diff -r 70b199792735 -r ad40f7d32846 lemon/hartmann_orlin_mmc.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/hartmann_orlin_mmc.h Sun Aug 11 15:28:12 2013 +0200 @@ -0,0 +1,650 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2010 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_HARTMANN_ORLIN_MMC_H +#define LEMON_HARTMANN_ORLIN_MMC_H + +/// \ingroup min_mean_cycle +/// +/// \file +/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. + +#include +#include +#include +#include +#include +#include + +namespace lemon { + + /// \brief Default traits class of HartmannOrlinMmc class. + /// + /// Default traits class of HartmannOrlinMmc class. + /// \tparam GR The type of the digraph. + /// \tparam CM The type of the cost map. + /// It must conform to the \ref concepts::ReadMap "ReadMap" concept. +#ifdef DOXYGEN + template +#else + template ::is_integer> +#endif + struct HartmannOrlinMmcDefaultTraits + { + /// The type of the digraph + typedef GR Digraph; + /// The type of the cost map + typedef CM CostMap; + /// The type of the arc costs + typedef typename CostMap::Value Cost; + + /// \brief The large cost type used for internal computations + /// + /// The large cost type used for internal computations. + /// It is \c long \c long if the \c Cost type is integer, + /// otherwise it is \c double. + /// \c Cost must be convertible to \c LargeCost. + typedef double LargeCost; + + /// The tolerance type used for internal computations + typedef lemon::Tolerance Tolerance; + + /// \brief The path type of the found cycles + /// + /// The path type of the found cycles. + /// It must conform to the \ref lemon::concepts::Path "Path" concept + /// and it must have an \c addFront() function. + typedef lemon::Path Path; + }; + + // Default traits class for integer cost types + template + struct HartmannOrlinMmcDefaultTraits + { + typedef GR Digraph; + typedef CM CostMap; + typedef typename CostMap::Value Cost; +#ifdef LEMON_HAVE_LONG_LONG + typedef long long LargeCost; +#else + typedef long LargeCost; +#endif + typedef lemon::Tolerance Tolerance; + typedef lemon::Path Path; + }; + + + /// \addtogroup min_mean_cycle + /// @{ + + /// \brief Implementation of the Hartmann-Orlin algorithm for finding + /// a minimum mean cycle. + /// + /// This class implements the Hartmann-Orlin algorithm for finding + /// a directed cycle of minimum mean cost in a digraph + /// \ref amo93networkflows, \ref dasdan98minmeancycle. + /// It is an improved version of \ref KarpMmc "Karp"'s original algorithm, + /// it applies an efficient early termination scheme. + /// It runs in time O(ne) and uses space O(n2+e). + /// + /// \tparam GR The type of the digraph the algorithm runs on. + /// \tparam CM The type of the cost map. The default + /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap". + /// \tparam TR The traits class that defines various types used by the + /// algorithm. By default, it is \ref HartmannOrlinMmcDefaultTraits + /// "HartmannOrlinMmcDefaultTraits". + /// In most cases, this parameter should not be set directly, + /// consider to use the named template parameters instead. +#ifdef DOXYGEN + template +#else + template < typename GR, + typename CM = typename GR::template ArcMap, + typename TR = HartmannOrlinMmcDefaultTraits > +#endif + class HartmannOrlinMmc + { + public: + + /// The type of the digraph + typedef typename TR::Digraph Digraph; + /// The type of the cost map + typedef typename TR::CostMap CostMap; + /// The type of the arc costs + typedef typename TR::Cost Cost; + + /// \brief The large cost type + /// + /// The large cost type used for internal computations. + /// By default, it is \c long \c long if the \c Cost type is integer, + /// otherwise it is \c double. + typedef typename TR::LargeCost LargeCost; + + /// The tolerance type + typedef typename TR::Tolerance Tolerance; + + /// \brief The path type of the found cycles + /// + /// The path type of the found cycles. + /// Using the \ref HartmannOrlinMmcDefaultTraits "default traits class", + /// it is \ref lemon::Path "Path". + typedef typename TR::Path Path; + + /// The \ref HartmannOrlinMmcDefaultTraits "traits class" of the algorithm + typedef TR Traits; + + private: + + TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); + + // Data sturcture for path data + struct PathData + { + LargeCost dist; + Arc pred; + PathData(LargeCost d, Arc p = INVALID) : + dist(d), pred(p) {} + }; + + typedef typename Digraph::template NodeMap > + PathDataNodeMap; + + private: + + // The digraph the algorithm runs on + const Digraph &_gr; + // The cost of the arcs + const CostMap &_cost; + + // Data for storing the strongly connected components + int _comp_num; + typename Digraph::template NodeMap _comp; + std::vector > _comp_nodes; + std::vector* _nodes; + typename Digraph::template NodeMap > _out_arcs; + + // Data for the found cycles + bool _curr_found, _best_found; + LargeCost _curr_cost, _best_cost; + int _curr_size, _best_size; + Node _curr_node, _best_node; + int _curr_level, _best_level; + + Path *_cycle_path; + bool _local_path; + + // Node map for storing path data + PathDataNodeMap _data; + // The processed nodes in the last round + std::vector _process; + + Tolerance _tolerance; + + // Infinite constant + const LargeCost INF; + + public: + + /// \name Named Template Parameters + /// @{ + + template + struct SetLargeCostTraits : public Traits { + typedef T LargeCost; + typedef lemon::Tolerance Tolerance; + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// \c LargeCost type. + /// + /// \ref named-templ-param "Named parameter" for setting \c LargeCost + /// type. It is used for internal computations in the algorithm. + template + struct SetLargeCost + : public HartmannOrlinMmc > { + typedef HartmannOrlinMmc > Create; + }; + + template + struct SetPathTraits : public Traits { + typedef T Path; + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// \c %Path type. + /// + /// \ref named-templ-param "Named parameter" for setting the \c %Path + /// type of the found cycles. + /// It must conform to the \ref lemon::concepts::Path "Path" concept + /// and it must have an \c addFront() function. + template + struct SetPath + : public HartmannOrlinMmc > { + typedef HartmannOrlinMmc > Create; + }; + + /// @} + + protected: + + HartmannOrlinMmc() {} + + public: + + /// \brief Constructor. + /// + /// The constructor of the class. + /// + /// \param digraph The digraph the algorithm runs on. + /// \param cost The costs of the arcs. + HartmannOrlinMmc( const Digraph &digraph, + const CostMap &cost ) : + _gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph), + _best_found(false), _best_cost(0), _best_size(1), + _cycle_path(NULL), _local_path(false), _data(digraph), + INF(std::numeric_limits::has_infinity ? + std::numeric_limits::infinity() : + std::numeric_limits::max()) + {} + + /// Destructor. + ~HartmannOrlinMmc() { + if (_local_path) delete _cycle_path; + } + + /// \brief Set the path structure for storing the found cycle. + /// + /// This function sets an external path structure for storing the + /// found cycle. + /// + /// If you don't call this function before calling \ref run() or + /// \ref findCycleMean(), it will allocate a local \ref Path "path" + /// structure. The destuctor deallocates this automatically + /// allocated object, of course. + /// + /// \note The algorithm calls only the \ref lemon::Path::addFront() + /// "addFront()" function of the given path structure. + /// + /// \return (*this) + HartmannOrlinMmc& cycle(Path &path) { + if (_local_path) { + delete _cycle_path; + _local_path = false; + } + _cycle_path = &path; + return *this; + } + + /// \brief Set the tolerance used by the algorithm. + /// + /// This function sets the tolerance object used by the algorithm. + /// + /// \return (*this) + HartmannOrlinMmc& tolerance(const Tolerance& tolerance) { + _tolerance = tolerance; + return *this; + } + + /// \brief Return a const reference to the tolerance. + /// + /// This function returns a const reference to the tolerance object + /// used by the algorithm. + const Tolerance& tolerance() const { + return _tolerance; + } + + /// \name Execution control + /// The simplest way to execute the algorithm is to call the \ref run() + /// function.\n + /// If you only need the minimum mean cost, you may call + /// \ref findCycleMean(). + + /// @{ + + /// \brief Run the algorithm. + /// + /// This function runs the algorithm. + /// It can be called more than once (e.g. if the underlying digraph + /// and/or the arc costs have been modified). + /// + /// \return \c true if a directed cycle exists in the digraph. + /// + /// \note mmc.run() is just a shortcut of the following code. + /// \code + /// return mmc.findCycleMean() && mmc.findCycle(); + /// \endcode + bool run() { + return findCycleMean() && findCycle(); + } + + /// \brief Find the minimum cycle mean. + /// + /// This function finds the minimum mean cost of the directed + /// cycles in the digraph. + /// + /// \return \c true if a directed cycle exists in the digraph. + bool findCycleMean() { + // Initialization and find strongly connected components + init(); + findComponents(); + + // Find the minimum cycle mean in the components + for (int comp = 0; comp < _comp_num; ++comp) { + if (!initComponent(comp)) continue; + processRounds(); + + // Update the best cycle (global minimum mean cycle) + if ( _curr_found && (!_best_found || + _curr_cost * _best_size < _best_cost * _curr_size) ) { + _best_found = true; + _best_cost = _curr_cost; + _best_size = _curr_size; + _best_node = _curr_node; + _best_level = _curr_level; + } + } + return _best_found; + } + + /// \brief Find a minimum mean directed cycle. + /// + /// This function finds a directed cycle of minimum mean cost + /// in the digraph using the data computed by findCycleMean(). + /// + /// \return \c true if a directed cycle exists in the digraph. + /// + /// \pre \ref findCycleMean() must be called before using this function. + bool findCycle() { + if (!_best_found) return false; + IntNodeMap reached(_gr, -1); + int r = _best_level + 1; + Node u = _best_node; + while (reached[u] < 0) { + reached[u] = --r; + u = _gr.source(_data[u][r].pred); + } + r = reached[u]; + Arc e = _data[u][r].pred; + _cycle_path->addFront(e); + _best_cost = _cost[e]; + _best_size = 1; + Node v; + while ((v = _gr.source(e)) != u) { + e = _data[v][--r].pred; + _cycle_path->addFront(e); + _best_cost += _cost[e]; + ++_best_size; + } + return true; + } + + /// @} + + /// \name Query Functions + /// The results of the algorithm can be obtained using these + /// functions.\n + /// The algorithm should be executed before using them. + + /// @{ + + /// \brief Return the total cost of the found cycle. + /// + /// This function returns the total cost of the found cycle. + /// + /// \pre \ref run() or \ref findCycleMean() must be called before + /// using this function. + Cost cycleCost() const { + return static_cast(_best_cost); + } + + /// \brief Return the number of arcs on the found cycle. + /// + /// This function returns the number of arcs on the found cycle. + /// + /// \pre \ref run() or \ref findCycleMean() must be called before + /// using this function. + int cycleSize() const { + return _best_size; + } + + /// \brief Return the mean cost of the found cycle. + /// + /// This function returns the mean cost of the found cycle. + /// + /// \note alg.cycleMean() is just a shortcut of the + /// following code. + /// \code + /// return static_cast(alg.cycleCost()) / alg.cycleSize(); + /// \endcode + /// + /// \pre \ref run() or \ref findCycleMean() must be called before + /// using this function. + double cycleMean() const { + return static_cast(_best_cost) / _best_size; + } + + /// \brief Return the found cycle. + /// + /// This function returns a const reference to the path structure + /// storing the found cycle. + /// + /// \pre \ref run() or \ref findCycle() must be called before using + /// this function. + const Path& cycle() const { + return *_cycle_path; + } + + ///@} + + private: + + // Initialization + void init() { + if (!_cycle_path) { + _local_path = true; + _cycle_path = new Path; + } + _cycle_path->clear(); + _best_found = false; + _best_cost = 0; + _best_size = 1; + _cycle_path->clear(); + for (NodeIt u(_gr); u != INVALID; ++u) + _data[u].clear(); + } + + // Find strongly connected components and initialize _comp_nodes + // and _out_arcs + void findComponents() { + _comp_num = stronglyConnectedComponents(_gr, _comp); + _comp_nodes.resize(_comp_num); + if (_comp_num == 1) { + _comp_nodes[0].clear(); + for (NodeIt n(_gr); n != INVALID; ++n) { + _comp_nodes[0].push_back(n); + _out_arcs[n].clear(); + for (OutArcIt a(_gr, n); a != INVALID; ++a) { + _out_arcs[n].push_back(a); + } + } + } else { + for (int i = 0; i < _comp_num; ++i) + _comp_nodes[i].clear(); + for (NodeIt n(_gr); n != INVALID; ++n) { + int k = _comp[n]; + _comp_nodes[k].push_back(n); + _out_arcs[n].clear(); + for (OutArcIt a(_gr, n); a != INVALID; ++a) { + if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); + } + } + } + } + + // Initialize path data for the current component + bool initComponent(int comp) { + _nodes = &(_comp_nodes[comp]); + int n = _nodes->size(); + if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { + return false; + } + for (int i = 0; i < n; ++i) { + _data[(*_nodes)[i]].resize(n + 1, PathData(INF)); + } + return true; + } + + // Process all rounds of computing path data for the current component. + // _data[v][k] is the cost of a shortest directed walk from the root + // node to node v containing exactly k arcs. + void processRounds() { + Node start = (*_nodes)[0]; + _data[start][0] = PathData(0); + _process.clear(); + _process.push_back(start); + + int k, n = _nodes->size(); + int next_check = 4; + bool terminate = false; + for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) { + processNextBuildRound(k); + if (k == next_check || k == n) { + terminate = checkTermination(k); + next_check = next_check * 3 / 2; + } + } + for ( ; k <= n && !terminate; ++k) { + processNextFullRound(k); + if (k == next_check || k == n) { + terminate = checkTermination(k); + next_check = next_check * 3 / 2; + } + } + } + + // Process one round and rebuild _process + void processNextBuildRound(int k) { + std::vector next; + Node u, v; + Arc e; + LargeCost d; + for (int i = 0; i < int(_process.size()); ++i) { + u = _process[i]; + for (int j = 0; j < int(_out_arcs[u].size()); ++j) { + e = _out_arcs[u][j]; + v = _gr.target(e); + d = _data[u][k-1].dist + _cost[e]; + if (_tolerance.less(d, _data[v][k].dist)) { + if (_data[v][k].dist == INF) next.push_back(v); + _data[v][k] = PathData(d, e); + } + } + } + _process.swap(next); + } + + // Process one round using _nodes instead of _process + void processNextFullRound(int k) { + Node u, v; + Arc e; + LargeCost d; + for (int i = 0; i < int(_nodes->size()); ++i) { + u = (*_nodes)[i]; + for (int j = 0; j < int(_out_arcs[u].size()); ++j) { + e = _out_arcs[u][j]; + v = _gr.target(e); + d = _data[u][k-1].dist + _cost[e]; + if (_tolerance.less(d, _data[v][k].dist)) { + _data[v][k] = PathData(d, e); + } + } + } + } + + // Check early termination + bool checkTermination(int k) { + typedef std::pair Pair; + typename GR::template NodeMap level(_gr, Pair(-1, 0)); + typename GR::template NodeMap pi(_gr); + int n = _nodes->size(); + LargeCost cost; + int size; + Node u; + + // Search for cycles that are already found + _curr_found = false; + for (int i = 0; i < n; ++i) { + u = (*_nodes)[i]; + if (_data[u][k].dist == INF) continue; + for (int j = k; j >= 0; --j) { + if (level[u].first == i && level[u].second > 0) { + // A cycle is found + cost = _data[u][level[u].second].dist - _data[u][j].dist; + size = level[u].second - j; + if (!_curr_found || cost * _curr_size < _curr_cost * size) { + _curr_cost = cost; + _curr_size = size; + _curr_node = u; + _curr_level = level[u].second; + _curr_found = true; + } + } + level[u] = Pair(i, j); + if (j != 0) { + u = _gr.source(_data[u][j].pred); + } + } + } + + // If at least one cycle is found, check the optimality condition + LargeCost d; + if (_curr_found && k < n) { + // Find node potentials + for (int i = 0; i < n; ++i) { + u = (*_nodes)[i]; + pi[u] = INF; + for (int j = 0; j <= k; ++j) { + if (_data[u][j].dist < INF) { + d = _data[u][j].dist * _curr_size - j * _curr_cost; + if (_tolerance.less(d, pi[u])) pi[u] = d; + } + } + } + + // Check the optimality condition for all arcs + bool done = true; + for (ArcIt a(_gr); a != INVALID; ++a) { + if (_tolerance.less(_cost[a] * _curr_size - _curr_cost, + pi[_gr.target(a)] - pi[_gr.source(a)]) ) { + done = false; + break; + } + } + return done; + } + return (k == n); + } + + }; //class HartmannOrlinMmc + + ///@} + +} //namespace lemon + +#endif //LEMON_HARTMANN_ORLIN_MMC_H