lemon/cost_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sat, 20 Feb 2010 18:39:03 +0100
changeset 839 f3bc4e9b5f3a
parent 821 072ec8120958
child 840 2914b6f0fde0
permissions -rw-r--r--
New heuristics for MCF algorithms (#340)
and some implementation improvements.

- A useful heuristic is added to NetworkSimplex to make the
initial pivots faster.
- A powerful global update heuristic is added to CostScaling
and the implementation is reworked with various improvements.
- Better relabeling in CostScaling to improve numerical stability
and make the code faster.
- A small improvement is made in CapacityScaling for better
delta computation.
- Add notes to the classes about the usage of vector<char> instead
of vector<bool> for efficiency reasons.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow_algs
    23 /// \file
    24 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    25 
    26 #include <vector>
    27 #include <deque>
    28 #include <limits>
    29 
    30 #include <lemon/core.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/math.h>
    33 #include <lemon/static_graph.h>
    34 #include <lemon/circulation.h>
    35 #include <lemon/bellman_ford.h>
    36 
    37 namespace lemon {
    38 
    39   /// \brief Default traits class of CostScaling algorithm.
    40   ///
    41   /// Default traits class of CostScaling algorithm.
    42   /// \tparam GR Digraph type.
    43   /// \tparam V The number type used for flow amounts, capacity bounds
    44   /// and supply values. By default it is \c int.
    45   /// \tparam C The number type used for costs and potentials.
    46   /// By default it is the same as \c V.
    47 #ifdef DOXYGEN
    48   template <typename GR, typename V = int, typename C = V>
    49 #else
    50   template < typename GR, typename V = int, typename C = V,
    51              bool integer = std::numeric_limits<C>::is_integer >
    52 #endif
    53   struct CostScalingDefaultTraits
    54   {
    55     /// The type of the digraph
    56     typedef GR Digraph;
    57     /// The type of the flow amounts, capacity bounds and supply values
    58     typedef V Value;
    59     /// The type of the arc costs
    60     typedef C Cost;
    61 
    62     /// \brief The large cost type used for internal computations
    63     ///
    64     /// The large cost type used for internal computations.
    65     /// It is \c long \c long if the \c Cost type is integer,
    66     /// otherwise it is \c double.
    67     /// \c Cost must be convertible to \c LargeCost.
    68     typedef double LargeCost;
    69   };
    70 
    71   // Default traits class for integer cost types
    72   template <typename GR, typename V, typename C>
    73   struct CostScalingDefaultTraits<GR, V, C, true>
    74   {
    75     typedef GR Digraph;
    76     typedef V Value;
    77     typedef C Cost;
    78 #ifdef LEMON_HAVE_LONG_LONG
    79     typedef long long LargeCost;
    80 #else
    81     typedef long LargeCost;
    82 #endif
    83   };
    84 
    85 
    86   /// \addtogroup min_cost_flow_algs
    87   /// @{
    88 
    89   /// \brief Implementation of the Cost Scaling algorithm for
    90   /// finding a \ref min_cost_flow "minimum cost flow".
    91   ///
    92   /// \ref CostScaling implements a cost scaling algorithm that performs
    93   /// push/augment and relabel operations for finding a \ref min_cost_flow
    94   /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
    95   /// \ref goldberg97efficient, \ref bunnagel98efficient. 
    96   /// It is a highly efficient primal-dual solution method, which
    97   /// can be viewed as the generalization of the \ref Preflow
    98   /// "preflow push-relabel" algorithm for the maximum flow problem.
    99   ///
   100   /// Most of the parameters of the problem (except for the digraph)
   101   /// can be given using separate functions, and the algorithm can be
   102   /// executed using the \ref run() function. If some parameters are not
   103   /// specified, then default values will be used.
   104   ///
   105   /// \tparam GR The digraph type the algorithm runs on.
   106   /// \tparam V The number type used for flow amounts, capacity bounds
   107   /// and supply values in the algorithm. By default it is \c int.
   108   /// \tparam C The number type used for costs and potentials in the
   109   /// algorithm. By default it is the same as \c V.
   110   ///
   111   /// \warning Both number types must be signed and all input data must
   112   /// be integer.
   113   /// \warning This algorithm does not support negative costs for such
   114   /// arcs that have infinite upper bound.
   115   ///
   116   /// \note %CostScaling provides three different internal methods,
   117   /// from which the most efficient one is used by default.
   118   /// For more information, see \ref Method.
   119 #ifdef DOXYGEN
   120   template <typename GR, typename V, typename C, typename TR>
   121 #else
   122   template < typename GR, typename V = int, typename C = V,
   123              typename TR = CostScalingDefaultTraits<GR, V, C> >
   124 #endif
   125   class CostScaling
   126   {
   127   public:
   128 
   129     /// The type of the digraph
   130     typedef typename TR::Digraph Digraph;
   131     /// The type of the flow amounts, capacity bounds and supply values
   132     typedef typename TR::Value Value;
   133     /// The type of the arc costs
   134     typedef typename TR::Cost Cost;
   135 
   136     /// \brief The large cost type
   137     ///
   138     /// The large cost type used for internal computations.
   139     /// Using the \ref CostScalingDefaultTraits "default traits class",
   140     /// it is \c long \c long if the \c Cost type is integer,
   141     /// otherwise it is \c double.
   142     typedef typename TR::LargeCost LargeCost;
   143 
   144     /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
   145     typedef TR Traits;
   146 
   147   public:
   148 
   149     /// \brief Problem type constants for the \c run() function.
   150     ///
   151     /// Enum type containing the problem type constants that can be
   152     /// returned by the \ref run() function of the algorithm.
   153     enum ProblemType {
   154       /// The problem has no feasible solution (flow).
   155       INFEASIBLE,
   156       /// The problem has optimal solution (i.e. it is feasible and
   157       /// bounded), and the algorithm has found optimal flow and node
   158       /// potentials (primal and dual solutions).
   159       OPTIMAL,
   160       /// The digraph contains an arc of negative cost and infinite
   161       /// upper bound. It means that the objective function is unbounded
   162       /// on that arc, however, note that it could actually be bounded
   163       /// over the feasible flows, but this algroithm cannot handle
   164       /// these cases.
   165       UNBOUNDED
   166     };
   167 
   168     /// \brief Constants for selecting the internal method.
   169     ///
   170     /// Enum type containing constants for selecting the internal method
   171     /// for the \ref run() function.
   172     ///
   173     /// \ref CostScaling provides three internal methods that differ mainly
   174     /// in their base operations, which are used in conjunction with the
   175     /// relabel operation.
   176     /// By default, the so called \ref PARTIAL_AUGMENT
   177     /// "Partial Augment-Relabel" method is used, which proved to be
   178     /// the most efficient and the most robust on various test inputs.
   179     /// However, the other methods can be selected using the \ref run()
   180     /// function with the proper parameter.
   181     enum Method {
   182       /// Local push operations are used, i.e. flow is moved only on one
   183       /// admissible arc at once.
   184       PUSH,
   185       /// Augment operations are used, i.e. flow is moved on admissible
   186       /// paths from a node with excess to a node with deficit.
   187       AUGMENT,
   188       /// Partial augment operations are used, i.e. flow is moved on 
   189       /// admissible paths started from a node with excess, but the
   190       /// lengths of these paths are limited. This method can be viewed
   191       /// as a combined version of the previous two operations.
   192       PARTIAL_AUGMENT
   193     };
   194 
   195   private:
   196 
   197     TEMPLATE_DIGRAPH_TYPEDEFS(GR);
   198 
   199     typedef std::vector<int> IntVector;
   200     typedef std::vector<Value> ValueVector;
   201     typedef std::vector<Cost> CostVector;
   202     typedef std::vector<LargeCost> LargeCostVector;
   203     typedef std::vector<char> BoolVector;
   204     // Note: vector<char> is used instead of vector<bool> for efficiency reasons
   205 
   206   private:
   207   
   208     template <typename KT, typename VT>
   209     class StaticVectorMap {
   210     public:
   211       typedef KT Key;
   212       typedef VT Value;
   213       
   214       StaticVectorMap(std::vector<Value>& v) : _v(v) {}
   215       
   216       const Value& operator[](const Key& key) const {
   217         return _v[StaticDigraph::id(key)];
   218       }
   219 
   220       Value& operator[](const Key& key) {
   221         return _v[StaticDigraph::id(key)];
   222       }
   223       
   224       void set(const Key& key, const Value& val) {
   225         _v[StaticDigraph::id(key)] = val;
   226       }
   227 
   228     private:
   229       std::vector<Value>& _v;
   230     };
   231 
   232     typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
   233     typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
   234 
   235   private:
   236 
   237     // Data related to the underlying digraph
   238     const GR &_graph;
   239     int _node_num;
   240     int _arc_num;
   241     int _res_node_num;
   242     int _res_arc_num;
   243     int _root;
   244 
   245     // Parameters of the problem
   246     bool _have_lower;
   247     Value _sum_supply;
   248     int _sup_node_num;
   249 
   250     // Data structures for storing the digraph
   251     IntNodeMap _node_id;
   252     IntArcMap _arc_idf;
   253     IntArcMap _arc_idb;
   254     IntVector _first_out;
   255     BoolVector _forward;
   256     IntVector _source;
   257     IntVector _target;
   258     IntVector _reverse;
   259 
   260     // Node and arc data
   261     ValueVector _lower;
   262     ValueVector _upper;
   263     CostVector _scost;
   264     ValueVector _supply;
   265 
   266     ValueVector _res_cap;
   267     LargeCostVector _cost;
   268     LargeCostVector _pi;
   269     ValueVector _excess;
   270     IntVector _next_out;
   271     std::deque<int> _active_nodes;
   272 
   273     // Data for scaling
   274     LargeCost _epsilon;
   275     int _alpha;
   276 
   277     IntVector _buckets;
   278     IntVector _bucket_next;
   279     IntVector _bucket_prev;
   280     IntVector _rank;
   281     int _max_rank;
   282   
   283     // Data for a StaticDigraph structure
   284     typedef std::pair<int, int> IntPair;
   285     StaticDigraph _sgr;
   286     std::vector<IntPair> _arc_vec;
   287     std::vector<LargeCost> _cost_vec;
   288     LargeCostArcMap _cost_map;
   289     LargeCostNodeMap _pi_map;
   290   
   291   public:
   292   
   293     /// \brief Constant for infinite upper bounds (capacities).
   294     ///
   295     /// Constant for infinite upper bounds (capacities).
   296     /// It is \c std::numeric_limits<Value>::infinity() if available,
   297     /// \c std::numeric_limits<Value>::max() otherwise.
   298     const Value INF;
   299 
   300   public:
   301 
   302     /// \name Named Template Parameters
   303     /// @{
   304 
   305     template <typename T>
   306     struct SetLargeCostTraits : public Traits {
   307       typedef T LargeCost;
   308     };
   309 
   310     /// \brief \ref named-templ-param "Named parameter" for setting
   311     /// \c LargeCost type.
   312     ///
   313     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   314     /// type, which is used for internal computations in the algorithm.
   315     /// \c Cost must be convertible to \c LargeCost.
   316     template <typename T>
   317     struct SetLargeCost
   318       : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
   319       typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
   320     };
   321 
   322     /// @}
   323 
   324   public:
   325 
   326     /// \brief Constructor.
   327     ///
   328     /// The constructor of the class.
   329     ///
   330     /// \param graph The digraph the algorithm runs on.
   331     CostScaling(const GR& graph) :
   332       _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
   333       _cost_map(_cost_vec), _pi_map(_pi),
   334       INF(std::numeric_limits<Value>::has_infinity ?
   335           std::numeric_limits<Value>::infinity() :
   336           std::numeric_limits<Value>::max())
   337     {
   338       // Check the number types
   339       LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
   340         "The flow type of CostScaling must be signed");
   341       LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
   342         "The cost type of CostScaling must be signed");
   343 
   344       // Resize vectors
   345       _node_num = countNodes(_graph);
   346       _arc_num = countArcs(_graph);
   347       _res_node_num = _node_num + 1;
   348       _res_arc_num = 2 * (_arc_num + _node_num);
   349       _root = _node_num;
   350 
   351       _first_out.resize(_res_node_num + 1);
   352       _forward.resize(_res_arc_num);
   353       _source.resize(_res_arc_num);
   354       _target.resize(_res_arc_num);
   355       _reverse.resize(_res_arc_num);
   356 
   357       _lower.resize(_res_arc_num);
   358       _upper.resize(_res_arc_num);
   359       _scost.resize(_res_arc_num);
   360       _supply.resize(_res_node_num);
   361       
   362       _res_cap.resize(_res_arc_num);
   363       _cost.resize(_res_arc_num);
   364       _pi.resize(_res_node_num);
   365       _excess.resize(_res_node_num);
   366       _next_out.resize(_res_node_num);
   367 
   368       _arc_vec.reserve(_res_arc_num);
   369       _cost_vec.reserve(_res_arc_num);
   370 
   371       // Copy the graph
   372       int i = 0, j = 0, k = 2 * _arc_num + _node_num;
   373       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   374         _node_id[n] = i;
   375       }
   376       i = 0;
   377       for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
   378         _first_out[i] = j;
   379         for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   380           _arc_idf[a] = j;
   381           _forward[j] = true;
   382           _source[j] = i;
   383           _target[j] = _node_id[_graph.runningNode(a)];
   384         }
   385         for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
   386           _arc_idb[a] = j;
   387           _forward[j] = false;
   388           _source[j] = i;
   389           _target[j] = _node_id[_graph.runningNode(a)];
   390         }
   391         _forward[j] = false;
   392         _source[j] = i;
   393         _target[j] = _root;
   394         _reverse[j] = k;
   395         _forward[k] = true;
   396         _source[k] = _root;
   397         _target[k] = i;
   398         _reverse[k] = j;
   399         ++j; ++k;
   400       }
   401       _first_out[i] = j;
   402       _first_out[_res_node_num] = k;
   403       for (ArcIt a(_graph); a != INVALID; ++a) {
   404         int fi = _arc_idf[a];
   405         int bi = _arc_idb[a];
   406         _reverse[fi] = bi;
   407         _reverse[bi] = fi;
   408       }
   409       
   410       // Reset parameters
   411       reset();
   412     }
   413 
   414     /// \name Parameters
   415     /// The parameters of the algorithm can be specified using these
   416     /// functions.
   417 
   418     /// @{
   419 
   420     /// \brief Set the lower bounds on the arcs.
   421     ///
   422     /// This function sets the lower bounds on the arcs.
   423     /// If it is not used before calling \ref run(), the lower bounds
   424     /// will be set to zero on all arcs.
   425     ///
   426     /// \param map An arc map storing the lower bounds.
   427     /// Its \c Value type must be convertible to the \c Value type
   428     /// of the algorithm.
   429     ///
   430     /// \return <tt>(*this)</tt>
   431     template <typename LowerMap>
   432     CostScaling& lowerMap(const LowerMap& map) {
   433       _have_lower = true;
   434       for (ArcIt a(_graph); a != INVALID; ++a) {
   435         _lower[_arc_idf[a]] = map[a];
   436         _lower[_arc_idb[a]] = map[a];
   437       }
   438       return *this;
   439     }
   440 
   441     /// \brief Set the upper bounds (capacities) on the arcs.
   442     ///
   443     /// This function sets the upper bounds (capacities) on the arcs.
   444     /// If it is not used before calling \ref run(), the upper bounds
   445     /// will be set to \ref INF on all arcs (i.e. the flow value will be
   446     /// unbounded from above).
   447     ///
   448     /// \param map An arc map storing the upper bounds.
   449     /// Its \c Value type must be convertible to the \c Value type
   450     /// of the algorithm.
   451     ///
   452     /// \return <tt>(*this)</tt>
   453     template<typename UpperMap>
   454     CostScaling& upperMap(const UpperMap& map) {
   455       for (ArcIt a(_graph); a != INVALID; ++a) {
   456         _upper[_arc_idf[a]] = map[a];
   457       }
   458       return *this;
   459     }
   460 
   461     /// \brief Set the costs of the arcs.
   462     ///
   463     /// This function sets the costs of the arcs.
   464     /// If it is not used before calling \ref run(), the costs
   465     /// will be set to \c 1 on all arcs.
   466     ///
   467     /// \param map An arc map storing the costs.
   468     /// Its \c Value type must be convertible to the \c Cost type
   469     /// of the algorithm.
   470     ///
   471     /// \return <tt>(*this)</tt>
   472     template<typename CostMap>
   473     CostScaling& costMap(const CostMap& map) {
   474       for (ArcIt a(_graph); a != INVALID; ++a) {
   475         _scost[_arc_idf[a]] =  map[a];
   476         _scost[_arc_idb[a]] = -map[a];
   477       }
   478       return *this;
   479     }
   480 
   481     /// \brief Set the supply values of the nodes.
   482     ///
   483     /// This function sets the supply values of the nodes.
   484     /// If neither this function nor \ref stSupply() is used before
   485     /// calling \ref run(), the supply of each node will be set to zero.
   486     ///
   487     /// \param map A node map storing the supply values.
   488     /// Its \c Value type must be convertible to the \c Value type
   489     /// of the algorithm.
   490     ///
   491     /// \return <tt>(*this)</tt>
   492     template<typename SupplyMap>
   493     CostScaling& supplyMap(const SupplyMap& map) {
   494       for (NodeIt n(_graph); n != INVALID; ++n) {
   495         _supply[_node_id[n]] = map[n];
   496       }
   497       return *this;
   498     }
   499 
   500     /// \brief Set single source and target nodes and a supply value.
   501     ///
   502     /// This function sets a single source node and a single target node
   503     /// and the required flow value.
   504     /// If neither this function nor \ref supplyMap() is used before
   505     /// calling \ref run(), the supply of each node will be set to zero.
   506     ///
   507     /// Using this function has the same effect as using \ref supplyMap()
   508     /// with such a map in which \c k is assigned to \c s, \c -k is
   509     /// assigned to \c t and all other nodes have zero supply value.
   510     ///
   511     /// \param s The source node.
   512     /// \param t The target node.
   513     /// \param k The required amount of flow from node \c s to node \c t
   514     /// (i.e. the supply of \c s and the demand of \c t).
   515     ///
   516     /// \return <tt>(*this)</tt>
   517     CostScaling& stSupply(const Node& s, const Node& t, Value k) {
   518       for (int i = 0; i != _res_node_num; ++i) {
   519         _supply[i] = 0;
   520       }
   521       _supply[_node_id[s]] =  k;
   522       _supply[_node_id[t]] = -k;
   523       return *this;
   524     }
   525     
   526     /// @}
   527 
   528     /// \name Execution control
   529     /// The algorithm can be executed using \ref run().
   530 
   531     /// @{
   532 
   533     /// \brief Run the algorithm.
   534     ///
   535     /// This function runs the algorithm.
   536     /// The paramters can be specified using functions \ref lowerMap(),
   537     /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
   538     /// For example,
   539     /// \code
   540     ///   CostScaling<ListDigraph> cs(graph);
   541     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   542     ///     .supplyMap(sup).run();
   543     /// \endcode
   544     ///
   545     /// This function can be called more than once. All the parameters
   546     /// that have been given are kept for the next call, unless
   547     /// \ref reset() is called, thus only the modified parameters
   548     /// have to be set again. See \ref reset() for examples.
   549     /// However, the underlying digraph must not be modified after this
   550     /// class have been constructed, since it copies and extends the graph.
   551     ///
   552     /// \param method The internal method that will be used in the
   553     /// algorithm. For more information, see \ref Method.
   554     /// \param factor The cost scaling factor. It must be larger than one.
   555     ///
   556     /// \return \c INFEASIBLE if no feasible flow exists,
   557     /// \n \c OPTIMAL if the problem has optimal solution
   558     /// (i.e. it is feasible and bounded), and the algorithm has found
   559     /// optimal flow and node potentials (primal and dual solutions),
   560     /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
   561     /// and infinite upper bound. It means that the objective function
   562     /// is unbounded on that arc, however, note that it could actually be
   563     /// bounded over the feasible flows, but this algroithm cannot handle
   564     /// these cases.
   565     ///
   566     /// \see ProblemType, Method
   567     ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
   568       _alpha = factor;
   569       ProblemType pt = init();
   570       if (pt != OPTIMAL) return pt;
   571       start(method);
   572       return OPTIMAL;
   573     }
   574 
   575     /// \brief Reset all the parameters that have been given before.
   576     ///
   577     /// This function resets all the paramaters that have been given
   578     /// before using functions \ref lowerMap(), \ref upperMap(),
   579     /// \ref costMap(), \ref supplyMap(), \ref stSupply().
   580     ///
   581     /// It is useful for multiple run() calls. If this function is not
   582     /// used, all the parameters given before are kept for the next
   583     /// \ref run() call.
   584     /// However, the underlying digraph must not be modified after this
   585     /// class have been constructed, since it copies and extends the graph.
   586     ///
   587     /// For example,
   588     /// \code
   589     ///   CostScaling<ListDigraph> cs(graph);
   590     ///
   591     ///   // First run
   592     ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
   593     ///     .supplyMap(sup).run();
   594     ///
   595     ///   // Run again with modified cost map (reset() is not called,
   596     ///   // so only the cost map have to be set again)
   597     ///   cost[e] += 100;
   598     ///   cs.costMap(cost).run();
   599     ///
   600     ///   // Run again from scratch using reset()
   601     ///   // (the lower bounds will be set to zero on all arcs)
   602     ///   cs.reset();
   603     ///   cs.upperMap(capacity).costMap(cost)
   604     ///     .supplyMap(sup).run();
   605     /// \endcode
   606     ///
   607     /// \return <tt>(*this)</tt>
   608     CostScaling& reset() {
   609       for (int i = 0; i != _res_node_num; ++i) {
   610         _supply[i] = 0;
   611       }
   612       int limit = _first_out[_root];
   613       for (int j = 0; j != limit; ++j) {
   614         _lower[j] = 0;
   615         _upper[j] = INF;
   616         _scost[j] = _forward[j] ? 1 : -1;
   617       }
   618       for (int j = limit; j != _res_arc_num; ++j) {
   619         _lower[j] = 0;
   620         _upper[j] = INF;
   621         _scost[j] = 0;
   622         _scost[_reverse[j]] = 0;
   623       }      
   624       _have_lower = false;
   625       return *this;
   626     }
   627 
   628     /// @}
   629 
   630     /// \name Query Functions
   631     /// The results of the algorithm can be obtained using these
   632     /// functions.\n
   633     /// The \ref run() function must be called before using them.
   634 
   635     /// @{
   636 
   637     /// \brief Return the total cost of the found flow.
   638     ///
   639     /// This function returns the total cost of the found flow.
   640     /// Its complexity is O(e).
   641     ///
   642     /// \note The return type of the function can be specified as a
   643     /// template parameter. For example,
   644     /// \code
   645     ///   cs.totalCost<double>();
   646     /// \endcode
   647     /// It is useful if the total cost cannot be stored in the \c Cost
   648     /// type of the algorithm, which is the default return type of the
   649     /// function.
   650     ///
   651     /// \pre \ref run() must be called before using this function.
   652     template <typename Number>
   653     Number totalCost() const {
   654       Number c = 0;
   655       for (ArcIt a(_graph); a != INVALID; ++a) {
   656         int i = _arc_idb[a];
   657         c += static_cast<Number>(_res_cap[i]) *
   658              (-static_cast<Number>(_scost[i]));
   659       }
   660       return c;
   661     }
   662 
   663 #ifndef DOXYGEN
   664     Cost totalCost() const {
   665       return totalCost<Cost>();
   666     }
   667 #endif
   668 
   669     /// \brief Return the flow on the given arc.
   670     ///
   671     /// This function returns the flow on the given arc.
   672     ///
   673     /// \pre \ref run() must be called before using this function.
   674     Value flow(const Arc& a) const {
   675       return _res_cap[_arc_idb[a]];
   676     }
   677 
   678     /// \brief Return the flow map (the primal solution).
   679     ///
   680     /// This function copies the flow value on each arc into the given
   681     /// map. The \c Value type of the algorithm must be convertible to
   682     /// the \c Value type of the map.
   683     ///
   684     /// \pre \ref run() must be called before using this function.
   685     template <typename FlowMap>
   686     void flowMap(FlowMap &map) const {
   687       for (ArcIt a(_graph); a != INVALID; ++a) {
   688         map.set(a, _res_cap[_arc_idb[a]]);
   689       }
   690     }
   691 
   692     /// \brief Return the potential (dual value) of the given node.
   693     ///
   694     /// This function returns the potential (dual value) of the
   695     /// given node.
   696     ///
   697     /// \pre \ref run() must be called before using this function.
   698     Cost potential(const Node& n) const {
   699       return static_cast<Cost>(_pi[_node_id[n]]);
   700     }
   701 
   702     /// \brief Return the potential map (the dual solution).
   703     ///
   704     /// This function copies the potential (dual value) of each node
   705     /// into the given map.
   706     /// The \c Cost type of the algorithm must be convertible to the
   707     /// \c Value type of the map.
   708     ///
   709     /// \pre \ref run() must be called before using this function.
   710     template <typename PotentialMap>
   711     void potentialMap(PotentialMap &map) const {
   712       for (NodeIt n(_graph); n != INVALID; ++n) {
   713         map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
   714       }
   715     }
   716 
   717     /// @}
   718 
   719   private:
   720 
   721     // Initialize the algorithm
   722     ProblemType init() {
   723       if (_res_node_num <= 1) return INFEASIBLE;
   724 
   725       // Check the sum of supply values
   726       _sum_supply = 0;
   727       for (int i = 0; i != _root; ++i) {
   728         _sum_supply += _supply[i];
   729       }
   730       if (_sum_supply > 0) return INFEASIBLE;
   731       
   732 
   733       // Initialize vectors
   734       for (int i = 0; i != _res_node_num; ++i) {
   735         _pi[i] = 0;
   736         _excess[i] = _supply[i];
   737       }
   738       
   739       // Remove infinite upper bounds and check negative arcs
   740       const Value MAX = std::numeric_limits<Value>::max();
   741       int last_out;
   742       if (_have_lower) {
   743         for (int i = 0; i != _root; ++i) {
   744           last_out = _first_out[i+1];
   745           for (int j = _first_out[i]; j != last_out; ++j) {
   746             if (_forward[j]) {
   747               Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
   748               if (c >= MAX) return UNBOUNDED;
   749               _excess[i] -= c;
   750               _excess[_target[j]] += c;
   751             }
   752           }
   753         }
   754       } else {
   755         for (int i = 0; i != _root; ++i) {
   756           last_out = _first_out[i+1];
   757           for (int j = _first_out[i]; j != last_out; ++j) {
   758             if (_forward[j] && _scost[j] < 0) {
   759               Value c = _upper[j];
   760               if (c >= MAX) return UNBOUNDED;
   761               _excess[i] -= c;
   762               _excess[_target[j]] += c;
   763             }
   764           }
   765         }
   766       }
   767       Value ex, max_cap = 0;
   768       for (int i = 0; i != _res_node_num; ++i) {
   769         ex = _excess[i];
   770         _excess[i] = 0;
   771         if (ex < 0) max_cap -= ex;
   772       }
   773       for (int j = 0; j != _res_arc_num; ++j) {
   774         if (_upper[j] >= MAX) _upper[j] = max_cap;
   775       }
   776 
   777       // Initialize the large cost vector and the epsilon parameter
   778       _epsilon = 0;
   779       LargeCost lc;
   780       for (int i = 0; i != _root; ++i) {
   781         last_out = _first_out[i+1];
   782         for (int j = _first_out[i]; j != last_out; ++j) {
   783           lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
   784           _cost[j] = lc;
   785           if (lc > _epsilon) _epsilon = lc;
   786         }
   787       }
   788       _epsilon /= _alpha;
   789 
   790       // Initialize maps for Circulation and remove non-zero lower bounds
   791       ConstMap<Arc, Value> low(0);
   792       typedef typename Digraph::template ArcMap<Value> ValueArcMap;
   793       typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
   794       ValueArcMap cap(_graph), flow(_graph);
   795       ValueNodeMap sup(_graph);
   796       for (NodeIt n(_graph); n != INVALID; ++n) {
   797         sup[n] = _supply[_node_id[n]];
   798       }
   799       if (_have_lower) {
   800         for (ArcIt a(_graph); a != INVALID; ++a) {
   801           int j = _arc_idf[a];
   802           Value c = _lower[j];
   803           cap[a] = _upper[j] - c;
   804           sup[_graph.source(a)] -= c;
   805           sup[_graph.target(a)] += c;
   806         }
   807       } else {
   808         for (ArcIt a(_graph); a != INVALID; ++a) {
   809           cap[a] = _upper[_arc_idf[a]];
   810         }
   811       }
   812 
   813       _sup_node_num = 0;
   814       for (NodeIt n(_graph); n != INVALID; ++n) {
   815         if (sup[n] > 0) ++_sup_node_num;
   816       }
   817 
   818       // Find a feasible flow using Circulation
   819       Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
   820         circ(_graph, low, cap, sup);
   821       if (!circ.flowMap(flow).run()) return INFEASIBLE;
   822 
   823       // Set residual capacities and handle GEQ supply type
   824       if (_sum_supply < 0) {
   825         for (ArcIt a(_graph); a != INVALID; ++a) {
   826           Value fa = flow[a];
   827           _res_cap[_arc_idf[a]] = cap[a] - fa;
   828           _res_cap[_arc_idb[a]] = fa;
   829           sup[_graph.source(a)] -= fa;
   830           sup[_graph.target(a)] += fa;
   831         }
   832         for (NodeIt n(_graph); n != INVALID; ++n) {
   833           _excess[_node_id[n]] = sup[n];
   834         }
   835         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   836           int u = _target[a];
   837           int ra = _reverse[a];
   838           _res_cap[a] = -_sum_supply + 1;
   839           _res_cap[ra] = -_excess[u];
   840           _cost[a] = 0;
   841           _cost[ra] = 0;
   842           _excess[u] = 0;
   843         }
   844       } else {
   845         for (ArcIt a(_graph); a != INVALID; ++a) {
   846           Value fa = flow[a];
   847           _res_cap[_arc_idf[a]] = cap[a] - fa;
   848           _res_cap[_arc_idb[a]] = fa;
   849         }
   850         for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
   851           int ra = _reverse[a];
   852           _res_cap[a] = 0;
   853           _res_cap[ra] = 0;
   854           _cost[a] = 0;
   855           _cost[ra] = 0;
   856         }
   857       }
   858       
   859       return OPTIMAL;
   860     }
   861 
   862     // Execute the algorithm and transform the results
   863     void start(Method method) {
   864       // Maximum path length for partial augment
   865       const int MAX_PATH_LENGTH = 4;
   866 
   867       // Initialize data structures for buckets      
   868       _max_rank = _alpha * _res_node_num;
   869       _buckets.resize(_max_rank);
   870       _bucket_next.resize(_res_node_num + 1);
   871       _bucket_prev.resize(_res_node_num + 1);
   872       _rank.resize(_res_node_num + 1);
   873   
   874       // Execute the algorithm
   875       switch (method) {
   876         case PUSH:
   877           startPush();
   878           break;
   879         case AUGMENT:
   880           startAugment();
   881           break;
   882         case PARTIAL_AUGMENT:
   883           startAugment(MAX_PATH_LENGTH);
   884           break;
   885       }
   886 
   887       // Compute node potentials for the original costs
   888       _arc_vec.clear();
   889       _cost_vec.clear();
   890       for (int j = 0; j != _res_arc_num; ++j) {
   891         if (_res_cap[j] > 0) {
   892           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   893           _cost_vec.push_back(_scost[j]);
   894         }
   895       }
   896       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   897 
   898       typename BellmanFord<StaticDigraph, LargeCostArcMap>
   899         ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
   900       bf.distMap(_pi_map);
   901       bf.init(0);
   902       bf.start();
   903 
   904       // Handle non-zero lower bounds
   905       if (_have_lower) {
   906         int limit = _first_out[_root];
   907         for (int j = 0; j != limit; ++j) {
   908           if (!_forward[j]) _res_cap[j] += _lower[j];
   909         }
   910       }
   911     }
   912     
   913     // Initialize a cost scaling phase
   914     void initPhase() {
   915       // Saturate arcs not satisfying the optimality condition
   916       for (int u = 0; u != _res_node_num; ++u) {
   917         int last_out = _first_out[u+1];
   918         LargeCost pi_u = _pi[u];
   919         for (int a = _first_out[u]; a != last_out; ++a) {
   920           int v = _target[a];
   921           if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
   922             Value delta = _res_cap[a];
   923             _excess[u] -= delta;
   924             _excess[v] += delta;
   925             _res_cap[a] = 0;
   926             _res_cap[_reverse[a]] += delta;
   927           }
   928         }
   929       }
   930       
   931       // Find active nodes (i.e. nodes with positive excess)
   932       for (int u = 0; u != _res_node_num; ++u) {
   933         if (_excess[u] > 0) _active_nodes.push_back(u);
   934       }
   935 
   936       // Initialize the next arcs
   937       for (int u = 0; u != _res_node_num; ++u) {
   938         _next_out[u] = _first_out[u];
   939       }
   940     }
   941     
   942     // Early termination heuristic
   943     bool earlyTermination() {
   944       const double EARLY_TERM_FACTOR = 3.0;
   945 
   946       // Build a static residual graph
   947       _arc_vec.clear();
   948       _cost_vec.clear();
   949       for (int j = 0; j != _res_arc_num; ++j) {
   950         if (_res_cap[j] > 0) {
   951           _arc_vec.push_back(IntPair(_source[j], _target[j]));
   952           _cost_vec.push_back(_cost[j] + 1);
   953         }
   954       }
   955       _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
   956 
   957       // Run Bellman-Ford algorithm to check if the current flow is optimal
   958       BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
   959       bf.init(0);
   960       bool done = false;
   961       int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
   962       for (int i = 0; i < K && !done; ++i) {
   963         done = bf.processNextWeakRound();
   964       }
   965       return done;
   966     }
   967 
   968     // Global potential update heuristic
   969     void globalUpdate() {
   970       int bucket_end = _root + 1;
   971     
   972       // Initialize buckets
   973       for (int r = 0; r != _max_rank; ++r) {
   974         _buckets[r] = bucket_end;
   975       }
   976       Value total_excess = 0;
   977       for (int i = 0; i != _res_node_num; ++i) {
   978         if (_excess[i] < 0) {
   979           _rank[i] = 0;
   980           _bucket_next[i] = _buckets[0];
   981           _bucket_prev[_buckets[0]] = i;
   982           _buckets[0] = i;
   983         } else {
   984           total_excess += _excess[i];
   985           _rank[i] = _max_rank;
   986         }
   987       }
   988       if (total_excess == 0) return;
   989 
   990       // Search the buckets
   991       int r = 0;
   992       for ( ; r != _max_rank; ++r) {
   993         while (_buckets[r] != bucket_end) {
   994           // Remove the first node from the current bucket
   995           int u = _buckets[r];
   996           _buckets[r] = _bucket_next[u];
   997           
   998           // Search the incomming arcs of u
   999           LargeCost pi_u = _pi[u];
  1000           int last_out = _first_out[u+1];
  1001           for (int a = _first_out[u]; a != last_out; ++a) {
  1002             int ra = _reverse[a];
  1003             if (_res_cap[ra] > 0) {
  1004               int v = _source[ra];
  1005               int old_rank_v = _rank[v];
  1006               if (r < old_rank_v) {
  1007                 // Compute the new rank of v
  1008                 LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
  1009                 int new_rank_v = old_rank_v;
  1010                 if (nrc < LargeCost(_max_rank))
  1011                   new_rank_v = r + 1 + int(nrc);
  1012                   
  1013                 // Change the rank of v
  1014                 if (new_rank_v < old_rank_v) {
  1015                   _rank[v] = new_rank_v;
  1016                   _next_out[v] = _first_out[v];
  1017                   
  1018                   // Remove v from its old bucket
  1019                   if (old_rank_v < _max_rank) {
  1020                     if (_buckets[old_rank_v] == v) {
  1021                       _buckets[old_rank_v] = _bucket_next[v];
  1022                     } else {
  1023                       _bucket_next[_bucket_prev[v]] = _bucket_next[v];
  1024                       _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
  1025                     }
  1026                   }
  1027                   
  1028                   // Insert v to its new bucket
  1029                   _bucket_next[v] = _buckets[new_rank_v];
  1030                   _bucket_prev[_buckets[new_rank_v]] = v;
  1031                   _buckets[new_rank_v] = v;
  1032                 }
  1033               }
  1034             }
  1035           }
  1036 
  1037           // Finish search if there are no more active nodes
  1038           if (_excess[u] > 0) {
  1039             total_excess -= _excess[u];
  1040             if (total_excess <= 0) break;
  1041           }
  1042         }
  1043         if (total_excess <= 0) break;
  1044       }
  1045       
  1046       // Relabel nodes
  1047       for (int u = 0; u != _res_node_num; ++u) {
  1048         int k = std::min(_rank[u], r);
  1049         if (k > 0) {
  1050           _pi[u] -= _epsilon * k;
  1051           _next_out[u] = _first_out[u];
  1052         }
  1053       }
  1054     }
  1055 
  1056     /// Execute the algorithm performing augment and relabel operations
  1057     void startAugment(int max_length = std::numeric_limits<int>::max()) {
  1058       // Paramters for heuristics
  1059       const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1060       const double GLOBAL_UPDATE_FACTOR = 3.0;
  1061 
  1062       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1063         (_res_node_num + _sup_node_num * _sup_node_num));
  1064       int next_update_limit = global_update_freq;
  1065       
  1066       int relabel_cnt = 0;
  1067       
  1068       // Perform cost scaling phases
  1069       std::vector<int> path;
  1070       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1071                                         1 : _epsilon / _alpha )
  1072       {
  1073         // Early termination heuristic
  1074         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1075           if (earlyTermination()) break;
  1076         }
  1077         
  1078         // Initialize current phase
  1079         initPhase();
  1080         
  1081         // Perform partial augment and relabel operations
  1082         while (true) {
  1083           // Select an active node (FIFO selection)
  1084           while (_active_nodes.size() > 0 &&
  1085                  _excess[_active_nodes.front()] <= 0) {
  1086             _active_nodes.pop_front();
  1087           }
  1088           if (_active_nodes.size() == 0) break;
  1089           int start = _active_nodes.front();
  1090 
  1091           // Find an augmenting path from the start node
  1092           path.clear();
  1093           int tip = start;
  1094           while (_excess[tip] >= 0 && int(path.size()) < max_length) {
  1095             int u;
  1096             LargeCost min_red_cost, rc, pi_tip = _pi[tip];
  1097             int last_out = _first_out[tip+1];
  1098             for (int a = _next_out[tip]; a != last_out; ++a) {
  1099               u = _target[a];
  1100               if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
  1101                 path.push_back(a);
  1102                 _next_out[tip] = a;
  1103                 tip = u;
  1104                 goto next_step;
  1105               }
  1106             }
  1107 
  1108             // Relabel tip node
  1109             min_red_cost = std::numeric_limits<LargeCost>::max();
  1110             if (tip != start) {
  1111               int ra = _reverse[path.back()];
  1112               min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
  1113             }
  1114             for (int a = _first_out[tip]; a != last_out; ++a) {
  1115               rc = _cost[a] + pi_tip - _pi[_target[a]];
  1116               if (_res_cap[a] > 0 && rc < min_red_cost) {
  1117                 min_red_cost = rc;
  1118               }
  1119             }
  1120             _pi[tip] -= min_red_cost + _epsilon;
  1121             _next_out[tip] = _first_out[tip];
  1122             ++relabel_cnt;
  1123 
  1124             // Step back
  1125             if (tip != start) {
  1126               tip = _source[path.back()];
  1127               path.pop_back();
  1128             }
  1129 
  1130           next_step: ;
  1131           }
  1132 
  1133           // Augment along the found path (as much flow as possible)
  1134           Value delta;
  1135           int pa, u, v = start;
  1136           for (int i = 0; i != int(path.size()); ++i) {
  1137             pa = path[i];
  1138             u = v;
  1139             v = _target[pa];
  1140             delta = std::min(_res_cap[pa], _excess[u]);
  1141             _res_cap[pa] -= delta;
  1142             _res_cap[_reverse[pa]] += delta;
  1143             _excess[u] -= delta;
  1144             _excess[v] += delta;
  1145             if (_excess[v] > 0 && _excess[v] <= delta)
  1146               _active_nodes.push_back(v);
  1147           }
  1148 
  1149           // Global update heuristic
  1150           if (relabel_cnt >= next_update_limit) {
  1151             globalUpdate();
  1152             next_update_limit += global_update_freq;
  1153           }
  1154         }
  1155       }
  1156     }
  1157 
  1158     /// Execute the algorithm performing push and relabel operations
  1159     void startPush() {
  1160       // Paramters for heuristics
  1161       const int EARLY_TERM_EPSILON_LIMIT = 1000;
  1162       const double GLOBAL_UPDATE_FACTOR = 2.0;
  1163 
  1164       const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
  1165         (_res_node_num + _sup_node_num * _sup_node_num));
  1166       int next_update_limit = global_update_freq;
  1167 
  1168       int relabel_cnt = 0;
  1169       
  1170       // Perform cost scaling phases
  1171       BoolVector hyper(_res_node_num, false);
  1172       LargeCostVector hyper_cost(_res_node_num);
  1173       for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
  1174                                         1 : _epsilon / _alpha )
  1175       {
  1176         // Early termination heuristic
  1177         if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
  1178           if (earlyTermination()) break;
  1179         }
  1180         
  1181         // Initialize current phase
  1182         initPhase();
  1183 
  1184         // Perform push and relabel operations
  1185         while (_active_nodes.size() > 0) {
  1186           LargeCost min_red_cost, rc, pi_n;
  1187           Value delta;
  1188           int n, t, a, last_out = _res_arc_num;
  1189 
  1190         next_node:
  1191           // Select an active node (FIFO selection)
  1192           n = _active_nodes.front();
  1193           last_out = _first_out[n+1];
  1194           pi_n = _pi[n];
  1195           
  1196           // Perform push operations if there are admissible arcs
  1197           if (_excess[n] > 0) {
  1198             for (a = _next_out[n]; a != last_out; ++a) {
  1199               if (_res_cap[a] > 0 &&
  1200                   _cost[a] + pi_n - _pi[_target[a]] < 0) {
  1201                 delta = std::min(_res_cap[a], _excess[n]);
  1202                 t = _target[a];
  1203 
  1204                 // Push-look-ahead heuristic
  1205                 Value ahead = -_excess[t];
  1206                 int last_out_t = _first_out[t+1];
  1207                 LargeCost pi_t = _pi[t];
  1208                 for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
  1209                   if (_res_cap[ta] > 0 && 
  1210                       _cost[ta] + pi_t - _pi[_target[ta]] < 0)
  1211                     ahead += _res_cap[ta];
  1212                   if (ahead >= delta) break;
  1213                 }
  1214                 if (ahead < 0) ahead = 0;
  1215 
  1216                 // Push flow along the arc
  1217                 if (ahead < delta && !hyper[t]) {
  1218                   _res_cap[a] -= ahead;
  1219                   _res_cap[_reverse[a]] += ahead;
  1220                   _excess[n] -= ahead;
  1221                   _excess[t] += ahead;
  1222                   _active_nodes.push_front(t);
  1223                   hyper[t] = true;
  1224                   hyper_cost[t] = _cost[a] + pi_n - pi_t;
  1225                   _next_out[n] = a;
  1226                   goto next_node;
  1227                 } else {
  1228                   _res_cap[a] -= delta;
  1229                   _res_cap[_reverse[a]] += delta;
  1230                   _excess[n] -= delta;
  1231                   _excess[t] += delta;
  1232                   if (_excess[t] > 0 && _excess[t] <= delta)
  1233                     _active_nodes.push_back(t);
  1234                 }
  1235 
  1236                 if (_excess[n] == 0) {
  1237                   _next_out[n] = a;
  1238                   goto remove_nodes;
  1239                 }
  1240               }
  1241             }
  1242             _next_out[n] = a;
  1243           }
  1244 
  1245           // Relabel the node if it is still active (or hyper)
  1246           if (_excess[n] > 0 || hyper[n]) {
  1247              min_red_cost = hyper[n] ? -hyper_cost[n] :
  1248                std::numeric_limits<LargeCost>::max();
  1249             for (int a = _first_out[n]; a != last_out; ++a) {
  1250               rc = _cost[a] + pi_n - _pi[_target[a]];
  1251               if (_res_cap[a] > 0 && rc < min_red_cost) {
  1252                 min_red_cost = rc;
  1253               }
  1254             }
  1255             _pi[n] -= min_red_cost + _epsilon;
  1256             _next_out[n] = _first_out[n];
  1257             hyper[n] = false;
  1258             ++relabel_cnt;
  1259           }
  1260         
  1261           // Remove nodes that are not active nor hyper
  1262         remove_nodes:
  1263           while ( _active_nodes.size() > 0 &&
  1264                   _excess[_active_nodes.front()] <= 0 &&
  1265                   !hyper[_active_nodes.front()] ) {
  1266             _active_nodes.pop_front();
  1267           }
  1268           
  1269           // Global update heuristic
  1270           if (relabel_cnt >= next_update_limit) {
  1271             globalUpdate();
  1272             for (int u = 0; u != _res_node_num; ++u)
  1273               hyper[u] = false;
  1274             next_update_limit += global_update_freq;
  1275           }
  1276         }
  1277       }
  1278     }
  1279 
  1280   }; //class CostScaling
  1281 
  1282   ///@}
  1283 
  1284 } //namespace lemon
  1285 
  1286 #endif //LEMON_COST_SCALING_H