
923 Value d = std::min(_excess[s], -_excess[t]);
927 while ((a = _pred[u]) != -1) {
928 if (_res_cap[a] < d) d = _res_cap[a];
933 while ((a = _pred[u]) != -1) {
935 _res_cap[_reverse[a]] += d;
945 }; //class CapacityScaling
951 #endif //LEMON_CAPACITY_SCALING_H