lemon/network_simplex.h
author Peter Kovacs <kpeter@inf.elte.hu>
Wed, 25 Mar 2009 21:37:50 +0100
changeset 606 c7d160f73d52
parent 605 5232721b3f14
child 607 9ad8d2122b50
permissions -rw-r--r--
Support multiple run() calls in NetworkSimplex (#234)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2009
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_NETWORK_SIMPLEX_H
    20 #define LEMON_NETWORK_SIMPLEX_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <algorithm>
    30 
    31 #include <lemon/core.h>
    32 #include <lemon/math.h>
    33 
    34 namespace lemon {
    35 
    36   /// \addtogroup min_cost_flow
    37   /// @{
    38 
    39   /// \brief Implementation of the primal Network Simplex algorithm
    40   /// for finding a \ref min_cost_flow "minimum cost flow".
    41   ///
    42   /// \ref NetworkSimplex implements the primal Network Simplex algorithm
    43   /// for finding a \ref min_cost_flow "minimum cost flow".
    44   /// This algorithm is a specialized version of the linear programming
    45   /// simplex method directly for the minimum cost flow problem.
    46   /// It is one of the most efficient solution methods.
    47   ///
    48   /// In general this class is the fastest implementation available
    49   /// in LEMON for the minimum cost flow problem.
    50   ///
    51   /// \tparam GR The digraph type the algorithm runs on.
    52   /// \tparam V The value type used in the algorithm.
    53   /// By default it is \c int.
    54   ///
    55   /// \warning The value type must be a signed integer type.
    56   ///
    57   /// \note %NetworkSimplex provides five different pivot rule
    58   /// implementations. For more information see \ref PivotRule.
    59   template <typename GR, typename V = int>
    60   class NetworkSimplex
    61   {
    62   public:
    63 
    64     /// The value type of the algorithm
    65     typedef V Value;
    66     /// The type of the flow map
    67     typedef typename GR::template ArcMap<Value> FlowMap;
    68     /// The type of the potential map
    69     typedef typename GR::template NodeMap<Value> PotentialMap;
    70 
    71   public:
    72 
    73     /// \brief Enum type for selecting the pivot rule.
    74     ///
    75     /// Enum type for selecting the pivot rule for the \ref run()
    76     /// function.
    77     ///
    78     /// \ref NetworkSimplex provides five different pivot rule
    79     /// implementations that significantly affect the running time
    80     /// of the algorithm.
    81     /// By default \ref BLOCK_SEARCH "Block Search" is used, which
    82     /// proved to be the most efficient and the most robust on various
    83     /// test inputs according to our benchmark tests.
    84     /// However another pivot rule can be selected using the \ref run()
    85     /// function with the proper parameter.
    86     enum PivotRule {
    87 
    88       /// The First Eligible pivot rule.
    89       /// The next eligible arc is selected in a wraparound fashion
    90       /// in every iteration.
    91       FIRST_ELIGIBLE,
    92 
    93       /// The Best Eligible pivot rule.
    94       /// The best eligible arc is selected in every iteration.
    95       BEST_ELIGIBLE,
    96 
    97       /// The Block Search pivot rule.
    98       /// A specified number of arcs are examined in every iteration
    99       /// in a wraparound fashion and the best eligible arc is selected
   100       /// from this block.
   101       BLOCK_SEARCH,
   102 
   103       /// The Candidate List pivot rule.
   104       /// In a major iteration a candidate list is built from eligible arcs
   105       /// in a wraparound fashion and in the following minor iterations
   106       /// the best eligible arc is selected from this list.
   107       CANDIDATE_LIST,
   108 
   109       /// The Altering Candidate List pivot rule.
   110       /// It is a modified version of the Candidate List method.
   111       /// It keeps only the several best eligible arcs from the former
   112       /// candidate list and extends this list in every iteration.
   113       ALTERING_LIST
   114     };
   115 
   116   private:
   117 
   118     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   119 
   120     typedef typename GR::template ArcMap<Value> ValueArcMap;
   121     typedef typename GR::template NodeMap<Value> ValueNodeMap;
   122 
   123     typedef std::vector<Arc> ArcVector;
   124     typedef std::vector<Node> NodeVector;
   125     typedef std::vector<int> IntVector;
   126     typedef std::vector<bool> BoolVector;
   127     typedef std::vector<Value> ValueVector;
   128 
   129     // State constants for arcs
   130     enum ArcStateEnum {
   131       STATE_UPPER = -1,
   132       STATE_TREE  =  0,
   133       STATE_LOWER =  1
   134     };
   135 
   136   private:
   137 
   138     // Data related to the underlying digraph
   139     const GR &_graph;
   140     int _node_num;
   141     int _arc_num;
   142 
   143     // Parameters of the problem
   144     ValueArcMap *_plower;
   145     ValueArcMap *_pupper;
   146     ValueArcMap *_pcost;
   147     ValueNodeMap *_psupply;
   148     bool _pstsup;
   149     Node _psource, _ptarget;
   150     Value _pstflow;
   151 
   152     // Result maps
   153     FlowMap *_flow_map;
   154     PotentialMap *_potential_map;
   155     bool _local_flow;
   156     bool _local_potential;
   157 
   158     // Data structures for storing the digraph
   159     IntNodeMap _node_id;
   160     ArcVector _arc_ref;
   161     IntVector _source;
   162     IntVector _target;
   163 
   164     // Node and arc data
   165     ValueVector _cap;
   166     ValueVector _cost;
   167     ValueVector _supply;
   168     ValueVector _flow;
   169     ValueVector _pi;
   170 
   171     // Data for storing the spanning tree structure
   172     IntVector _parent;
   173     IntVector _pred;
   174     IntVector _thread;
   175     IntVector _rev_thread;
   176     IntVector _succ_num;
   177     IntVector _last_succ;
   178     IntVector _dirty_revs;
   179     BoolVector _forward;
   180     IntVector _state;
   181     int _root;
   182 
   183     // Temporary data used in the current pivot iteration
   184     int in_arc, join, u_in, v_in, u_out, v_out;
   185     int first, second, right, last;
   186     int stem, par_stem, new_stem;
   187     Value delta;
   188 
   189   private:
   190 
   191     // Implementation of the First Eligible pivot rule
   192     class FirstEligiblePivotRule
   193     {
   194     private:
   195 
   196       // References to the NetworkSimplex class
   197       const IntVector  &_source;
   198       const IntVector  &_target;
   199       const ValueVector &_cost;
   200       const IntVector  &_state;
   201       const ValueVector &_pi;
   202       int &_in_arc;
   203       int _arc_num;
   204 
   205       // Pivot rule data
   206       int _next_arc;
   207 
   208     public:
   209 
   210       // Constructor
   211       FirstEligiblePivotRule(NetworkSimplex &ns) :
   212         _source(ns._source), _target(ns._target),
   213         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   214         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   215       {}
   216 
   217       // Find next entering arc
   218       bool findEnteringArc() {
   219         Value c;
   220         for (int e = _next_arc; e < _arc_num; ++e) {
   221           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   222           if (c < 0) {
   223             _in_arc = e;
   224             _next_arc = e + 1;
   225             return true;
   226           }
   227         }
   228         for (int e = 0; e < _next_arc; ++e) {
   229           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   230           if (c < 0) {
   231             _in_arc = e;
   232             _next_arc = e + 1;
   233             return true;
   234           }
   235         }
   236         return false;
   237       }
   238 
   239     }; //class FirstEligiblePivotRule
   240 
   241 
   242     // Implementation of the Best Eligible pivot rule
   243     class BestEligiblePivotRule
   244     {
   245     private:
   246 
   247       // References to the NetworkSimplex class
   248       const IntVector  &_source;
   249       const IntVector  &_target;
   250       const ValueVector &_cost;
   251       const IntVector  &_state;
   252       const ValueVector &_pi;
   253       int &_in_arc;
   254       int _arc_num;
   255 
   256     public:
   257 
   258       // Constructor
   259       BestEligiblePivotRule(NetworkSimplex &ns) :
   260         _source(ns._source), _target(ns._target),
   261         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   262         _in_arc(ns.in_arc), _arc_num(ns._arc_num)
   263       {}
   264 
   265       // Find next entering arc
   266       bool findEnteringArc() {
   267         Value c, min = 0;
   268         for (int e = 0; e < _arc_num; ++e) {
   269           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   270           if (c < min) {
   271             min = c;
   272             _in_arc = e;
   273           }
   274         }
   275         return min < 0;
   276       }
   277 
   278     }; //class BestEligiblePivotRule
   279 
   280 
   281     // Implementation of the Block Search pivot rule
   282     class BlockSearchPivotRule
   283     {
   284     private:
   285 
   286       // References to the NetworkSimplex class
   287       const IntVector  &_source;
   288       const IntVector  &_target;
   289       const ValueVector &_cost;
   290       const IntVector  &_state;
   291       const ValueVector &_pi;
   292       int &_in_arc;
   293       int _arc_num;
   294 
   295       // Pivot rule data
   296       int _block_size;
   297       int _next_arc;
   298 
   299     public:
   300 
   301       // Constructor
   302       BlockSearchPivotRule(NetworkSimplex &ns) :
   303         _source(ns._source), _target(ns._target),
   304         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   305         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   306       {
   307         // The main parameters of the pivot rule
   308         const double BLOCK_SIZE_FACTOR = 2.0;
   309         const int MIN_BLOCK_SIZE = 10;
   310 
   311         _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
   312                                 MIN_BLOCK_SIZE );
   313       }
   314 
   315       // Find next entering arc
   316       bool findEnteringArc() {
   317         Value c, min = 0;
   318         int cnt = _block_size;
   319         int e, min_arc = _next_arc;
   320         for (e = _next_arc; e < _arc_num; ++e) {
   321           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   322           if (c < min) {
   323             min = c;
   324             min_arc = e;
   325           }
   326           if (--cnt == 0) {
   327             if (min < 0) break;
   328             cnt = _block_size;
   329           }
   330         }
   331         if (min == 0 || cnt > 0) {
   332           for (e = 0; e < _next_arc; ++e) {
   333             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   334             if (c < min) {
   335               min = c;
   336               min_arc = e;
   337             }
   338             if (--cnt == 0) {
   339               if (min < 0) break;
   340               cnt = _block_size;
   341             }
   342           }
   343         }
   344         if (min >= 0) return false;
   345         _in_arc = min_arc;
   346         _next_arc = e;
   347         return true;
   348       }
   349 
   350     }; //class BlockSearchPivotRule
   351 
   352 
   353     // Implementation of the Candidate List pivot rule
   354     class CandidateListPivotRule
   355     {
   356     private:
   357 
   358       // References to the NetworkSimplex class
   359       const IntVector  &_source;
   360       const IntVector  &_target;
   361       const ValueVector &_cost;
   362       const IntVector  &_state;
   363       const ValueVector &_pi;
   364       int &_in_arc;
   365       int _arc_num;
   366 
   367       // Pivot rule data
   368       IntVector _candidates;
   369       int _list_length, _minor_limit;
   370       int _curr_length, _minor_count;
   371       int _next_arc;
   372 
   373     public:
   374 
   375       /// Constructor
   376       CandidateListPivotRule(NetworkSimplex &ns) :
   377         _source(ns._source), _target(ns._target),
   378         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   379         _in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
   380       {
   381         // The main parameters of the pivot rule
   382         const double LIST_LENGTH_FACTOR = 1.0;
   383         const int MIN_LIST_LENGTH = 10;
   384         const double MINOR_LIMIT_FACTOR = 0.1;
   385         const int MIN_MINOR_LIMIT = 3;
   386 
   387         _list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)),
   388                                  MIN_LIST_LENGTH );
   389         _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
   390                                  MIN_MINOR_LIMIT );
   391         _curr_length = _minor_count = 0;
   392         _candidates.resize(_list_length);
   393       }
   394 
   395       /// Find next entering arc
   396       bool findEnteringArc() {
   397         Value min, c;
   398         int e, min_arc = _next_arc;
   399         if (_curr_length > 0 && _minor_count < _minor_limit) {
   400           // Minor iteration: select the best eligible arc from the
   401           // current candidate list
   402           ++_minor_count;
   403           min = 0;
   404           for (int i = 0; i < _curr_length; ++i) {
   405             e = _candidates[i];
   406             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   407             if (c < min) {
   408               min = c;
   409               min_arc = e;
   410             }
   411             if (c >= 0) {
   412               _candidates[i--] = _candidates[--_curr_length];
   413             }
   414           }
   415           if (min < 0) {
   416             _in_arc = min_arc;
   417             return true;
   418           }
   419         }
   420 
   421         // Major iteration: build a new candidate list
   422         min = 0;
   423         _curr_length = 0;
   424         for (e = _next_arc; e < _arc_num; ++e) {
   425           c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   426           if (c < 0) {
   427             _candidates[_curr_length++] = e;
   428             if (c < min) {
   429               min = c;
   430               min_arc = e;
   431             }
   432             if (_curr_length == _list_length) break;
   433           }
   434         }
   435         if (_curr_length < _list_length) {
   436           for (e = 0; e < _next_arc; ++e) {
   437             c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   438             if (c < 0) {
   439               _candidates[_curr_length++] = e;
   440               if (c < min) {
   441                 min = c;
   442                 min_arc = e;
   443               }
   444               if (_curr_length == _list_length) break;
   445             }
   446           }
   447         }
   448         if (_curr_length == 0) return false;
   449         _minor_count = 1;
   450         _in_arc = min_arc;
   451         _next_arc = e;
   452         return true;
   453       }
   454 
   455     }; //class CandidateListPivotRule
   456 
   457 
   458     // Implementation of the Altering Candidate List pivot rule
   459     class AlteringListPivotRule
   460     {
   461     private:
   462 
   463       // References to the NetworkSimplex class
   464       const IntVector  &_source;
   465       const IntVector  &_target;
   466       const ValueVector &_cost;
   467       const IntVector  &_state;
   468       const ValueVector &_pi;
   469       int &_in_arc;
   470       int _arc_num;
   471 
   472       // Pivot rule data
   473       int _block_size, _head_length, _curr_length;
   474       int _next_arc;
   475       IntVector _candidates;
   476       ValueVector _cand_cost;
   477 
   478       // Functor class to compare arcs during sort of the candidate list
   479       class SortFunc
   480       {
   481       private:
   482         const ValueVector &_map;
   483       public:
   484         SortFunc(const ValueVector &map) : _map(map) {}
   485         bool operator()(int left, int right) {
   486           return _map[left] > _map[right];
   487         }
   488       };
   489 
   490       SortFunc _sort_func;
   491 
   492     public:
   493 
   494       // Constructor
   495       AlteringListPivotRule(NetworkSimplex &ns) :
   496         _source(ns._source), _target(ns._target),
   497         _cost(ns._cost), _state(ns._state), _pi(ns._pi),
   498         _in_arc(ns.in_arc), _arc_num(ns._arc_num),
   499         _next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
   500       {
   501         // The main parameters of the pivot rule
   502         const double BLOCK_SIZE_FACTOR = 1.5;
   503         const int MIN_BLOCK_SIZE = 10;
   504         const double HEAD_LENGTH_FACTOR = 0.1;
   505         const int MIN_HEAD_LENGTH = 3;
   506 
   507         _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)),
   508                                 MIN_BLOCK_SIZE );
   509         _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
   510                                  MIN_HEAD_LENGTH );
   511         _candidates.resize(_head_length + _block_size);
   512         _curr_length = 0;
   513       }
   514 
   515       // Find next entering arc
   516       bool findEnteringArc() {
   517         // Check the current candidate list
   518         int e;
   519         for (int i = 0; i < _curr_length; ++i) {
   520           e = _candidates[i];
   521           _cand_cost[e] = _state[e] *
   522             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   523           if (_cand_cost[e] >= 0) {
   524             _candidates[i--] = _candidates[--_curr_length];
   525           }
   526         }
   527 
   528         // Extend the list
   529         int cnt = _block_size;
   530         int last_arc = 0;
   531         int limit = _head_length;
   532 
   533         for (int e = _next_arc; e < _arc_num; ++e) {
   534           _cand_cost[e] = _state[e] *
   535             (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   536           if (_cand_cost[e] < 0) {
   537             _candidates[_curr_length++] = e;
   538             last_arc = e;
   539           }
   540           if (--cnt == 0) {
   541             if (_curr_length > limit) break;
   542             limit = 0;
   543             cnt = _block_size;
   544           }
   545         }
   546         if (_curr_length <= limit) {
   547           for (int e = 0; e < _next_arc; ++e) {
   548             _cand_cost[e] = _state[e] *
   549               (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
   550             if (_cand_cost[e] < 0) {
   551               _candidates[_curr_length++] = e;
   552               last_arc = e;
   553             }
   554             if (--cnt == 0) {
   555               if (_curr_length > limit) break;
   556               limit = 0;
   557               cnt = _block_size;
   558             }
   559           }
   560         }
   561         if (_curr_length == 0) return false;
   562         _next_arc = last_arc + 1;
   563 
   564         // Make heap of the candidate list (approximating a partial sort)
   565         make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   566                    _sort_func );
   567 
   568         // Pop the first element of the heap
   569         _in_arc = _candidates[0];
   570         pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
   571                   _sort_func );
   572         _curr_length = std::min(_head_length, _curr_length - 1);
   573         return true;
   574       }
   575 
   576     }; //class AlteringListPivotRule
   577 
   578   public:
   579 
   580     /// \brief Constructor.
   581     ///
   582     /// Constructor.
   583     ///
   584     /// \param graph The digraph the algorithm runs on.
   585     NetworkSimplex(const GR& graph) :
   586       _graph(graph),
   587       _plower(NULL), _pupper(NULL), _pcost(NULL),
   588       _psupply(NULL), _pstsup(false),
   589       _flow_map(NULL), _potential_map(NULL),
   590       _local_flow(false), _local_potential(false),
   591       _node_id(graph)
   592     {
   593       LEMON_ASSERT(std::numeric_limits<Value>::is_integer &&
   594                    std::numeric_limits<Value>::is_signed,
   595         "The value type of NetworkSimplex must be a signed integer");
   596     }
   597 
   598     /// Destructor.
   599     ~NetworkSimplex() {
   600       if (_local_flow) delete _flow_map;
   601       if (_local_potential) delete _potential_map;
   602     }
   603 
   604     /// \brief Set the lower bounds on the arcs.
   605     ///
   606     /// This function sets the lower bounds on the arcs.
   607     /// If neither this function nor \ref boundMaps() is used before
   608     /// calling \ref run(), the lower bounds will be set to zero
   609     /// on all arcs.
   610     ///
   611     /// \param map An arc map storing the lower bounds.
   612     /// Its \c Value type must be convertible to the \c Value type
   613     /// of the algorithm.
   614     ///
   615     /// \return <tt>(*this)</tt>
   616     template <typename LOWER>
   617     NetworkSimplex& lowerMap(const LOWER& map) {
   618       delete _plower;
   619       _plower = new ValueArcMap(_graph);
   620       for (ArcIt a(_graph); a != INVALID; ++a) {
   621         (*_plower)[a] = map[a];
   622       }
   623       return *this;
   624     }
   625 
   626     /// \brief Set the upper bounds (capacities) on the arcs.
   627     ///
   628     /// This function sets the upper bounds (capacities) on the arcs.
   629     /// If none of the functions \ref upperMap(), \ref capacityMap()
   630     /// and \ref boundMaps() is used before calling \ref run(),
   631     /// the upper bounds (capacities) will be set to
   632     /// \c std::numeric_limits<Value>::max() on all arcs.
   633     ///
   634     /// \param map An arc map storing the upper bounds.
   635     /// Its \c Value type must be convertible to the \c Value type
   636     /// of the algorithm.
   637     ///
   638     /// \return <tt>(*this)</tt>
   639     template<typename UPPER>
   640     NetworkSimplex& upperMap(const UPPER& map) {
   641       delete _pupper;
   642       _pupper = new ValueArcMap(_graph);
   643       for (ArcIt a(_graph); a != INVALID; ++a) {
   644         (*_pupper)[a] = map[a];
   645       }
   646       return *this;
   647     }
   648 
   649     /// \brief Set the upper bounds (capacities) on the arcs.
   650     ///
   651     /// This function sets the upper bounds (capacities) on the arcs.
   652     /// It is just an alias for \ref upperMap().
   653     ///
   654     /// \return <tt>(*this)</tt>
   655     template<typename CAP>
   656     NetworkSimplex& capacityMap(const CAP& map) {
   657       return upperMap(map);
   658     }
   659 
   660     /// \brief Set the lower and upper bounds on the arcs.
   661     ///
   662     /// This function sets the lower and upper bounds on the arcs.
   663     /// If neither this function nor \ref lowerMap() is used before
   664     /// calling \ref run(), the lower bounds will be set to zero
   665     /// on all arcs.
   666     /// If none of the functions \ref upperMap(), \ref capacityMap()
   667     /// and \ref boundMaps() is used before calling \ref run(),
   668     /// the upper bounds (capacities) will be set to
   669     /// \c std::numeric_limits<Value>::max() on all arcs.
   670     ///
   671     /// \param lower An arc map storing the lower bounds.
   672     /// \param upper An arc map storing the upper bounds.
   673     ///
   674     /// The \c Value type of the maps must be convertible to the
   675     /// \c Value type of the algorithm.
   676     ///
   677     /// \note This function is just a shortcut of calling \ref lowerMap()
   678     /// and \ref upperMap() separately.
   679     ///
   680     /// \return <tt>(*this)</tt>
   681     template <typename LOWER, typename UPPER>
   682     NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) {
   683       return lowerMap(lower).upperMap(upper);
   684     }
   685 
   686     /// \brief Set the costs of the arcs.
   687     ///
   688     /// This function sets the costs of the arcs.
   689     /// If it is not used before calling \ref run(), the costs
   690     /// will be set to \c 1 on all arcs.
   691     ///
   692     /// \param map An arc map storing the costs.
   693     /// Its \c Value type must be convertible to the \c Value type
   694     /// of the algorithm.
   695     ///
   696     /// \return <tt>(*this)</tt>
   697     template<typename COST>
   698     NetworkSimplex& costMap(const COST& map) {
   699       delete _pcost;
   700       _pcost = new ValueArcMap(_graph);
   701       for (ArcIt a(_graph); a != INVALID; ++a) {
   702         (*_pcost)[a] = map[a];
   703       }
   704       return *this;
   705     }
   706 
   707     /// \brief Set the supply values of the nodes.
   708     ///
   709     /// This function sets the supply values of the nodes.
   710     /// If neither this function nor \ref stSupply() is used before
   711     /// calling \ref run(), the supply of each node will be set to zero.
   712     /// (It makes sense only if non-zero lower bounds are given.)
   713     ///
   714     /// \param map A node map storing the supply values.
   715     /// Its \c Value type must be convertible to the \c Value type
   716     /// of the algorithm.
   717     ///
   718     /// \return <tt>(*this)</tt>
   719     template<typename SUP>
   720     NetworkSimplex& supplyMap(const SUP& map) {
   721       delete _psupply;
   722       _pstsup = false;
   723       _psupply = new ValueNodeMap(_graph);
   724       for (NodeIt n(_graph); n != INVALID; ++n) {
   725         (*_psupply)[n] = map[n];
   726       }
   727       return *this;
   728     }
   729 
   730     /// \brief Set single source and target nodes and a supply value.
   731     ///
   732     /// This function sets a single source node and a single target node
   733     /// and the required flow value.
   734     /// If neither this function nor \ref supplyMap() is used before
   735     /// calling \ref run(), the supply of each node will be set to zero.
   736     /// (It makes sense only if non-zero lower bounds are given.)
   737     ///
   738     /// \param s The source node.
   739     /// \param t The target node.
   740     /// \param k The required amount of flow from node \c s to node \c t
   741     /// (i.e. the supply of \c s and the demand of \c t).
   742     ///
   743     /// \return <tt>(*this)</tt>
   744     NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
   745       delete _psupply;
   746       _psupply = NULL;
   747       _pstsup = true;
   748       _psource = s;
   749       _ptarget = t;
   750       _pstflow = k;
   751       return *this;
   752     }
   753 
   754     /// \brief Set the flow map.
   755     ///
   756     /// This function sets the flow map.
   757     /// If it is not used before calling \ref run(), an instance will
   758     /// be allocated automatically. The destructor deallocates this
   759     /// automatically allocated map, of course.
   760     ///
   761     /// \return <tt>(*this)</tt>
   762     NetworkSimplex& flowMap(FlowMap& map) {
   763       if (_local_flow) {
   764         delete _flow_map;
   765         _local_flow = false;
   766       }
   767       _flow_map = &map;
   768       return *this;
   769     }
   770 
   771     /// \brief Set the potential map.
   772     ///
   773     /// This function sets the potential map, which is used for storing
   774     /// the dual solution.
   775     /// If it is not used before calling \ref run(), an instance will
   776     /// be allocated automatically. The destructor deallocates this
   777     /// automatically allocated map, of course.
   778     ///
   779     /// \return <tt>(*this)</tt>
   780     NetworkSimplex& potentialMap(PotentialMap& map) {
   781       if (_local_potential) {
   782         delete _potential_map;
   783         _local_potential = false;
   784       }
   785       _potential_map = &map;
   786       return *this;
   787     }
   788 
   789     /// \name Execution Control
   790     /// The algorithm can be executed using \ref run().
   791 
   792     /// @{
   793 
   794     /// \brief Run the algorithm.
   795     ///
   796     /// This function runs the algorithm.
   797     /// The paramters can be specified using \ref lowerMap(),
   798     /// \ref upperMap(), \ref capacityMap(), \ref boundMaps(),
   799     /// \ref costMap(), \ref supplyMap() and \ref stSupply()
   800     /// functions. For example,
   801     /// \code
   802     ///   NetworkSimplex<ListDigraph> ns(graph);
   803     ///   ns.boundMaps(lower, upper).costMap(cost)
   804     ///     .supplyMap(sup).run();
   805     /// \endcode
   806     ///
   807     /// This function can be called more than once. All the parameters
   808     /// that have been given are kept for the next call, unless
   809     /// \ref reset() is called, thus only the modified parameters
   810     /// have to be set again. See \ref reset() for examples.
   811     ///
   812     /// \param pivot_rule The pivot rule that will be used during the
   813     /// algorithm. For more information see \ref PivotRule.
   814     ///
   815     /// \return \c true if a feasible flow can be found.
   816     bool run(PivotRule pivot_rule = BLOCK_SEARCH) {
   817       return init() && start(pivot_rule);
   818     }
   819 
   820     /// \brief Reset all the parameters that have been given before.
   821     ///
   822     /// This function resets all the paramaters that have been given
   823     /// using \ref lowerMap(), \ref upperMap(), \ref capacityMap(),
   824     /// \ref boundMaps(), \ref costMap(), \ref supplyMap() and
   825     /// \ref stSupply() functions before.
   826     ///
   827     /// It is useful for multiple run() calls. If this function is not
   828     /// used, all the parameters given before are kept for the next
   829     /// \ref run() call.
   830     ///
   831     /// For example,
   832     /// \code
   833     ///   NetworkSimplex<ListDigraph> ns(graph);
   834     ///
   835     ///   // First run
   836     ///   ns.lowerMap(lower).capacityMap(cap).costMap(cost)
   837     ///     .supplyMap(sup).run();
   838     ///
   839     ///   // Run again with modified cost map (reset() is not called,
   840     ///   // so only the cost map have to be set again)
   841     ///   cost[e] += 100;
   842     ///   ns.costMap(cost).run();
   843     ///
   844     ///   // Run again from scratch using reset()
   845     ///   // (the lower bounds will be set to zero on all arcs)
   846     ///   ns.reset();
   847     ///   ns.capacityMap(cap).costMap(cost)
   848     ///     .supplyMap(sup).run();
   849     /// \endcode
   850     ///
   851     /// \return <tt>(*this)</tt>
   852     NetworkSimplex& reset() {
   853       delete _plower;
   854       delete _pupper;
   855       delete _pcost;
   856       delete _psupply;
   857       _plower = NULL;
   858       _pupper = NULL;
   859       _pcost = NULL;
   860       _psupply = NULL;
   861       _pstsup = false;
   862       return *this;
   863     }
   864 
   865     /// @}
   866 
   867     /// \name Query Functions
   868     /// The results of the algorithm can be obtained using these
   869     /// functions.\n
   870     /// The \ref run() function must be called before using them.
   871 
   872     /// @{
   873 
   874     /// \brief Return the total cost of the found flow.
   875     ///
   876     /// This function returns the total cost of the found flow.
   877     /// The complexity of the function is \f$ O(e) \f$.
   878     ///
   879     /// \note The return type of the function can be specified as a
   880     /// template parameter. For example,
   881     /// \code
   882     ///   ns.totalCost<double>();
   883     /// \endcode
   884     /// It is useful if the total cost cannot be stored in the \c Value
   885     /// type of the algorithm, which is the default return type of the
   886     /// function.
   887     ///
   888     /// \pre \ref run() must be called before using this function.
   889     template <typename Num>
   890     Num totalCost() const {
   891       Num c = 0;
   892       if (_pcost) {
   893         for (ArcIt e(_graph); e != INVALID; ++e)
   894           c += (*_flow_map)[e] * (*_pcost)[e];
   895       } else {
   896         for (ArcIt e(_graph); e != INVALID; ++e)
   897           c += (*_flow_map)[e];
   898       }
   899       return c;
   900     }
   901 
   902 #ifndef DOXYGEN
   903     Value totalCost() const {
   904       return totalCost<Value>();
   905     }
   906 #endif
   907 
   908     /// \brief Return the flow on the given arc.
   909     ///
   910     /// This function returns the flow on the given arc.
   911     ///
   912     /// \pre \ref run() must be called before using this function.
   913     Value flow(const Arc& a) const {
   914       return (*_flow_map)[a];
   915     }
   916 
   917     /// \brief Return a const reference to the flow map.
   918     ///
   919     /// This function returns a const reference to an arc map storing
   920     /// the found flow.
   921     ///
   922     /// \pre \ref run() must be called before using this function.
   923     const FlowMap& flowMap() const {
   924       return *_flow_map;
   925     }
   926 
   927     /// \brief Return the potential (dual value) of the given node.
   928     ///
   929     /// This function returns the potential (dual value) of the
   930     /// given node.
   931     ///
   932     /// \pre \ref run() must be called before using this function.
   933     Value potential(const Node& n) const {
   934       return (*_potential_map)[n];
   935     }
   936 
   937     /// \brief Return a const reference to the potential map
   938     /// (the dual solution).
   939     ///
   940     /// This function returns a const reference to a node map storing
   941     /// the found potentials, which form the dual solution of the
   942     /// \ref min_cost_flow "minimum cost flow" problem.
   943     ///
   944     /// \pre \ref run() must be called before using this function.
   945     const PotentialMap& potentialMap() const {
   946       return *_potential_map;
   947     }
   948 
   949     /// @}
   950 
   951   private:
   952 
   953     // Initialize internal data structures
   954     bool init() {
   955       // Initialize result maps
   956       if (!_flow_map) {
   957         _flow_map = new FlowMap(_graph);
   958         _local_flow = true;
   959       }
   960       if (!_potential_map) {
   961         _potential_map = new PotentialMap(_graph);
   962         _local_potential = true;
   963       }
   964 
   965       // Initialize vectors
   966       _node_num = countNodes(_graph);
   967       _arc_num = countArcs(_graph);
   968       int all_node_num = _node_num + 1;
   969       int all_arc_num = _arc_num + _node_num;
   970       if (_node_num == 0) return false;
   971 
   972       _arc_ref.resize(_arc_num);
   973       _source.resize(all_arc_num);
   974       _target.resize(all_arc_num);
   975 
   976       _cap.resize(all_arc_num);
   977       _cost.resize(all_arc_num);
   978       _supply.resize(all_node_num);
   979       _flow.resize(all_arc_num);
   980       _pi.resize(all_node_num);
   981 
   982       _parent.resize(all_node_num);
   983       _pred.resize(all_node_num);
   984       _forward.resize(all_node_num);
   985       _thread.resize(all_node_num);
   986       _rev_thread.resize(all_node_num);
   987       _succ_num.resize(all_node_num);
   988       _last_succ.resize(all_node_num);
   989       _state.resize(all_arc_num);
   990 
   991       // Initialize node related data
   992       bool valid_supply = true;
   993       if (!_pstsup && !_psupply) {
   994         _pstsup = true;
   995         _psource = _ptarget = NodeIt(_graph);
   996         _pstflow = 0;
   997       }
   998       if (_psupply) {
   999         Value sum = 0;
  1000         int i = 0;
  1001         for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
  1002           _node_id[n] = i;
  1003           _supply[i] = (*_psupply)[n];
  1004           sum += _supply[i];
  1005         }
  1006         valid_supply = (sum == 0);
  1007       } else {
  1008         int i = 0;
  1009         for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
  1010           _node_id[n] = i;
  1011           _supply[i] = 0;
  1012         }
  1013         _supply[_node_id[_psource]] =  _pstflow;
  1014         _supply[_node_id[_ptarget]]   = -_pstflow;
  1015       }
  1016       if (!valid_supply) return false;
  1017 
  1018       // Set data for the artificial root node
  1019       _root = _node_num;
  1020       _parent[_root] = -1;
  1021       _pred[_root] = -1;
  1022       _thread[_root] = 0;
  1023       _rev_thread[0] = _root;
  1024       _succ_num[_root] = all_node_num;
  1025       _last_succ[_root] = _root - 1;
  1026       _supply[_root] = 0;
  1027       _pi[_root] = 0;
  1028 
  1029       // Store the arcs in a mixed order
  1030       int k = std::max(int(sqrt(_arc_num)), 10);
  1031       int i = 0;
  1032       for (ArcIt e(_graph); e != INVALID; ++e) {
  1033         _arc_ref[i] = e;
  1034         if ((i += k) >= _arc_num) i = (i % k) + 1;
  1035       }
  1036 
  1037       // Initialize arc maps
  1038       if (_pupper && _pcost) {
  1039         for (int i = 0; i != _arc_num; ++i) {
  1040           Arc e = _arc_ref[i];
  1041           _source[i] = _node_id[_graph.source(e)];
  1042           _target[i] = _node_id[_graph.target(e)];
  1043           _cap[i] = (*_pupper)[e];
  1044           _cost[i] = (*_pcost)[e];
  1045           _flow[i] = 0;
  1046           _state[i] = STATE_LOWER;
  1047         }
  1048       } else {
  1049         for (int i = 0; i != _arc_num; ++i) {
  1050           Arc e = _arc_ref[i];
  1051           _source[i] = _node_id[_graph.source(e)];
  1052           _target[i] = _node_id[_graph.target(e)];
  1053           _flow[i] = 0;
  1054           _state[i] = STATE_LOWER;
  1055         }
  1056         if (_pupper) {
  1057           for (int i = 0; i != _arc_num; ++i)
  1058             _cap[i] = (*_pupper)[_arc_ref[i]];
  1059         } else {
  1060           Value val = std::numeric_limits<Value>::max();
  1061           for (int i = 0; i != _arc_num; ++i)
  1062             _cap[i] = val;
  1063         }
  1064         if (_pcost) {
  1065           for (int i = 0; i != _arc_num; ++i)
  1066             _cost[i] = (*_pcost)[_arc_ref[i]];
  1067         } else {
  1068           for (int i = 0; i != _arc_num; ++i)
  1069             _cost[i] = 1;
  1070         }
  1071       }
  1072 
  1073       // Remove non-zero lower bounds
  1074       if (_plower) {
  1075         for (int i = 0; i != _arc_num; ++i) {
  1076           Value c = (*_plower)[_arc_ref[i]];
  1077           if (c != 0) {
  1078             _cap[i] -= c;
  1079             _supply[_source[i]] -= c;
  1080             _supply[_target[i]] += c;
  1081           }
  1082         }
  1083       }
  1084 
  1085       // Add artificial arcs and initialize the spanning tree data structure
  1086       Value max_cap = std::numeric_limits<Value>::max();
  1087       Value max_cost = std::numeric_limits<Value>::max() / 4;
  1088       for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
  1089         _thread[u] = u + 1;
  1090         _rev_thread[u + 1] = u;
  1091         _succ_num[u] = 1;
  1092         _last_succ[u] = u;
  1093         _parent[u] = _root;
  1094         _pred[u] = e;
  1095         _cost[e] = max_cost;
  1096         _cap[e] = max_cap;
  1097         _state[e] = STATE_TREE;
  1098         if (_supply[u] >= 0) {
  1099           _flow[e] = _supply[u];
  1100           _forward[u] = true;
  1101           _pi[u] = -max_cost;
  1102         } else {
  1103           _flow[e] = -_supply[u];
  1104           _forward[u] = false;
  1105           _pi[u] = max_cost;
  1106         }
  1107       }
  1108 
  1109       return true;
  1110     }
  1111 
  1112     // Find the join node
  1113     void findJoinNode() {
  1114       int u = _source[in_arc];
  1115       int v = _target[in_arc];
  1116       while (u != v) {
  1117         if (_succ_num[u] < _succ_num[v]) {
  1118           u = _parent[u];
  1119         } else {
  1120           v = _parent[v];
  1121         }
  1122       }
  1123       join = u;
  1124     }
  1125 
  1126     // Find the leaving arc of the cycle and returns true if the
  1127     // leaving arc is not the same as the entering arc
  1128     bool findLeavingArc() {
  1129       // Initialize first and second nodes according to the direction
  1130       // of the cycle
  1131       if (_state[in_arc] == STATE_LOWER) {
  1132         first  = _source[in_arc];
  1133         second = _target[in_arc];
  1134       } else {
  1135         first  = _target[in_arc];
  1136         second = _source[in_arc];
  1137       }
  1138       delta = _cap[in_arc];
  1139       int result = 0;
  1140       Value d;
  1141       int e;
  1142 
  1143       // Search the cycle along the path form the first node to the root
  1144       for (int u = first; u != join; u = _parent[u]) {
  1145         e = _pred[u];
  1146         d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
  1147         if (d < delta) {
  1148           delta = d;
  1149           u_out = u;
  1150           result = 1;
  1151         }
  1152       }
  1153       // Search the cycle along the path form the second node to the root
  1154       for (int u = second; u != join; u = _parent[u]) {
  1155         e = _pred[u];
  1156         d = _forward[u] ? _cap[e] - _flow[e] : _flow[e];
  1157         if (d <= delta) {
  1158           delta = d;
  1159           u_out = u;
  1160           result = 2;
  1161         }
  1162       }
  1163 
  1164       if (result == 1) {
  1165         u_in = first;
  1166         v_in = second;
  1167       } else {
  1168         u_in = second;
  1169         v_in = first;
  1170       }
  1171       return result != 0;
  1172     }
  1173 
  1174     // Change _flow and _state vectors
  1175     void changeFlow(bool change) {
  1176       // Augment along the cycle
  1177       if (delta > 0) {
  1178         Value val = _state[in_arc] * delta;
  1179         _flow[in_arc] += val;
  1180         for (int u = _source[in_arc]; u != join; u = _parent[u]) {
  1181           _flow[_pred[u]] += _forward[u] ? -val : val;
  1182         }
  1183         for (int u = _target[in_arc]; u != join; u = _parent[u]) {
  1184           _flow[_pred[u]] += _forward[u] ? val : -val;
  1185         }
  1186       }
  1187       // Update the state of the entering and leaving arcs
  1188       if (change) {
  1189         _state[in_arc] = STATE_TREE;
  1190         _state[_pred[u_out]] =
  1191           (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
  1192       } else {
  1193         _state[in_arc] = -_state[in_arc];
  1194       }
  1195     }
  1196 
  1197     // Update the tree structure
  1198     void updateTreeStructure() {
  1199       int u, w;
  1200       int old_rev_thread = _rev_thread[u_out];
  1201       int old_succ_num = _succ_num[u_out];
  1202       int old_last_succ = _last_succ[u_out];
  1203       v_out = _parent[u_out];
  1204 
  1205       u = _last_succ[u_in];  // the last successor of u_in
  1206       right = _thread[u];    // the node after it
  1207 
  1208       // Handle the case when old_rev_thread equals to v_in
  1209       // (it also means that join and v_out coincide)
  1210       if (old_rev_thread == v_in) {
  1211         last = _thread[_last_succ[u_out]];
  1212       } else {
  1213         last = _thread[v_in];
  1214       }
  1215 
  1216       // Update _thread and _parent along the stem nodes (i.e. the nodes
  1217       // between u_in and u_out, whose parent have to be changed)
  1218       _thread[v_in] = stem = u_in;
  1219       _dirty_revs.clear();
  1220       _dirty_revs.push_back(v_in);
  1221       par_stem = v_in;
  1222       while (stem != u_out) {
  1223         // Insert the next stem node into the thread list
  1224         new_stem = _parent[stem];
  1225         _thread[u] = new_stem;
  1226         _dirty_revs.push_back(u);
  1227 
  1228         // Remove the subtree of stem from the thread list
  1229         w = _rev_thread[stem];
  1230         _thread[w] = right;
  1231         _rev_thread[right] = w;
  1232 
  1233         // Change the parent node and shift stem nodes
  1234         _parent[stem] = par_stem;
  1235         par_stem = stem;
  1236         stem = new_stem;
  1237 
  1238         // Update u and right
  1239         u = _last_succ[stem] == _last_succ[par_stem] ?
  1240           _rev_thread[par_stem] : _last_succ[stem];
  1241         right = _thread[u];
  1242       }
  1243       _parent[u_out] = par_stem;
  1244       _thread[u] = last;
  1245       _rev_thread[last] = u;
  1246       _last_succ[u_out] = u;
  1247 
  1248       // Remove the subtree of u_out from the thread list except for
  1249       // the case when old_rev_thread equals to v_in
  1250       // (it also means that join and v_out coincide)
  1251       if (old_rev_thread != v_in) {
  1252         _thread[old_rev_thread] = right;
  1253         _rev_thread[right] = old_rev_thread;
  1254       }
  1255 
  1256       // Update _rev_thread using the new _thread values
  1257       for (int i = 0; i < int(_dirty_revs.size()); ++i) {
  1258         u = _dirty_revs[i];
  1259         _rev_thread[_thread[u]] = u;
  1260       }
  1261 
  1262       // Update _pred, _forward, _last_succ and _succ_num for the
  1263       // stem nodes from u_out to u_in
  1264       int tmp_sc = 0, tmp_ls = _last_succ[u_out];
  1265       u = u_out;
  1266       while (u != u_in) {
  1267         w = _parent[u];
  1268         _pred[u] = _pred[w];
  1269         _forward[u] = !_forward[w];
  1270         tmp_sc += _succ_num[u] - _succ_num[w];
  1271         _succ_num[u] = tmp_sc;
  1272         _last_succ[w] = tmp_ls;
  1273         u = w;
  1274       }
  1275       _pred[u_in] = in_arc;
  1276       _forward[u_in] = (u_in == _source[in_arc]);
  1277       _succ_num[u_in] = old_succ_num;
  1278 
  1279       // Set limits for updating _last_succ form v_in and v_out
  1280       // towards the root
  1281       int up_limit_in = -1;
  1282       int up_limit_out = -1;
  1283       if (_last_succ[join] == v_in) {
  1284         up_limit_out = join;
  1285       } else {
  1286         up_limit_in = join;
  1287       }
  1288 
  1289       // Update _last_succ from v_in towards the root
  1290       for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
  1291            u = _parent[u]) {
  1292         _last_succ[u] = _last_succ[u_out];
  1293       }
  1294       // Update _last_succ from v_out towards the root
  1295       if (join != old_rev_thread && v_in != old_rev_thread) {
  1296         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1297              u = _parent[u]) {
  1298           _last_succ[u] = old_rev_thread;
  1299         }
  1300       } else {
  1301         for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
  1302              u = _parent[u]) {
  1303           _last_succ[u] = _last_succ[u_out];
  1304         }
  1305       }
  1306 
  1307       // Update _succ_num from v_in to join
  1308       for (u = v_in; u != join; u = _parent[u]) {
  1309         _succ_num[u] += old_succ_num;
  1310       }
  1311       // Update _succ_num from v_out to join
  1312       for (u = v_out; u != join; u = _parent[u]) {
  1313         _succ_num[u] -= old_succ_num;
  1314       }
  1315     }
  1316 
  1317     // Update potentials
  1318     void updatePotential() {
  1319       Value sigma = _forward[u_in] ?
  1320         _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
  1321         _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
  1322       if (_succ_num[u_in] > _node_num / 2) {
  1323         // Update in the upper subtree (which contains the root)
  1324         int before = _rev_thread[u_in];
  1325         int after = _thread[_last_succ[u_in]];
  1326         _thread[before] = after;
  1327         _pi[_root] -= sigma;
  1328         for (int u = _thread[_root]; u != _root; u = _thread[u]) {
  1329           _pi[u] -= sigma;
  1330         }
  1331         _thread[before] = u_in;
  1332       } else {
  1333         // Update in the lower subtree (which has been moved)
  1334         int end = _thread[_last_succ[u_in]];
  1335         for (int u = u_in; u != end; u = _thread[u]) {
  1336           _pi[u] += sigma;
  1337         }
  1338       }
  1339     }
  1340 
  1341     // Execute the algorithm
  1342     bool start(PivotRule pivot_rule) {
  1343       // Select the pivot rule implementation
  1344       switch (pivot_rule) {
  1345         case FIRST_ELIGIBLE:
  1346           return start<FirstEligiblePivotRule>();
  1347         case BEST_ELIGIBLE:
  1348           return start<BestEligiblePivotRule>();
  1349         case BLOCK_SEARCH:
  1350           return start<BlockSearchPivotRule>();
  1351         case CANDIDATE_LIST:
  1352           return start<CandidateListPivotRule>();
  1353         case ALTERING_LIST:
  1354           return start<AlteringListPivotRule>();
  1355       }
  1356       return false;
  1357     }
  1358 
  1359     template <typename PivotRuleImpl>
  1360     bool start() {
  1361       PivotRuleImpl pivot(*this);
  1362 
  1363       // Execute the Network Simplex algorithm
  1364       while (pivot.findEnteringArc()) {
  1365         findJoinNode();
  1366         bool change = findLeavingArc();
  1367         changeFlow(change);
  1368         if (change) {
  1369           updateTreeStructure();
  1370           updatePotential();
  1371         }
  1372       }
  1373 
  1374       // Check if the flow amount equals zero on all the artificial arcs
  1375       for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
  1376         if (_flow[e] > 0) return false;
  1377       }
  1378 
  1379       // Copy flow values to _flow_map
  1380       if (_plower) {
  1381         for (int i = 0; i != _arc_num; ++i) {
  1382           Arc e = _arc_ref[i];
  1383           _flow_map->set(e, (*_plower)[e] + _flow[i]);
  1384         }
  1385       } else {
  1386         for (int i = 0; i != _arc_num; ++i) {
  1387           _flow_map->set(_arc_ref[i], _flow[i]);
  1388         }
  1389       }
  1390       // Copy potential values to _potential_map
  1391       for (NodeIt n(_graph); n != INVALID; ++n) {
  1392         _potential_map->set(n, _pi[_node_id[n]]);
  1393       }
  1394 
  1395       return true;
  1396     }
  1397 
  1398   }; //class NetworkSimplex
  1399 
  1400   ///@}
  1401 
  1402 } //namespace lemon
  1403 
  1404 #endif //LEMON_NETWORK_SIMPLEX_H