diff -r 0c5dd7ceda03 -r 05357da973ce lemon/digraph_adaptor.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/digraph_adaptor.h Sun Nov 30 18:57:18 2008 +0100 @@ -0,0 +1,2530 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_DIGRAPH_ADAPTOR_H +#define LEMON_DIGRAPH_ADAPTOR_H + +///\ingroup graph_adaptors +///\file +///\brief Several digraph adaptors. +/// +///This file contains several useful digraph adaptor functions. + +#include +#include +#include + +#include +#include +#include +#include + +#include + +namespace lemon { + + ///\brief Base type for the Digraph Adaptors + /// + ///Base type for the Digraph Adaptors + /// + ///This is the base type for most of LEMON digraph adaptors. This + ///class implements a trivial digraph adaptor i.e. it only wraps the + ///functions and types of the digraph. The purpose of this class is + ///to make easier implementing digraph adaptors. E.g. if an adaptor + ///is considered which differs from the wrapped digraph only in some + ///of its functions or types, then it can be derived from + ///DigraphAdaptor, and only the differences should be implemented. + template + class DigraphAdaptorBase { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorBase Adaptor; + typedef Digraph ParentDigraph; + + protected: + Digraph* _digraph; + DigraphAdaptorBase() : _digraph(0) { } + void setDigraph(Digraph& digraph) { _digraph = &digraph; } + + public: + DigraphAdaptorBase(Digraph& digraph) : _digraph(&digraph) { } + + typedef typename Digraph::Node Node; + typedef typename Digraph::Arc Arc; + + void first(Node& i) const { _digraph->first(i); } + void first(Arc& i) const { _digraph->first(i); } + void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } + void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } + + void next(Node& i) const { _digraph->next(i); } + void next(Arc& i) const { _digraph->next(i); } + void nextIn(Arc& i) const { _digraph->nextIn(i); } + void nextOut(Arc& i) const { _digraph->nextOut(i); } + + Node source(const Arc& a) const { return _digraph->source(a); } + Node target(const Arc& a) const { return _digraph->target(a); } + + typedef NodeNumTagIndicator NodeNumTag; + int nodeNum() const { return _digraph->nodeNum(); } + + typedef EdgeNumTagIndicator EdgeNumTag; + int arcNum() const { return _digraph->arcNum(); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) { + return _digraph->findArc(u, v, prev); + } + + Node addNode() { return _digraph->addNode(); } + Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } + + void erase(const Node& n) const { _digraph->erase(n); } + void erase(const Arc& a) const { _digraph->erase(a); } + + void clear() const { _digraph->clear(); } + + int id(const Node& n) const { return _digraph->id(n); } + int id(const Arc& a) const { return _digraph->id(a); } + + Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } + Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } + + int maxNodeId() const { return _digraph->maxNodeId(); } + int maxArcId() const { return _digraph->maxArcId(); } + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } + + typedef typename ItemSetTraits::ItemNotifier ArcNotifier; + ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } + + template + class NodeMap : public Digraph::template NodeMap<_Value> { + public: + + typedef typename Digraph::template NodeMap<_Value> Parent; + + explicit NodeMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + NodeMap(const Adaptor& adaptor, const _Value& value) + : Parent(*adaptor._digraph, value) { } + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + template + class ArcMap : public Digraph::template ArcMap<_Value> { + public: + + typedef typename Digraph::template ArcMap<_Value> Parent; + + explicit ArcMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + ArcMap(const Adaptor& adaptor, const _Value& value) + : Parent(*adaptor._digraph, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + }; + + ///\ingroup graph_adaptors + /// + ///\brief Trivial Digraph Adaptor + /// + /// This class is an adaptor which does not change the adapted + /// digraph. It can be used only to test the digraph adaptors. + template + class DigraphAdaptor : + public DigraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorExtender > Parent; + protected: + DigraphAdaptor() : Parent() { } + + public: + explicit DigraphAdaptor(Digraph& digraph) { setDigraph(digraph); } + }; + + /// \brief Just gives back a digraph adaptor + /// + /// Just gives back a digraph adaptor which + /// should be provide original digraph + template + DigraphAdaptor + digraphAdaptor(const Digraph& digraph) { + return DigraphAdaptor(digraph); + } + + + template + class RevDigraphAdaptorBase : public DigraphAdaptorBase<_Digraph> { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorBase<_Digraph> Parent; + protected: + RevDigraphAdaptorBase() : Parent() { } + public: + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); } + void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); } + + void nextIn(Arc& a) const { Parent::nextOut(a); } + void nextOut(Arc& a) const { Parent::nextIn(a); } + + Node source(const Arc& a) const { return Parent::target(a); } + Node target(const Arc& a) const { return Parent::source(a); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) { + return Parent::findArc(v, u, prev); + } + + }; + + + ///\ingroup graph_adaptors + /// + ///\brief A digraph adaptor which reverses the orientation of the arcs. + /// + /// If \c g is defined as + ///\code + /// ListDigraph g; + ///\endcode + /// then + ///\code + /// RevDigraphAdaptor ga(g); + ///\endcode + /// implements the digraph obtained from \c g by + /// reversing the orientation of its arcs. + /// + /// A good example of using RevDigraphAdaptor is to decide that the + /// directed graph is wheter strongly connected or not. If from one + /// node each node is reachable and from each node is reachable this + /// node then and just then the digraph is strongly + /// connected. Instead of this condition we use a little bit + /// different. From one node each node ahould be reachable in the + /// digraph and in the reversed digraph. Now this condition can be + /// checked with the Dfs algorithm class and the RevDigraphAdaptor + /// algorithm class. + /// + /// And look at the code: + /// + ///\code + /// bool stronglyConnected(const Digraph& digraph) { + /// if (NodeIt(digraph) == INVALID) return true; + /// Dfs dfs(digraph); + /// dfs.run(NodeIt(digraph)); + /// for (NodeIt it(digraph); it != INVALID; ++it) { + /// if (!dfs.reached(it)) { + /// return false; + /// } + /// } + /// typedef RevDigraphAdaptor RDigraph; + /// RDigraph rdigraph(digraph); + /// DfsVisit rdfs(rdigraph); + /// rdfs.run(NodeIt(digraph)); + /// for (NodeIt it(digraph); it != INVALID; ++it) { + /// if (!rdfs.reached(it)) { + /// return false; + /// } + /// } + /// return true; + /// } + ///\endcode + template + class RevDigraphAdaptor : + public DigraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorExtender< + RevDigraphAdaptorBase<_Digraph> > Parent; + protected: + RevDigraphAdaptor() { } + public: + explicit RevDigraphAdaptor(Digraph& digraph) { + Parent::setDigraph(digraph); + } + }; + + /// \brief Just gives back a reverse digraph adaptor + /// + /// Just gives back a reverse digraph adaptor + template + RevDigraphAdaptor + revDigraphAdaptor(const Digraph& digraph) { + return RevDigraphAdaptor(digraph); + } + + template + class SubDigraphAdaptorBase : public DigraphAdaptorBase<_Digraph> { + public: + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + typedef _ArcFilterMap ArcFilterMap; + + typedef SubDigraphAdaptorBase Adaptor; + typedef DigraphAdaptorBase<_Digraph> Parent; + protected: + NodeFilterMap* _node_filter; + ArcFilterMap* _arc_filter; + SubDigraphAdaptorBase() + : Parent(), _node_filter(0), _arc_filter(0) { } + + void setNodeFilterMap(NodeFilterMap& node_filter) { + _node_filter = &node_filter; + } + void setArcFilterMap(ArcFilterMap& arc_filter) { + _arc_filter = &arc_filter; + } + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + void first(Node& i) const { + Parent::first(i); + while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); + } + + void first(Arc& i) const { + Parent::first(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)] + || !(*_node_filter)[Parent::target(i)])) Parent::next(i); + } + + void firstIn(Arc& i, const Node& n) const { + Parent::firstIn(i, n); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); + } + + void firstOut(Arc& i, const Node& n) const { + Parent::firstOut(i, n); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); + } + + void next(Node& i) const { + Parent::next(i); + while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); + } + + void next(Arc& i) const { + Parent::next(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)] + || !(*_node_filter)[Parent::target(i)])) Parent::next(i); + } + + void nextIn(Arc& i) const { + Parent::nextIn(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::source(i)])) Parent::nextIn(i); + } + + void nextOut(Arc& i) const { + Parent::nextOut(i); + while (i != INVALID && (!(*_arc_filter)[i] + || !(*_node_filter)[Parent::target(i)])) Parent::nextOut(i); + } + + ///\e + + /// This function hides \c n in the digraph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c n + /// to be false in the corresponding node-map. + void hide(const Node& n) const { _node_filter->set(n, false); } + + ///\e + + /// This function hides \c a in the digraph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c a + /// to be false in the corresponding arc-map. + void hide(const Arc& a) const { _arc_filter->set(a, false); } + + ///\e + + /// The value of \c n is set to be true in the node-map which stores + /// hide information. If \c n was hidden previuosly, then it is shown + /// again + void unHide(const Node& n) const { _node_filter->set(n, true); } + + ///\e + + /// The value of \c a is set to be true in the arc-map which stores + /// hide information. If \c a was hidden previuosly, then it is shown + /// again + void unHide(const Arc& a) const { _arc_filter->set(a, true); } + + /// Returns true if \c n is hidden. + + ///\e + /// + bool hidden(const Node& n) const { return !(*_node_filter)[n]; } + + /// Returns true if \c a is hidden. + + ///\e + /// + bool hidden(const Arc& a) const { return !(*_arc_filter)[a]; } + + typedef False NodeNumTag; + typedef False EdgeNumTag; + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& source, const Node& target, + const Arc& prev = INVALID) { + if (!(*_node_filter)[source] || !(*_node_filter)[target]) { + return INVALID; + } + Arc arc = Parent::findArc(source, target, prev); + while (arc != INVALID && !(*_arc_filter)[arc]) { + arc = Parent::findArc(source, target, arc); + } + return arc; + } + + template + class NodeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + NodeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + NodeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + ArcMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + ArcMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + }; + + template + class SubDigraphAdaptorBase<_Digraph, _NodeFilterMap, _ArcFilterMap, false> + : public DigraphAdaptorBase<_Digraph> { + public: + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + typedef _ArcFilterMap ArcFilterMap; + + typedef SubDigraphAdaptorBase Adaptor; + typedef DigraphAdaptorBase Parent; + protected: + NodeFilterMap* _node_filter; + ArcFilterMap* _arc_filter; + SubDigraphAdaptorBase() + : Parent(), _node_filter(0), _arc_filter(0) { } + + void setNodeFilterMap(NodeFilterMap& node_filter) { + _node_filter = &node_filter; + } + void setArcFilterMap(ArcFilterMap& arc_filter) { + _arc_filter = &arc_filter; + } + + public: + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + void first(Node& i) const { + Parent::first(i); + while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); + } + + void first(Arc& i) const { + Parent::first(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); + } + + void firstIn(Arc& i, const Node& n) const { + Parent::firstIn(i, n); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); + } + + void firstOut(Arc& i, const Node& n) const { + Parent::firstOut(i, n); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); + } + + void next(Node& i) const { + Parent::next(i); + while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); + } + void next(Arc& i) const { + Parent::next(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i); + } + void nextIn(Arc& i) const { + Parent::nextIn(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i); + } + + void nextOut(Arc& i) const { + Parent::nextOut(i); + while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i); + } + + ///\e + + /// This function hides \c n in the digraph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c n + /// to be false in the corresponding node-map. + void hide(const Node& n) const { _node_filter->set(n, false); } + + ///\e + + /// This function hides \c e in the digraph, i.e. the iteration + /// jumps over it. This is done by simply setting the value of \c e + /// to be false in the corresponding arc-map. + void hide(const Arc& e) const { _arc_filter->set(e, false); } + + ///\e + + /// The value of \c n is set to be true in the node-map which stores + /// hide information. If \c n was hidden previuosly, then it is shown + /// again + void unHide(const Node& n) const { _node_filter->set(n, true); } + + ///\e + + /// The value of \c e is set to be true in the arc-map which stores + /// hide information. If \c e was hidden previuosly, then it is shown + /// again + void unHide(const Arc& e) const { _arc_filter->set(e, true); } + + /// Returns true if \c n is hidden. + + ///\e + /// + bool hidden(const Node& n) const { return !(*_node_filter)[n]; } + + /// Returns true if \c n is hidden. + + ///\e + /// + bool hidden(const Arc& e) const { return !(*_arc_filter)[e]; } + + typedef False NodeNumTag; + typedef False EdgeNumTag; + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(const Node& source, const Node& target, + const Arc& prev = INVALID) { + if (!(*_node_filter)[source] || !(*_node_filter)[target]) { + return INVALID; + } + Arc arc = Parent::findArc(source, target, prev); + while (arc != INVALID && !(*_arc_filter)[arc]) { + arc = Parent::findArc(source, target, arc); + } + return arc; + } + + template + class NodeMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + NodeMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + NodeMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap : public SubMapExtender > { + public: + typedef _Value Value; + typedef SubMapExtender > MapParent; + + ArcMap(const Adaptor& adaptor) + : MapParent(adaptor) {} + ArcMap(const Adaptor& adaptor, const Value& value) + : MapParent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + MapParent::operator=(cmap); + return *this; + } + }; + + }; + + /// \ingroup graph_adaptors + /// + /// \brief A digraph adaptor for hiding nodes and arcs from a digraph. + /// + /// SubDigraphAdaptor shows the digraph with filtered node-set and + /// arc-set. If the \c checked parameter is true then it filters the arcset + /// to do not get invalid arcs without source or target. + /// Let \f$ G=(V, A) \f$ be a directed digraph + /// and suppose that the digraph instance \c g of type ListDigraph + /// implements \f$ G \f$. + /// Let moreover \f$ b_V \f$ and \f$ b_A \f$ be bool-valued functions resp. + /// on the node-set and arc-set. + /// SubDigraphAdaptor<...>::NodeIt iterates + /// on the node-set \f$ \{v\in V : b_V(v)=true\} \f$ and + /// SubDigraphAdaptor<...>::ArcIt iterates + /// on the arc-set \f$ \{e\in A : b_A(e)=true\} \f$. Similarly, + /// SubDigraphAdaptor<...>::OutArcIt and + /// SubDigraphAdaptor<...>::InArcIt iterates + /// only on arcs leaving and entering a specific node which have true value. + /// + /// If the \c checked template parameter is false then we have to + /// note that the node-iterator cares only the filter on the + /// node-set, and the arc-iterator cares only the filter on the + /// arc-set. This way the arc-map should filter all arcs which's + /// source or target is filtered by the node-filter. + ///\code + /// typedef ListDigraph Digraph; + /// DIGRAPH_TYPEDEFS(Digraph); + /// Digraph g; + /// Node u=g.addNode(); //node of id 0 + /// Node v=g.addNode(); //node of id 1 + /// Arc a=g.addArc(u, v); //arc of id 0 + /// Arc f=g.addArc(v, u); //arc of id 1 + /// BoolNodeMap nm(g, true); + /// nm.set(u, false); + /// BoolArcMap am(g, true); + /// am.set(a, false); + /// typedef SubDigraphAdaptor SubGA; + /// SubGA ga(g, nm, am); + /// for (SubGA::NodeIt n(ga); n!=INVALID; ++n) + /// std::cout << g.id(n) << std::endl; + /// std::cout << ":-)" << std::endl; + /// for (SubGA::ArcIt a(ga); a!=INVALID; ++a) + /// std::cout << g.id(a) << std::endl; + ///\endcode + /// The output of the above code is the following. + ///\code + /// 1 + /// :-) + /// 1 + ///\endcode + /// Note that \c n is of type \c SubGA::NodeIt, but it can be converted to + /// \c Digraph::Node that is why \c g.id(n) can be applied. + /// + /// For other examples see also the documentation of + /// NodeSubDigraphAdaptor and ArcSubDigraphAdaptor. + template, + typename _ArcFilterMap = typename _Digraph::template ArcMap, + bool checked = true> + class SubDigraphAdaptor : + public DigraphAdaptorExtender< + SubDigraphAdaptorBase<_Digraph, _NodeFilterMap, _ArcFilterMap, checked> > { + public: + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + typedef _ArcFilterMap ArcFilterMap; + + typedef DigraphAdaptorExtender< + SubDigraphAdaptorBase > + Parent; + + protected: + SubDigraphAdaptor() { } + public: + + SubDigraphAdaptor(Digraph& digraph, NodeFilterMap& node_filter, + ArcFilterMap& arc_filter) { + setDigraph(digraph); + setNodeFilterMap(node_filter); + setArcFilterMap(arc_filter); + } + + }; + + /// \brief Just gives back a sub digraph adaptor + /// + /// Just gives back a sub digraph adaptor + template + SubDigraphAdaptor + subDigraphAdaptor(const Digraph& digraph, + NodeFilterMap& nfm, ArcFilterMap& afm) { + return SubDigraphAdaptor + (digraph, nfm, afm); + } + + template + SubDigraphAdaptor + subDigraphAdaptor(const Digraph& digraph, + NodeFilterMap& nfm, ArcFilterMap& afm) { + return SubDigraphAdaptor + (digraph, nfm, afm); + } + + template + SubDigraphAdaptor + subDigraphAdaptor(const Digraph& digraph, + NodeFilterMap& nfm, ArcFilterMap& afm) { + return SubDigraphAdaptor + (digraph, nfm, afm); + } + + template + SubDigraphAdaptor + subDigraphAdaptor(const Digraph& digraph, + NodeFilterMap& nfm, ArcFilterMap& afm) { + return SubDigraphAdaptor(digraph, nfm, afm); + } + + + + ///\ingroup graph_adaptors + /// + ///\brief An adaptor for hiding nodes from a digraph. + /// + ///An adaptor for hiding nodes from a digraph. This adaptor + ///specializes SubDigraphAdaptor in the way that only the node-set + ///can be filtered. In usual case the checked parameter is true, we + ///get the induced subgraph. But if the checked parameter is false + ///then we can filter only isolated nodes. + template, + bool checked = true> + class NodeSubDigraphAdaptor : + public SubDigraphAdaptor<_Digraph, _NodeFilterMap, + ConstMap, checked> { + public: + + typedef _Digraph Digraph; + typedef _NodeFilterMap NodeFilterMap; + + typedef SubDigraphAdaptor, checked> + Parent; + + protected: + ConstMap const_true_map; + + NodeSubDigraphAdaptor() : const_true_map(true) { + Parent::setArcFilterMap(const_true_map); + } + + public: + + NodeSubDigraphAdaptor(Digraph& _digraph, NodeFilterMap& node_filter) : + Parent(), const_true_map(true) { + Parent::setDigraph(_digraph); + Parent::setNodeFilterMap(node_filter); + Parent::setArcFilterMap(const_true_map); + } + + }; + + + /// \brief Just gives back a \c NodeSubDigraphAdaptor + /// + /// Just gives back a \c NodeSubDigraphAdaptor + template + NodeSubDigraphAdaptor + nodeSubDigraphAdaptor(const Digraph& digraph, NodeFilterMap& nfm) { + return NodeSubDigraphAdaptor(digraph, nfm); + } + + template + NodeSubDigraphAdaptor + nodeSubDigraphAdaptor(const Digraph& digraph, const NodeFilterMap& nfm) { + return NodeSubDigraphAdaptor + (digraph, nfm); + } + + ///\ingroup graph_adaptors + /// + ///\brief An adaptor for hiding arcs from a digraph. + /// + ///An adaptor for hiding arcs from a digraph. This adaptor + ///specializes SubDigraphAdaptor in the way that only the arc-set + ///can be filtered. The usefulness of this adaptor is demonstrated + ///in the problem of searching a maximum number of arc-disjoint + ///shortest paths between two nodes \c s and \c t. Shortest here + ///means being shortest w.r.t. non-negative arc-lengths. Note that + ///the comprehension of the presented solution need's some + ///elementary knowlarc from combinatorial optimization. + /// + ///If a single shortest path is to be searched between \c s and \c + ///t, then this can be done easily by applying the Dijkstra + ///algorithm. What happens, if a maximum number of arc-disjoint + ///shortest paths is to be computed. It can be proved that an arc + ///can be in a shortest path if and only if it is tight with respect + ///to the potential function computed by Dijkstra. Moreover, any + ///path containing only such arcs is a shortest one. Thus we have + ///to compute a maximum number of arc-disjoint paths between \c s + ///and \c t in the digraph which has arc-set all the tight arcs. The + ///computation will be demonstrated on the following digraph, which + ///is read from the dimacs file \c sub_digraph_adaptor_demo.dim. + ///The full source code is available in \ref + ///sub_digraph_adaptor_demo.cc. If you are interested in more demo + ///programs, you can use \ref dim_to_dot.cc to generate .dot files + ///from dimacs files. The .dot file of the following figure was + ///generated by the demo program \ref dim_to_dot.cc. + /// + ///\dot + ///didigraph lemon_dot_example { + ///node [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; + ///n0 [ label="0 (s)" ]; + ///n1 [ label="1" ]; + ///n2 [ label="2" ]; + ///n3 [ label="3" ]; + ///n4 [ label="4" ]; + ///n5 [ label="5" ]; + ///n6 [ label="6 (t)" ]; + ///arc [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; + ///n5 -> n6 [ label="9, length:4" ]; + ///n4 -> n6 [ label="8, length:2" ]; + ///n3 -> n5 [ label="7, length:1" ]; + ///n2 -> n5 [ label="6, length:3" ]; + ///n2 -> n6 [ label="5, length:5" ]; + ///n2 -> n4 [ label="4, length:2" ]; + ///n1 -> n4 [ label="3, length:3" ]; + ///n0 -> n3 [ label="2, length:1" ]; + ///n0 -> n2 [ label="1, length:2" ]; + ///n0 -> n1 [ label="0, length:3" ]; + ///} + ///\enddot + /// + ///\code + ///Digraph g; + ///Node s, t; + ///LengthMap length(g); + /// + ///readDimacs(std::cin, g, length, s, t); + /// + ///cout << "arcs with lengths (of form id, source--length->target): " << endl; + ///for(ArcIt e(g); e!=INVALID; ++e) + /// cout << g.id(e) << ", " << g.id(g.source(e)) << "--" + /// << length[e] << "->" << g.id(g.target(e)) << endl; + /// + ///cout << "s: " << g.id(s) << " t: " << g.id(t) << endl; + ///\endcode + ///Next, the potential function is computed with Dijkstra. + ///\code + ///typedef Dijkstra Dijkstra; + ///Dijkstra dijkstra(g, length); + ///dijkstra.run(s); + ///\endcode + ///Next, we consrtruct a map which filters the arc-set to the tight arcs. + ///\code + ///typedef TightArcFilterMap + /// TightArcFilter; + ///TightArcFilter tight_arc_filter(g, dijkstra.distMap(), length); + /// + ///typedef ArcSubDigraphAdaptor SubGA; + ///SubGA ga(g, tight_arc_filter); + ///\endcode + ///Then, the maximum nimber of arc-disjoint \c s-\c t paths are computed + ///with a max flow algorithm Preflow. + ///\code + ///ConstMap const_1_map(1); + ///Digraph::ArcMap flow(g, 0); + /// + ///Preflow, Digraph::ArcMap > + /// preflow(ga, const_1_map, s, t); + ///preflow.run(); + ///\endcode + ///Last, the output is: + ///\code + ///cout << "maximum number of arc-disjoint shortest path: " + /// << preflow.flowValue() << endl; + ///cout << "arcs of the maximum number of arc-disjoint shortest s-t paths: " + /// << endl; + ///for(ArcIt e(g); e!=INVALID; ++e) + /// if (preflow.flow(e)) + /// cout << " " << g.id(g.source(e)) << "--" + /// << length[e] << "->" << g.id(g.target(e)) << endl; + ///\endcode + ///The program has the following (expected :-)) output: + ///\code + ///arcs with lengths (of form id, source--length->target): + /// 9, 5--4->6 + /// 8, 4--2->6 + /// 7, 3--1->5 + /// 6, 2--3->5 + /// 5, 2--5->6 + /// 4, 2--2->4 + /// 3, 1--3->4 + /// 2, 0--1->3 + /// 1, 0--2->2 + /// 0, 0--3->1 + ///s: 0 t: 6 + ///maximum number of arc-disjoint shortest path: 2 + ///arcs of the maximum number of arc-disjoint shortest s-t paths: + /// 9, 5--4->6 + /// 8, 4--2->6 + /// 7, 3--1->5 + /// 4, 2--2->4 + /// 2, 0--1->3 + /// 1, 0--2->2 + ///\endcode + template + class ArcSubDigraphAdaptor : + public SubDigraphAdaptor<_Digraph, ConstMap, + _ArcFilterMap, false> { + public: + typedef _Digraph Digraph; + typedef _ArcFilterMap ArcFilterMap; + + typedef SubDigraphAdaptor, + ArcFilterMap, false> Parent; + protected: + ConstMap const_true_map; + + ArcSubDigraphAdaptor() : const_true_map(true) { + Parent::setNodeFilterMap(const_true_map); + } + + public: + + ArcSubDigraphAdaptor(Digraph& digraph, ArcFilterMap& arc_filter) + : Parent(), const_true_map(true) { + Parent::setDigraph(digraph); + Parent::setNodeFilterMap(const_true_map); + Parent::setArcFilterMap(arc_filter); + } + + }; + + /// \brief Just gives back an arc sub digraph adaptor + /// + /// Just gives back an arc sub digraph adaptor + template + ArcSubDigraphAdaptor + arcSubDigraphAdaptor(const Digraph& digraph, ArcFilterMap& afm) { + return ArcSubDigraphAdaptor(digraph, afm); + } + + template + ArcSubDigraphAdaptor + arcSubDigraphAdaptor(const Digraph& digraph, const ArcFilterMap& afm) { + return ArcSubDigraphAdaptor + (digraph, afm); + } + + template + class UndirDigraphAdaptorBase { + public: + typedef _Digraph Digraph; + typedef UndirDigraphAdaptorBase Adaptor; + + typedef True UndirectedTag; + + typedef typename Digraph::Arc Edge; + typedef typename Digraph::Node Node; + + class Arc : public Edge { + friend class UndirDigraphAdaptorBase; + protected: + bool _forward; + + Arc(const Edge& edge, bool forward) : + Edge(edge), _forward(forward) {} + + public: + Arc() {} + + Arc(Invalid) : Edge(INVALID), _forward(true) {} + + bool operator==(const Arc &other) const { + return _forward == other._forward && + static_cast(*this) == static_cast(other); + } + bool operator!=(const Arc &other) const { + return _forward != other._forward || + static_cast(*this) != static_cast(other); + } + bool operator<(const Arc &other) const { + return _forward < other._forward || + (_forward == other._forward && + static_cast(*this) < static_cast(other)); + } + }; + + + + void first(Node& n) const { + _digraph->first(n); + } + + void next(Node& n) const { + _digraph->next(n); + } + + void first(Arc& a) const { + _digraph->first(a); + a._forward = true; + } + + void next(Arc& a) const { + if (a._forward) { + a._forward = false; + } else { + _digraph->next(a); + a._forward = true; + } + } + + void first(Edge& e) const { + _digraph->first(e); + } + + void next(Edge& e) const { + _digraph->next(e); + } + + void firstOut(Arc& a, const Node& n) const { + _digraph->firstIn(a, n); + if( static_cast(a) != INVALID ) { + a._forward = false; + } else { + _digraph->firstOut(a, n); + a._forward = true; + } + } + void nextOut(Arc &a) const { + if (!a._forward) { + Node n = _digraph->target(a); + _digraph->nextIn(a); + if (static_cast(a) == INVALID ) { + _digraph->firstOut(a, n); + a._forward = true; + } + } + else { + _digraph->nextOut(a); + } + } + + void firstIn(Arc &a, const Node &n) const { + _digraph->firstOut(a, n); + if (static_cast(a) != INVALID ) { + a._forward = false; + } else { + _digraph->firstIn(a, n); + a._forward = true; + } + } + void nextIn(Arc &a) const { + if (!a._forward) { + Node n = _digraph->source(a); + _digraph->nextOut(a); + if( static_cast(a) == INVALID ) { + _digraph->firstIn(a, n); + a._forward = true; + } + } + else { + _digraph->nextIn(a); + } + } + + void firstInc(Edge &e, bool &d, const Node &n) const { + d = true; + _digraph->firstOut(e, n); + if (e != INVALID) return; + d = false; + _digraph->firstIn(e, n); + } + + void nextInc(Edge &e, bool &d) const { + if (d) { + Node s = _digraph->source(e); + _digraph->nextOut(e); + if (e != INVALID) return; + d = false; + _digraph->firstIn(e, s); + } else { + _digraph->nextIn(e); + } + } + + Node u(const Edge& e) const { + return _digraph->source(e); + } + + Node v(const Edge& e) const { + return _digraph->target(e); + } + + Node source(const Arc &a) const { + return a._forward ? _digraph->source(a) : _digraph->target(a); + } + + Node target(const Arc &a) const { + return a._forward ? _digraph->target(a) : _digraph->source(a); + } + + static Arc direct(const Edge &e, bool d) { + return Arc(e, d); + } + Arc direct(const Edge &e, const Node& n) const { + return Arc(e, _digraph->source(e) == n); + } + + static bool direction(const Arc &a) { return a._forward; } + + Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } + Arc arcFromId(int ix) const { + return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1)); + } + Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); } + + int id(const Node &n) const { return _digraph->id(n); } + int id(const Arc &a) const { + return (_digraph->id(a) << 1) | (a._forward ? 1 : 0); + } + int id(const Edge &e) const { return _digraph->id(e); } + + int maxNodeId() const { return _digraph->maxNodeId(); } + int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; } + int maxEdgeId() const { return _digraph->maxArcId(); } + + Node addNode() { return _digraph->addNode(); } + Edge addEdge(const Node& u, const Node& v) { + return _digraph->addArc(u, v); + } + + void erase(const Node& i) { _digraph->erase(i); } + void erase(const Edge& i) { _digraph->erase(i); } + + void clear() { _digraph->clear(); } + + typedef NodeNumTagIndicator NodeNumTag; + int nodeNum() const { return 2 * _digraph->arcNum(); } + typedef EdgeNumTagIndicator EdgeNumTag; + int arcNum() const { return 2 * _digraph->arcNum(); } + int edgeNum() const { return _digraph->arcNum(); } + + typedef FindEdgeTagIndicator FindEdgeTag; + Arc findArc(Node s, Node t, Arc p = INVALID) const { + if (p == INVALID) { + Edge arc = _digraph->findArc(s, t); + if (arc != INVALID) return direct(arc, true); + arc = _digraph->findArc(t, s); + if (arc != INVALID) return direct(arc, false); + } else if (direction(p)) { + Edge arc = _digraph->findArc(s, t, p); + if (arc != INVALID) return direct(arc, true); + arc = _digraph->findArc(t, s); + if (arc != INVALID) return direct(arc, false); + } else { + Edge arc = _digraph->findArc(t, s, p); + if (arc != INVALID) return direct(arc, false); + } + return INVALID; + } + + Edge findEdge(Node s, Node t, Edge p = INVALID) const { + if (s != t) { + if (p == INVALID) { + Edge arc = _digraph->findArc(s, t); + if (arc != INVALID) return arc; + arc = _digraph->findArc(t, s); + if (arc != INVALID) return arc; + } else if (_digraph->s(p) == s) { + Edge arc = _digraph->findArc(s, t, p); + if (arc != INVALID) return arc; + arc = _digraph->findArc(t, s); + if (arc != INVALID) return arc; + } else { + Edge arc = _digraph->findArc(t, s, p); + if (arc != INVALID) return arc; + } + } else { + return _digraph->findArc(s, t, p); + } + return INVALID; + } + + private: + + template + class ArcMapBase { + private: + + typedef typename Digraph::template ArcMap<_Value> MapImpl; + + public: + + typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; + + typedef _Value Value; + typedef Arc Key; + + ArcMapBase(const Adaptor& adaptor) : + _forward(*adaptor._digraph), _backward(*adaptor._digraph) {} + + ArcMapBase(const Adaptor& adaptor, const Value& v) + : _forward(*adaptor._digraph, v), _backward(*adaptor._digraph, v) {} + + void set(const Arc& a, const Value& v) { + if (direction(a)) { + _forward.set(a, v); + } else { + _backward.set(a, v); + } + } + + typename MapTraits::ConstReturnValue + operator[](const Arc& a) const { + if (direction(a)) { + return _forward[a]; + } else { + return _backward[a]; + } + } + + typename MapTraits::ReturnValue + operator[](const Arc& a) { + if (direction(a)) { + return _forward[a]; + } else { + return _backward[a]; + } + } + + protected: + + MapImpl _forward, _backward; + + }; + + public: + + template + class NodeMap : public Digraph::template NodeMap<_Value> { + public: + + typedef _Value Value; + typedef typename Digraph::template NodeMap Parent; + + explicit NodeMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + NodeMap(const Adaptor& adaptor, const _Value& value) + : Parent(*adaptor._digraph, value) { } + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + template + class ArcMap + : public SubMapExtender > + { + public: + typedef _Value Value; + typedef SubMapExtender > Parent; + + ArcMap(const Adaptor& adaptor) + : Parent(adaptor) {} + + ArcMap(const Adaptor& adaptor, const Value& value) + : Parent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + template + class EdgeMap : public Digraph::template ArcMap<_Value> { + public: + + typedef _Value Value; + typedef typename Digraph::template ArcMap Parent; + + explicit EdgeMap(const Adaptor& adaptor) + : Parent(*adaptor._digraph) {} + + EdgeMap(const Adaptor& adaptor, const Value& value) + : Parent(*adaptor._digraph, value) {} + + private: + EdgeMap& operator=(const EdgeMap& cmap) { + return operator=(cmap); + } + + template + EdgeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + + }; + + typedef typename ItemSetTraits::ItemNotifier NodeNotifier; + NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } + + protected: + + UndirDigraphAdaptorBase() : _digraph(0) {} + + Digraph* _digraph; + + void setDigraph(Digraph& digraph) { + _digraph = &digraph; + } + + }; + + ///\ingroup graph_adaptors + /// + /// \brief An graph is made from a directed digraph by an adaptor + /// + /// This adaptor makes an undirected graph from a directed + /// digraph. All arc of the underlying will be showed in the adaptor + /// as an edge. Let's see an informal example about using + /// this adaptor: + /// + /// There is a network of the streets of a town. Of course there are + /// some one-way street in the town hence the network is a directed + /// one. There is a crazy driver who go oppositely in the one-way + /// street without moral sense. Of course he can pass this streets + /// slower than the regular way, in fact his speed is half of the + /// normal speed. How long should he drive to get from a source + /// point to the target? Let see the example code which calculate it: + /// + /// \todo BadCode, SimpleMap does no exists + ///\code + /// typedef UndirDigraphAdaptor Graph; + /// Graph graph(digraph); + /// + /// typedef SimpleMap FLengthMap; + /// FLengthMap flength(length); + /// + /// typedef ScaleMap RLengthMap; + /// RLengthMap rlength(length, 2.0); + /// + /// typedef Graph::CombinedArcMap ULengthMap; + /// ULengthMap ulength(flength, rlength); + /// + /// Dijkstra dijkstra(graph, ulength); + /// std::cout << "Driving time : " << dijkstra.run(src, trg) << std::endl; + ///\endcode + /// + /// The combined arc map makes the length map for the undirected + /// graph. It is created from a forward and reverse map. The forward + /// map is created from the original length map with a SimpleMap + /// adaptor which just makes a read-write map from the reference map + /// i.e. it forgets that it can be return reference to values. The + /// reverse map is just the scaled original map with the ScaleMap + /// adaptor. The combination solves that passing the reverse way + /// takes double time than the original. To get the driving time we + /// run the dijkstra algorithm on the graph. + template + class UndirDigraphAdaptor + : public GraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef GraphAdaptorExtender > Parent; + protected: + UndirDigraphAdaptor() { } + public: + + /// \brief Constructor + /// + /// Constructor + UndirDigraphAdaptor(_Digraph& _digraph) { + setDigraph(_digraph); + } + + /// \brief ArcMap combined from two original ArcMap + /// + /// This class adapts two original digraph ArcMap to + /// get an arc map on the adaptor. + template + class CombinedArcMap { + public: + + typedef _ForwardMap ForwardMap; + typedef _BackwardMap BackwardMap; + + typedef typename MapTraits::ReferenceMapTag ReferenceMapTag; + + typedef typename ForwardMap::Value Value; + typedef typename Parent::Arc Key; + + /// \brief Constructor + /// + /// Constructor + CombinedArcMap() : _forward(0), _backward(0) {} + + /// \brief Constructor + /// + /// Constructor + CombinedArcMap(ForwardMap& forward, BackwardMap& backward) + : _forward(&forward), _backward(&backward) {} + + + /// \brief Sets the value associated with a key. + /// + /// Sets the value associated with a key. + void set(const Key& e, const Value& a) { + if (Parent::direction(e)) { + _forward->set(e, a); + } else { + _backward->set(e, a); + } + } + + /// \brief Returns the value associated with a key. + /// + /// Returns the value associated with a key. + typename MapTraits::ConstReturnValue + operator[](const Key& e) const { + if (Parent::direction(e)) { + return (*_forward)[e]; + } else { + return (*_backward)[e]; + } + } + + /// \brief Returns the value associated with a key. + /// + /// Returns the value associated with a key. + typename MapTraits::ReturnValue + operator[](const Key& e) { + if (Parent::direction(e)) { + return (*_forward)[e]; + } else { + return (*_backward)[e]; + } + } + + /// \brief Sets the forward map + /// + /// Sets the forward map + void setForwardMap(ForwardMap& forward) { + _forward = &forward; + } + + /// \brief Sets the backward map + /// + /// Sets the backward map + void setBackwardMap(BackwardMap& backward) { + _backward = &backward; + } + + protected: + + ForwardMap* _forward; + BackwardMap* _backward; + + }; + + }; + + /// \brief Just gives back an undir digraph adaptor + /// + /// Just gives back an undir digraph adaptor + template + UndirDigraphAdaptor + undirDigraphAdaptor(const Digraph& digraph) { + return UndirDigraphAdaptor(digraph); + } + + template, + typename _FlowMap = _CapacityMap, + typename _Tolerance = Tolerance > + class ResForwardFilter { + public: + + typedef _Digraph Digraph; + typedef _CapacityMap CapacityMap; + typedef _FlowMap FlowMap; + typedef _Tolerance Tolerance; + + typedef typename Digraph::Arc Key; + typedef bool Value; + + private: + + const CapacityMap* _capacity; + const FlowMap* _flow; + Tolerance _tolerance; + public: + + ResForwardFilter(const CapacityMap& capacity, const FlowMap& flow, + const Tolerance& tolerance = Tolerance()) + : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } + + ResForwardFilter(const Tolerance& tolerance = Tolerance()) + : _capacity(0), _flow(0), _tolerance(tolerance) { } + + void setCapacity(const CapacityMap& capacity) { _capacity = &capacity; } + void setFlow(const FlowMap& flow) { _flow = &flow; } + + bool operator[](const typename Digraph::Arc& a) const { + return _tolerance.positive((*_capacity)[a] - (*_flow)[a]); + } + }; + + template, + typename _FlowMap = _CapacityMap, + typename _Tolerance = Tolerance > + class ResBackwardFilter { + public: + + typedef _Digraph Digraph; + typedef _CapacityMap CapacityMap; + typedef _FlowMap FlowMap; + typedef _Tolerance Tolerance; + + typedef typename Digraph::Arc Key; + typedef bool Value; + + private: + + const CapacityMap* _capacity; + const FlowMap* _flow; + Tolerance _tolerance; + + public: + + ResBackwardFilter(const CapacityMap& capacity, const FlowMap& flow, + const Tolerance& tolerance = Tolerance()) + : _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { } + ResBackwardFilter(const Tolerance& tolerance = Tolerance()) + : _capacity(0), _flow(0), _tolerance(tolerance) { } + + void setCapacity(const CapacityMap& capacity) { _capacity = &capacity; } + void setFlow(const FlowMap& flow) { _flow = &flow; } + + bool operator[](const typename Digraph::Arc& a) const { + return _tolerance.positive((*_flow)[a]); + } + }; + + + ///\ingroup graph_adaptors + /// + ///\brief An adaptor for composing the residual graph for directed + ///flow and circulation problems. + /// + ///An adaptor for composing the residual graph for directed flow and + ///circulation problems. Let \f$ G=(V, A) \f$ be a directed digraph + ///and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F + ///\f$, be functions on the arc-set. + /// + ///In the appications of ResDigraphAdaptor, \f$ f \f$ usually stands + ///for a flow and \f$ c \f$ for a capacity function. Suppose that a + ///graph instance \c g of type \c ListDigraph implements \f$ G \f$. + /// + ///\code + /// ListDigraph g; + ///\endcode + /// + ///Then ResDigraphAdaptor implements the digraph structure with + /// node-set \f$ V \f$ and arc-set \f$ A_{forward}\cup A_{backward} + /// \f$, where \f$ A_{forward}=\{uv : uv\in A, f(uv)0\} \f$, i.e. the so + /// called residual graph. When we take the union \f$ + /// A_{forward}\cup A_{backward} \f$, multilicities are counted, + /// i.e. if an arc is in both \f$ A_{forward} \f$ and \f$ + /// A_{backward} \f$, then in the adaptor it appears twice. The + /// following code shows how such an instance can be constructed. + /// + ///\code + /// typedef ListDigraph Digraph; + /// IntArcMap f(g), c(g); + /// ResDigraphAdaptor ga(g); + ///\endcode + template, + typename _FlowMap = _CapacityMap, + typename _Tolerance = Tolerance > + class ResDigraphAdaptor : + public ArcSubDigraphAdaptor< + UndirDigraphAdaptor, + typename UndirDigraphAdaptor::template CombinedArcMap< + ResForwardFilter, + ResBackwardFilter > > { + public: + + typedef _Digraph Digraph; + typedef _CapacityMap CapacityMap; + typedef _FlowMap FlowMap; + typedef _Tolerance Tolerance; + + typedef typename CapacityMap::Value Value; + typedef ResDigraphAdaptor Adaptor; + + protected: + + typedef UndirDigraphAdaptor UndirDigraph; + + typedef ResForwardFilter + ForwardFilter; + + typedef ResBackwardFilter + BackwardFilter; + + typedef typename UndirDigraph:: + template CombinedArcMap ArcFilter; + + typedef ArcSubDigraphAdaptor Parent; + + const CapacityMap* _capacity; + FlowMap* _flow; + + UndirDigraph _graph; + ForwardFilter _forward_filter; + BackwardFilter _backward_filter; + ArcFilter _arc_filter; + + void setCapacityMap(const CapacityMap& capacity) { + _capacity = &capacity; + _forward_filter.setCapacity(capacity); + _backward_filter.setCapacity(capacity); + } + + void setFlowMap(FlowMap& flow) { + _flow = &flow; + _forward_filter.setFlow(flow); + _backward_filter.setFlow(flow); + } + + public: + + /// \brief Constructor of the residual digraph. + /// + /// Constructor of the residual graph. The parameters are the digraph type, + /// the flow map, the capacity map and a tolerance object. + ResDigraphAdaptor(const Digraph& digraph, const CapacityMap& capacity, + FlowMap& flow, const Tolerance& tolerance = Tolerance()) + : Parent(), _capacity(&capacity), _flow(&flow), _graph(digraph), + _forward_filter(capacity, flow, tolerance), + _backward_filter(capacity, flow, tolerance), + _arc_filter(_forward_filter, _backward_filter) + { + Parent::setDigraph(_graph); + Parent::setArcFilterMap(_arc_filter); + } + + typedef typename Parent::Arc Arc; + + /// \brief Gives back the residual capacity of the arc. + /// + /// Gives back the residual capacity of the arc. + Value rescap(const Arc& arc) const { + if (UndirDigraph::direction(arc)) { + return (*_capacity)[arc] - (*_flow)[arc]; + } else { + return (*_flow)[arc]; + } + } + + /// \brief Augment on the given arc in the residual digraph. + /// + /// Augment on the given arc in the residual digraph. It increase + /// or decrease the flow on the original arc depend on the direction + /// of the residual arc. + void augment(const Arc& e, const Value& a) const { + if (UndirDigraph::direction(e)) { + _flow->set(e, (*_flow)[e] + a); + } else { + _flow->set(e, (*_flow)[e] - a); + } + } + + /// \brief Returns the direction of the arc. + /// + /// Returns true when the arc is same oriented as the original arc. + static bool forward(const Arc& e) { + return UndirDigraph::direction(e); + } + + /// \brief Returns the direction of the arc. + /// + /// Returns true when the arc is opposite oriented as the original arc. + static bool backward(const Arc& e) { + return !UndirDigraph::direction(e); + } + + /// \brief Gives back the forward oriented residual arc. + /// + /// Gives back the forward oriented residual arc. + static Arc forward(const typename Digraph::Arc& e) { + return UndirDigraph::direct(e, true); + } + + /// \brief Gives back the backward oriented residual arc. + /// + /// Gives back the backward oriented residual arc. + static Arc backward(const typename Digraph::Arc& e) { + return UndirDigraph::direct(e, false); + } + + /// \brief Residual capacity map. + /// + /// In generic residual digraphs the residual capacity can be obtained + /// as a map. + class ResCap { + protected: + const Adaptor* _adaptor; + public: + typedef Arc Key; + typedef typename _CapacityMap::Value Value; + + ResCap(const Adaptor& adaptor) : _adaptor(&adaptor) {} + + Value operator[](const Arc& e) const { + return _adaptor->rescap(e); + } + + }; + + }; + + /// \brief Base class for split digraph adaptor + /// + /// Base class of split digraph adaptor. In most case you do not need to + /// use it directly but the documented member functions of this class can + /// be used with the SplitDigraphAdaptor class. + /// \sa SplitDigraphAdaptor + template + class SplitDigraphAdaptorBase { + public: + + typedef _Digraph Digraph; + typedef DigraphAdaptorBase Parent; + typedef SplitDigraphAdaptorBase Adaptor; + + typedef typename Digraph::Node DigraphNode; + typedef typename Digraph::Arc DigraphArc; + + class Node; + class Arc; + + private: + + template class NodeMapBase; + template class ArcMapBase; + + public: + + class Node : public DigraphNode { + friend class SplitDigraphAdaptorBase; + template friend class NodeMapBase; + private: + + bool _in; + Node(DigraphNode node, bool in) + : DigraphNode(node), _in(in) {} + + public: + + Node() {} + Node(Invalid) : DigraphNode(INVALID), _in(true) {} + + bool operator==(const Node& node) const { + return DigraphNode::operator==(node) && _in == node._in; + } + + bool operator!=(const Node& node) const { + return !(*this == node); + } + + bool operator<(const Node& node) const { + return DigraphNode::operator<(node) || + (DigraphNode::operator==(node) && _in < node._in); + } + }; + + class Arc { + friend class SplitDigraphAdaptorBase; + template friend class ArcMapBase; + private: + typedef BiVariant ArcImpl; + + explicit Arc(const DigraphArc& arc) : _item(arc) {} + explicit Arc(const DigraphNode& node) : _item(node) {} + + ArcImpl _item; + + public: + Arc() {} + Arc(Invalid) : _item(DigraphArc(INVALID)) {} + + bool operator==(const Arc& arc) const { + if (_item.firstState()) { + if (arc._item.firstState()) { + return _item.first() == arc._item.first(); + } + } else { + if (arc._item.secondState()) { + return _item.second() == arc._item.second(); + } + } + return false; + } + + bool operator!=(const Arc& arc) const { + return !(*this == arc); + } + + bool operator<(const Arc& arc) const { + if (_item.firstState()) { + if (arc._item.firstState()) { + return _item.first() < arc._item.first(); + } + return false; + } else { + if (arc._item.secondState()) { + return _item.second() < arc._item.second(); + } + return true; + } + } + + operator DigraphArc() const { return _item.first(); } + operator DigraphNode() const { return _item.second(); } + + }; + + void first(Node& n) const { + _digraph->first(n); + n._in = true; + } + + void next(Node& n) const { + if (n._in) { + n._in = false; + } else { + n._in = true; + _digraph->next(n); + } + } + + void first(Arc& e) const { + e._item.setSecond(); + _digraph->first(e._item.second()); + if (e._item.second() == INVALID) { + e._item.setFirst(); + _digraph->first(e._item.first()); + } + } + + void next(Arc& e) const { + if (e._item.secondState()) { + _digraph->next(e._item.second()); + if (e._item.second() == INVALID) { + e._item.setFirst(); + _digraph->first(e._item.first()); + } + } else { + _digraph->next(e._item.first()); + } + } + + void firstOut(Arc& e, const Node& n) const { + if (n._in) { + e._item.setSecond(n); + } else { + e._item.setFirst(); + _digraph->firstOut(e._item.first(), n); + } + } + + void nextOut(Arc& e) const { + if (!e._item.firstState()) { + e._item.setFirst(INVALID); + } else { + _digraph->nextOut(e._item.first()); + } + } + + void firstIn(Arc& e, const Node& n) const { + if (!n._in) { + e._item.setSecond(n); + } else { + e._item.setFirst(); + _digraph->firstIn(e._item.first(), n); + } + } + + void nextIn(Arc& e) const { + if (!e._item.firstState()) { + e._item.setFirst(INVALID); + } else { + _digraph->nextIn(e._item.first()); + } + } + + Node source(const Arc& e) const { + if (e._item.firstState()) { + return Node(_digraph->source(e._item.first()), false); + } else { + return Node(e._item.second(), true); + } + } + + Node target(const Arc& e) const { + if (e._item.firstState()) { + return Node(_digraph->target(e._item.first()), true); + } else { + return Node(e._item.second(), false); + } + } + + int id(const Node& n) const { + return (_digraph->id(n) << 1) | (n._in ? 0 : 1); + } + Node nodeFromId(int ix) const { + return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0); + } + int maxNodeId() const { + return 2 * _digraph->maxNodeId() + 1; + } + + int id(const Arc& e) const { + if (e._item.firstState()) { + return _digraph->id(e._item.first()) << 1; + } else { + return (_digraph->id(e._item.second()) << 1) | 1; + } + } + Arc arcFromId(int ix) const { + if ((ix & 1) == 0) { + return Arc(_digraph->arcFromId(ix >> 1)); + } else { + return Arc(_digraph->nodeFromId(ix >> 1)); + } + } + int maxArcId() const { + return std::max(_digraph->maxNodeId() << 1, + (_digraph->maxArcId() << 1) | 1); + } + + /// \brief Returns true when the node is in-node. + /// + /// Returns true when the node is in-node. + static bool inNode(const Node& n) { + return n._in; + } + + /// \brief Returns true when the node is out-node. + /// + /// Returns true when the node is out-node. + static bool outNode(const Node& n) { + return !n._in; + } + + /// \brief Returns true when the arc is arc in the original digraph. + /// + /// Returns true when the arc is arc in the original digraph. + static bool origArc(const Arc& e) { + return e._item.firstState(); + } + + /// \brief Returns true when the arc binds an in-node and an out-node. + /// + /// Returns true when the arc binds an in-node and an out-node. + static bool bindArc(const Arc& e) { + return e._item.secondState(); + } + + /// \brief Gives back the in-node created from the \c node. + /// + /// Gives back the in-node created from the \c node. + static Node inNode(const DigraphNode& n) { + return Node(n, true); + } + + /// \brief Gives back the out-node created from the \c node. + /// + /// Gives back the out-node created from the \c node. + static Node outNode(const DigraphNode& n) { + return Node(n, false); + } + + /// \brief Gives back the arc binds the two part of the node. + /// + /// Gives back the arc binds the two part of the node. + static Arc arc(const DigraphNode& n) { + return Arc(n); + } + + /// \brief Gives back the arc of the original arc. + /// + /// Gives back the arc of the original arc. + static Arc arc(const DigraphArc& e) { + return Arc(e); + } + + typedef True NodeNumTag; + + int nodeNum() const { + return 2 * countNodes(*_digraph); + } + + typedef True EdgeNumTag; + int arcNum() const { + return countArcs(*_digraph) + countNodes(*_digraph); + } + + typedef True FindEdgeTag; + Arc findArc(const Node& u, const Node& v, + const Arc& prev = INVALID) const { + if (inNode(u)) { + if (outNode(v)) { + if (static_cast(u) == + static_cast(v) && prev == INVALID) { + return Arc(u); + } + } + } else { + if (inNode(v)) { + return Arc(::lemon::findArc(*_digraph, u, v, prev)); + } + } + return INVALID; + } + + private: + + template + class NodeMapBase + : public MapTraits > { + typedef typename Parent::template NodeMap<_Value> NodeImpl; + public: + typedef Node Key; + typedef _Value Value; + + NodeMapBase(const Adaptor& adaptor) + : _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {} + NodeMapBase(const Adaptor& adaptor, const Value& value) + : _in_map(*adaptor._digraph, value), + _out_map(*adaptor._digraph, value) {} + + void set(const Node& key, const Value& val) { + if (Adaptor::inNode(key)) { _in_map.set(key, val); } + else {_out_map.set(key, val); } + } + + typename MapTraits::ReturnValue + operator[](const Node& key) { + if (Adaptor::inNode(key)) { return _in_map[key]; } + else { return _out_map[key]; } + } + + typename MapTraits::ConstReturnValue + operator[](const Node& key) const { + if (Adaptor::inNode(key)) { return _in_map[key]; } + else { return _out_map[key]; } + } + + private: + NodeImpl _in_map, _out_map; + }; + + template + class ArcMapBase + : public MapTraits > { + typedef typename Parent::template ArcMap<_Value> ArcImpl; + typedef typename Parent::template NodeMap<_Value> NodeImpl; + public: + typedef Arc Key; + typedef _Value Value; + + ArcMapBase(const Adaptor& adaptor) + : _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {} + ArcMapBase(const Adaptor& adaptor, const Value& value) + : _arc_map(*adaptor._digraph, value), + _node_map(*adaptor._digraph, value) {} + + void set(const Arc& key, const Value& val) { + if (Adaptor::origArc(key)) { + _arc_map.set(key._item.first(), val); + } else { + _node_map.set(key._item.second(), val); + } + } + + typename MapTraits::ReturnValue + operator[](const Arc& key) { + if (Adaptor::origArc(key)) { + return _arc_map[key._item.first()]; + } else { + return _node_map[key._item.second()]; + } + } + + typename MapTraits::ConstReturnValue + operator[](const Arc& key) const { + if (Adaptor::origArc(key)) { + return _arc_map[key._item.first()]; + } else { + return _node_map[key._item.second()]; + } + } + + private: + ArcImpl _arc_map; + NodeImpl _node_map; + }; + + public: + + template + class NodeMap + : public SubMapExtender > + { + public: + typedef _Value Value; + typedef SubMapExtender > Parent; + + NodeMap(const Adaptor& adaptor) + : Parent(adaptor) {} + + NodeMap(const Adaptor& adaptor, const Value& value) + : Parent(adaptor, value) {} + + private: + NodeMap& operator=(const NodeMap& cmap) { + return operator=(cmap); + } + + template + NodeMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + template + class ArcMap + : public SubMapExtender > + { + public: + typedef _Value Value; + typedef SubMapExtender > Parent; + + ArcMap(const Adaptor& adaptor) + : Parent(adaptor) {} + + ArcMap(const Adaptor& adaptor, const Value& value) + : Parent(adaptor, value) {} + + private: + ArcMap& operator=(const ArcMap& cmap) { + return operator=(cmap); + } + + template + ArcMap& operator=(const CMap& cmap) { + Parent::operator=(cmap); + return *this; + } + }; + + protected: + + SplitDigraphAdaptorBase() : _digraph(0) {} + + Digraph* _digraph; + + void setDigraph(Digraph& digraph) { + _digraph = &digraph; + } + + }; + + /// \ingroup graph_adaptors + /// + /// \brief Split digraph adaptor class + /// + /// This is an digraph adaptor which splits all node into an in-node + /// and an out-node. Formaly, the adaptor replaces each \f$ u \f$ + /// node in the digraph with two node, \f$ u_{in} \f$ node and + /// \f$ u_{out} \f$ node. If there is an \f$ (v, u) \f$ arc in the + /// original digraph the new target of the arc will be \f$ u_{in} \f$ and + /// similarly the source of the original \f$ (u, v) \f$ arc will be + /// \f$ u_{out} \f$. The adaptor will add for each node in the + /// original digraph an additional arc which will connect + /// \f$ (u_{in}, u_{out}) \f$. + /// + /// The aim of this class is to run algorithm with node costs if the + /// algorithm can use directly just arc costs. In this case we should use + /// a \c SplitDigraphAdaptor and set the node cost of the digraph to the + /// bind arc in the adapted digraph. + /// + /// By example a maximum flow algoritm can compute how many arc + /// disjoint paths are in the digraph. But we would like to know how + /// many node disjoint paths are in the digraph. First we have to + /// adapt the digraph with the \c SplitDigraphAdaptor. Then run the flow + /// algorithm on the adapted digraph. The bottleneck of the flow will + /// be the bind arcs which bounds the flow with the count of the + /// node disjoint paths. + /// + ///\code + /// + /// typedef SplitDigraphAdaptor SDigraph; + /// + /// SDigraph sdigraph(digraph); + /// + /// typedef ConstMap SCapacity; + /// SCapacity scapacity(1); + /// + /// SDigraph::ArcMap sflow(sdigraph); + /// + /// Preflow + /// spreflow(sdigraph, scapacity, + /// SDigraph::outNode(source), SDigraph::inNode(target)); + /// + /// spreflow.run(); + /// + ///\endcode + /// + /// The result of the mamixum flow on the original digraph + /// shows the next figure: + /// + /// \image html arc_disjoint.png + /// \image latex arc_disjoint.eps "Arc disjoint paths" width=\textwidth + /// + /// And the maximum flow on the adapted digraph: + /// + /// \image html node_disjoint.png + /// \image latex node_disjoint.eps "Node disjoint paths" width=\textwidth + /// + /// The second solution contains just 3 disjoint paths while the first 4. + /// The full code can be found in the \ref disjoint_paths_demo.cc demo file. + /// + /// This digraph adaptor is fully conform to the + /// \ref concepts::Digraph "Digraph" concept and + /// contains some additional member functions and types. The + /// documentation of some member functions may be found just in the + /// SplitDigraphAdaptorBase class. + /// + /// \sa SplitDigraphAdaptorBase + template + class SplitDigraphAdaptor + : public DigraphAdaptorExtender > { + public: + typedef _Digraph Digraph; + typedef DigraphAdaptorExtender > Parent; + + typedef typename Parent::Node Node; + typedef typename Parent::Arc Arc; + + /// \brief Constructor of the adaptor. + /// + /// Constructor of the adaptor. + SplitDigraphAdaptor(Digraph& g) { + Parent::setDigraph(g); + } + + /// \brief NodeMap combined from two original NodeMap + /// + /// This class adapt two of the original digraph NodeMap to + /// get a node map on the adapted digraph. + template + class CombinedNodeMap { + public: + + typedef Node Key; + typedef typename InNodeMap::Value Value; + + /// \brief Constructor + /// + /// Constructor. + CombinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) + : _in_map(in_map), _out_map(out_map) {} + + /// \brief The subscript operator. + /// + /// The subscript operator. + Value& operator[](const Key& key) { + if (Parent::inNode(key)) { + return _in_map[key]; + } else { + return _out_map[key]; + } + } + + /// \brief The const subscript operator. + /// + /// The const subscript operator. + Value operator[](const Key& key) const { + if (Parent::inNode(key)) { + return _in_map[key]; + } else { + return _out_map[key]; + } + } + + /// \brief The setter function of the map. + /// + /// The setter function of the map. + void set(const Key& key, const Value& value) { + if (Parent::inNode(key)) { + _in_map.set(key, value); + } else { + _out_map.set(key, value); + } + } + + private: + + InNodeMap& _in_map; + OutNodeMap& _out_map; + + }; + + + /// \brief Just gives back a combined node map. + /// + /// Just gives back a combined node map. + template + static CombinedNodeMap + combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + template + static CombinedNodeMap + combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + template + static CombinedNodeMap + combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + template + static CombinedNodeMap + combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) { + return CombinedNodeMap(in_map, out_map); + } + + /// \brief ArcMap combined from an original ArcMap and NodeMap + /// + /// This class adapt an original digraph ArcMap and NodeMap to + /// get an arc map on the adapted digraph. + template + class CombinedArcMap { + public: + + typedef Arc Key; + typedef typename DigraphArcMap::Value Value; + + /// \brief Constructor + /// + /// Constructor. + CombinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) + : _arc_map(arc_map), _node_map(node_map) {} + + /// \brief The subscript operator. + /// + /// The subscript operator. + void set(const Arc& arc, const Value& val) { + if (Parent::origArc(arc)) { + _arc_map.set(arc, val); + } else { + _node_map.set(arc, val); + } + } + + /// \brief The const subscript operator. + /// + /// The const subscript operator. + Value operator[](const Key& arc) const { + if (Parent::origArc(arc)) { + return _arc_map[arc]; + } else { + return _node_map[arc]; + } + } + + /// \brief The const subscript operator. + /// + /// The const subscript operator. + Value& operator[](const Key& arc) { + if (Parent::origArc(arc)) { + return _arc_map[arc]; + } else { + return _node_map[arc]; + } + } + + private: + DigraphArcMap& _arc_map; + DigraphNodeMap& _node_map; + }; + + /// \brief Just gives back a combined arc map. + /// + /// Just gives back a combined arc map. + template + static CombinedArcMap + combinedArcMap(DigraphArcMap& arc_map, DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + template + static CombinedArcMap + combinedArcMap(const DigraphArcMap& arc_map, DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + template + static CombinedArcMap + combinedArcMap(DigraphArcMap& arc_map, const DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + template + static CombinedArcMap + combinedArcMap(const DigraphArcMap& arc_map, + const DigraphNodeMap& node_map) { + return CombinedArcMap(arc_map, node_map); + } + + }; + + /// \brief Just gives back a split digraph adaptor + /// + /// Just gives back a split digraph adaptor + template + SplitDigraphAdaptor + splitDigraphAdaptor(const Digraph& digraph) { + return SplitDigraphAdaptor(digraph); + } + + +} //namespace lemon + +#endif //LEMON_DIGRAPH_ADAPTOR_H +