3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_HOWARD_H
20 #define LEMON_HOWARD_H
22 /// \ingroup min_mean_cycle
25 /// \brief Howard's algorithm for finding a minimum mean cycle.
29 #include <lemon/core.h>
30 #include <lemon/path.h>
31 #include <lemon/tolerance.h>
32 #include <lemon/connectivity.h>
36 /// \brief Default traits class of Howard class.
38 /// Default traits class of Howard class.
39 /// \tparam GR The type of the digraph.
40 /// \tparam LEN The type of the length map.
41 /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
43 template <typename GR, typename LEN>
45 template <typename GR, typename LEN,
46 bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
48 struct HowardDefaultTraits
50 /// The type of the digraph
52 /// The type of the length map
53 typedef LEN LengthMap;
54 /// The type of the arc lengths
55 typedef typename LengthMap::Value Value;
57 /// \brief The large value type used for internal computations
59 /// The large value type used for internal computations.
60 /// It is \c long \c long if the \c Value type is integer,
61 /// otherwise it is \c double.
62 /// \c Value must be convertible to \c LargeValue.
63 typedef double LargeValue;
65 /// The tolerance type used for internal computations
66 typedef lemon::Tolerance<LargeValue> Tolerance;
68 /// \brief The path type of the found cycles
70 /// The path type of the found cycles.
71 /// It must conform to the \ref lemon::concepts::Path "Path" concept
72 /// and it must have an \c addBack() function.
73 typedef lemon::Path<Digraph> Path;
76 // Default traits class for integer value types
77 template <typename GR, typename LEN>
78 struct HowardDefaultTraits<GR, LEN, true>
81 typedef LEN LengthMap;
82 typedef typename LengthMap::Value Value;
83 #ifdef LEMON_HAVE_LONG_LONG
84 typedef long long LargeValue;
86 typedef long LargeValue;
88 typedef lemon::Tolerance<LargeValue> Tolerance;
89 typedef lemon::Path<Digraph> Path;
93 /// \addtogroup min_mean_cycle
96 /// \brief Implementation of Howard's algorithm for finding a minimum
99 /// This class implements Howard's policy iteration algorithm for finding
100 /// a directed cycle of minimum mean length (cost) in a digraph
101 /// \ref amo93networkflows, \ref dasdan98minmeancycle.
102 /// This class provides the most efficient algorithm for the
103 /// minimum mean cycle problem, though the best known theoretical
104 /// bound on its running time is exponential.
106 /// \tparam GR The type of the digraph the algorithm runs on.
107 /// \tparam LEN The type of the length map. The default
108 /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
110 template <typename GR, typename LEN, typename TR>
112 template < typename GR,
113 typename LEN = typename GR::template ArcMap<int>,
114 typename TR = HowardDefaultTraits<GR, LEN> >
120 /// The type of the digraph
121 typedef typename TR::Digraph Digraph;
122 /// The type of the length map
123 typedef typename TR::LengthMap LengthMap;
124 /// The type of the arc lengths
125 typedef typename TR::Value Value;
127 /// \brief The large value type
129 /// The large value type used for internal computations.
130 /// Using the \ref HowardDefaultTraits "default traits class",
131 /// it is \c long \c long if the \c Value type is integer,
132 /// otherwise it is \c double.
133 typedef typename TR::LargeValue LargeValue;
135 /// The tolerance type
136 typedef typename TR::Tolerance Tolerance;
138 /// \brief The path type of the found cycles
140 /// The path type of the found cycles.
141 /// Using the \ref HowardDefaultTraits "default traits class",
142 /// it is \ref lemon::Path "Path<Digraph>".
143 typedef typename TR::Path Path;
145 /// The \ref HowardDefaultTraits "traits class" of the algorithm
150 TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
152 // The digraph the algorithm runs on
154 // The length of the arcs
155 const LengthMap &_length;
157 // Data for the found cycles
158 bool _curr_found, _best_found;
159 LargeValue _curr_length, _best_length;
160 int _curr_size, _best_size;
161 Node _curr_node, _best_node;
166 // Internal data used by the algorithm
167 typename Digraph::template NodeMap<Arc> _policy;
168 typename Digraph::template NodeMap<bool> _reached;
169 typename Digraph::template NodeMap<int> _level;
170 typename Digraph::template NodeMap<LargeValue> _dist;
172 // Data for storing the strongly connected components
174 typename Digraph::template NodeMap<int> _comp;
175 std::vector<std::vector<Node> > _comp_nodes;
176 std::vector<Node>* _nodes;
177 typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
179 // Queue used for BFS search
180 std::vector<Node> _queue;
183 Tolerance _tolerance;
186 const LargeValue INF;
190 /// \name Named Template Parameters
193 template <typename T>
194 struct SetLargeValueTraits : public Traits {
195 typedef T LargeValue;
196 typedef lemon::Tolerance<T> Tolerance;
199 /// \brief \ref named-templ-param "Named parameter" for setting
200 /// \c LargeValue type.
202 /// \ref named-templ-param "Named parameter" for setting \c LargeValue
203 /// type. It is used for internal computations in the algorithm.
204 template <typename T>
206 : public Howard<GR, LEN, SetLargeValueTraits<T> > {
207 typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
210 template <typename T>
211 struct SetPathTraits : public Traits {
215 /// \brief \ref named-templ-param "Named parameter" for setting
218 /// \ref named-templ-param "Named parameter" for setting the \c %Path
219 /// type of the found cycles.
220 /// It must conform to the \ref lemon::concepts::Path "Path" concept
221 /// and it must have an \c addBack() function.
222 template <typename T>
224 : public Howard<GR, LEN, SetPathTraits<T> > {
225 typedef Howard<GR, LEN, SetPathTraits<T> > Create;
232 /// \brief Constructor.
234 /// The constructor of the class.
236 /// \param digraph The digraph the algorithm runs on.
237 /// \param length The lengths (costs) of the arcs.
238 Howard( const Digraph &digraph,
239 const LengthMap &length ) :
240 _gr(digraph), _length(length), _best_found(false),
241 _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
242 _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
243 _comp(digraph), _in_arcs(digraph),
244 INF(std::numeric_limits<LargeValue>::has_infinity ?
245 std::numeric_limits<LargeValue>::infinity() :
246 std::numeric_limits<LargeValue>::max())
251 if (_local_path) delete _cycle_path;
254 /// \brief Set the path structure for storing the found cycle.
256 /// This function sets an external path structure for storing the
259 /// If you don't call this function before calling \ref run() or
260 /// \ref findMinMean(), it will allocate a local \ref Path "path"
261 /// structure. The destuctor deallocates this automatically
262 /// allocated object, of course.
264 /// \note The algorithm calls only the \ref lemon::Path::addBack()
265 /// "addBack()" function of the given path structure.
267 /// \return <tt>(*this)</tt>
268 Howard& cycle(Path &path) {
277 /// \brief Set the tolerance used by the algorithm.
279 /// This function sets the tolerance object used by the algorithm.
281 /// \return <tt>(*this)</tt>
282 Howard& tolerance(const Tolerance& tolerance) {
283 _tolerance = tolerance;
287 /// \brief Return a const reference to the tolerance.
289 /// This function returns a const reference to the tolerance object
290 /// used by the algorithm.
291 const Tolerance& tolerance() const {
295 /// \name Execution control
296 /// The simplest way to execute the algorithm is to call the \ref run()
298 /// If you only need the minimum mean length, you may call
299 /// \ref findMinMean().
303 /// \brief Run the algorithm.
305 /// This function runs the algorithm.
306 /// It can be called more than once (e.g. if the underlying digraph
307 /// and/or the arc lengths have been modified).
309 /// \return \c true if a directed cycle exists in the digraph.
311 /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
313 /// return mmc.findMinMean() && mmc.findCycle();
316 return findMinMean() && findCycle();
319 /// \brief Find the minimum cycle mean.
321 /// This function finds the minimum mean length of the directed
322 /// cycles in the digraph.
324 /// \return \c true if a directed cycle exists in the digraph.
326 // Initialize and find strongly connected components
330 // Find the minimum cycle mean in the components
331 for (int comp = 0; comp < _comp_num; ++comp) {
332 // Find the minimum mean cycle in the current component
333 if (!buildPolicyGraph(comp)) continue;
336 if (!computeNodeDistances()) break;
338 // Update the best cycle (global minimum mean cycle)
339 if ( _curr_found && (!_best_found ||
340 _curr_length * _best_size < _best_length * _curr_size) ) {
342 _best_length = _curr_length;
343 _best_size = _curr_size;
344 _best_node = _curr_node;
350 /// \brief Find a minimum mean directed cycle.
352 /// This function finds a directed cycle of minimum mean length
353 /// in the digraph using the data computed by findMinMean().
355 /// \return \c true if a directed cycle exists in the digraph.
357 /// \pre \ref findMinMean() must be called before using this function.
359 if (!_best_found) return false;
360 _cycle_path->addBack(_policy[_best_node]);
361 for ( Node v = _best_node;
362 (v = _gr.target(_policy[v])) != _best_node; ) {
363 _cycle_path->addBack(_policy[v]);
370 /// \name Query Functions
371 /// The results of the algorithm can be obtained using these
373 /// The algorithm should be executed before using them.
377 /// \brief Return the total length of the found cycle.
379 /// This function returns the total length of the found cycle.
381 /// \pre \ref run() or \ref findMinMean() must be called before
382 /// using this function.
383 LargeValue cycleLength() const {
387 /// \brief Return the number of arcs on the found cycle.
389 /// This function returns the number of arcs on the found cycle.
391 /// \pre \ref run() or \ref findMinMean() must be called before
392 /// using this function.
393 int cycleArcNum() const {
397 /// \brief Return the mean length of the found cycle.
399 /// This function returns the mean length of the found cycle.
401 /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
404 /// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
407 /// \pre \ref run() or \ref findMinMean() must be called before
408 /// using this function.
409 double cycleMean() const {
410 return static_cast<double>(_best_length) / _best_size;
413 /// \brief Return the found cycle.
415 /// This function returns a const reference to the path structure
416 /// storing the found cycle.
418 /// \pre \ref run() or \ref findCycle() must be called before using
420 const Path& cycle() const {
432 _cycle_path = new Path;
434 _queue.resize(countNodes(_gr));
438 _cycle_path->clear();
441 // Find strongly connected components and initialize _comp_nodes
443 void findComponents() {
444 _comp_num = stronglyConnectedComponents(_gr, _comp);
445 _comp_nodes.resize(_comp_num);
446 if (_comp_num == 1) {
447 _comp_nodes[0].clear();
448 for (NodeIt n(_gr); n != INVALID; ++n) {
449 _comp_nodes[0].push_back(n);
451 for (InArcIt a(_gr, n); a != INVALID; ++a) {
452 _in_arcs[n].push_back(a);
456 for (int i = 0; i < _comp_num; ++i)
457 _comp_nodes[i].clear();
458 for (NodeIt n(_gr); n != INVALID; ++n) {
460 _comp_nodes[k].push_back(n);
462 for (InArcIt a(_gr, n); a != INVALID; ++a) {
463 if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
469 // Build the policy graph in the given strongly connected component
470 // (the out-degree of every node is 1)
471 bool buildPolicyGraph(int comp) {
472 _nodes = &(_comp_nodes[comp]);
473 if (_nodes->size() < 1 ||
474 (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
477 for (int i = 0; i < int(_nodes->size()); ++i) {
478 _dist[(*_nodes)[i]] = INF;
482 for (int i = 0; i < int(_nodes->size()); ++i) {
484 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
487 if (_length[e] < _dist[u]) {
488 _dist[u] = _length[e];
496 // Find the minimum mean cycle in the policy graph
497 void findPolicyCycle() {
498 for (int i = 0; i < int(_nodes->size()); ++i) {
499 _level[(*_nodes)[i]] = -1;
505 for (int i = 0; i < int(_nodes->size()); ++i) {
507 if (_level[u] >= 0) continue;
508 for (; _level[u] < 0; u = _gr.target(_policy[u])) {
511 if (_level[u] == i) {
513 clength = _length[_policy[u]];
515 for (v = u; (v = _gr.target(_policy[v])) != u; ) {
516 clength += _length[_policy[v]];
520 (clength * _curr_size < _curr_length * csize) ) {
522 _curr_length = clength;
530 // Contract the policy graph and compute node distances
531 bool computeNodeDistances() {
532 // Find the component of the main cycle and compute node distances
534 for (int i = 0; i < int(_nodes->size()); ++i) {
535 _reached[(*_nodes)[i]] = false;
537 _qfront = _qback = 0;
538 _queue[0] = _curr_node;
539 _reached[_curr_node] = true;
540 _dist[_curr_node] = 0;
543 while (_qfront <= _qback) {
544 v = _queue[_qfront++];
545 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
548 if (_policy[u] == e && !_reached[u]) {
550 _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
551 _queue[++_qback] = u;
556 // Connect all other nodes to this component and compute node
557 // distances using reverse BFS
559 while (_qback < int(_nodes->size())-1) {
560 v = _queue[_qfront++];
561 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
567 _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
568 _queue[++_qback] = u;
573 // Improve node distances
574 bool improved = false;
575 for (int i = 0; i < int(_nodes->size()); ++i) {
577 for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
580 LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
581 if (_tolerance.less(delta, _dist[u])) {
597 #endif //LEMON_HOWARD_H