# HG changeset patch # User Peter Kovacs # Date 1254223921 -7200 # Node ID 65a0521e744e683924d5aff918686b3773c11822 # Parent 0977046c60d27196e3b008fe9f65350180ec5362 Rename heap structures (#301) - KaryHeap --> DHeap - FouraryHeap --> QuadHeap - BinomHeap --> BinomialHeap diff -r 0977046c60d2 -r 65a0521e744e lemon/Makefile.am --- a/lemon/Makefile.am Sat Sep 26 07:21:54 2009 +0200 +++ b/lemon/Makefile.am Tue Sep 29 13:32:01 2009 +0200 @@ -60,7 +60,7 @@ lemon/bellman_ford.h \ lemon/bfs.h \ lemon/bin_heap.h \ - lemon/binom_heap.h \ + lemon/binomial_heap.h \ lemon/bucket_heap.h \ lemon/cbc.h \ lemon/circulation.h \ @@ -72,6 +72,7 @@ lemon/core.h \ lemon/cplex.h \ lemon/dfs.h \ + lemon/dheap.h \ lemon/dijkstra.h \ lemon/dim2.h \ lemon/dimacs.h \ @@ -80,14 +81,12 @@ lemon/error.h \ lemon/euler.h \ lemon/fib_heap.h \ - lemon/fourary_heap.h \ lemon/full_graph.h \ lemon/glpk.h \ lemon/gomory_hu.h \ lemon/graph_to_eps.h \ lemon/grid_graph.h \ lemon/hypercube_graph.h \ - lemon/kary_heap.h \ lemon/kruskal.h \ lemon/hao_orlin.h \ lemon/lgf_reader.h \ @@ -105,6 +104,7 @@ lemon/pairing_heap.h \ lemon/path.h \ lemon/preflow.h \ + lemon/quad_heap.h \ lemon/radix_heap.h \ lemon/radix_sort.h \ lemon/random.h \ diff -r 0977046c60d2 -r 65a0521e744e lemon/binom_heap.h --- a/lemon/binom_heap.h Sat Sep 26 07:21:54 2009 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,445 +0,0 @@ -/* -*- mode: C++; indent-tabs-mode: nil; -*- - * - * This file is a part of LEMON, a generic C++ optimization library. - * - * Copyright (C) 2003-2009 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport - * (Egervary Research Group on Combinatorial Optimization, EGRES). - * - * Permission to use, modify and distribute this software is granted - * provided that this copyright notice appears in all copies. For - * precise terms see the accompanying LICENSE file. - * - * This software is provided "AS IS" with no warranty of any kind, - * express or implied, and with no claim as to its suitability for any - * purpose. - * - */ - -#ifndef LEMON_BINOM_HEAP_H -#define LEMON_BINOM_HEAP_H - -///\file -///\ingroup heaps -///\brief Binomial Heap implementation. - -#include -#include -#include -#include -#include - -namespace lemon { - - /// \ingroup heaps - /// - ///\brief Binomial heap data structure. - /// - /// This class implements the \e binomial \e heap data structure. - /// It fully conforms to the \ref concepts::Heap "heap concept". - /// - /// The methods \ref increase() and \ref erase() are not efficient - /// in a binomial heap. In case of many calls of these operations, - /// it is better to use other heap structure, e.g. \ref BinHeap - /// "binary heap". - /// - /// \tparam PR Type of the priorities of the items. - /// \tparam IM A read-writable item map with \c int values, used - /// internally to handle the cross references. - /// \tparam CMP A functor class for comparing the priorities. - /// The default is \c std::less. -#ifdef DOXYGEN - template -#else - template > -#endif - class BinomHeap { - public: - /// Type of the item-int map. - typedef IM ItemIntMap; - /// Type of the priorities. - typedef PR Prio; - /// Type of the items stored in the heap. - typedef typename ItemIntMap::Key Item; - /// Functor type for comparing the priorities. - typedef CMP Compare; - - /// \brief Type to represent the states of the items. - /// - /// Each item has a state associated to it. It can be "in heap", - /// "pre-heap" or "post-heap". The latter two are indifferent from the - /// heap's point of view, but may be useful to the user. - /// - /// The item-int map must be initialized in such way that it assigns - /// \c PRE_HEAP (-1) to any element to be put in the heap. - enum State { - IN_HEAP = 0, ///< = 0. - PRE_HEAP = -1, ///< = -1. - POST_HEAP = -2 ///< = -2. - }; - - private: - class Store; - - std::vector _data; - int _min, _head; - ItemIntMap &_iim; - Compare _comp; - int _num_items; - - public: - /// \brief Constructor. - /// - /// Constructor. - /// \param map A map that assigns \c int values to the items. - /// It is used internally to handle the cross references. - /// The assigned value must be \c PRE_HEAP (-1) for each item. - explicit BinomHeap(ItemIntMap &map) - : _min(0), _head(-1), _iim(map), _num_items(0) {} - - /// \brief Constructor. - /// - /// Constructor. - /// \param map A map that assigns \c int values to the items. - /// It is used internally to handle the cross references. - /// The assigned value must be \c PRE_HEAP (-1) for each item. - /// \param comp The function object used for comparing the priorities. - BinomHeap(ItemIntMap &map, const Compare &comp) - : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} - - /// \brief The number of items stored in the heap. - /// - /// This function returns the number of items stored in the heap. - int size() const { return _num_items; } - - /// \brief Check if the heap is empty. - /// - /// This function returns \c true if the heap is empty. - bool empty() const { return _num_items==0; } - - /// \brief Make the heap empty. - /// - /// This functon makes the heap empty. - /// It does not change the cross reference map. If you want to reuse - /// a heap that is not surely empty, you should first clear it and - /// then you should set the cross reference map to \c PRE_HEAP - /// for each item. - void clear() { - _data.clear(); _min=0; _num_items=0; _head=-1; - } - - /// \brief Set the priority of an item or insert it, if it is - /// not stored in the heap. - /// - /// This method sets the priority of the given item if it is - /// already stored in the heap. Otherwise it inserts the given - /// item into the heap with the given priority. - /// \param item The item. - /// \param value The priority. - void set (const Item& item, const Prio& value) { - int i=_iim[item]; - if ( i >= 0 && _data[i].in ) { - if ( _comp(value, _data[i].prio) ) decrease(item, value); - if ( _comp(_data[i].prio, value) ) increase(item, value); - } else push(item, value); - } - - /// \brief Insert an item into the heap with the given priority. - /// - /// This function inserts the given item into the heap with the - /// given priority. - /// \param item The item to insert. - /// \param value The priority of the item. - /// \pre \e item must not be stored in the heap. - void push (const Item& item, const Prio& value) { - int i=_iim[item]; - if ( i<0 ) { - int s=_data.size(); - _iim.set( item,s ); - Store st; - st.name=item; - st.prio=value; - _data.push_back(st); - i=s; - } - else { - _data[i].parent=_data[i].right_neighbor=_data[i].child=-1; - _data[i].degree=0; - _data[i].in=true; - _data[i].prio=value; - } - - if( 0==_num_items ) { - _head=i; - _min=i; - } else { - merge(i); - if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; - } - ++_num_items; - } - - /// \brief Return the item having minimum priority. - /// - /// This function returns the item having minimum priority. - /// \pre The heap must be non-empty. - Item top() const { return _data[_min].name; } - - /// \brief The minimum priority. - /// - /// This function returns the minimum priority. - /// \pre The heap must be non-empty. - Prio prio() const { return _data[_min].prio; } - - /// \brief The priority of the given item. - /// - /// This function returns the priority of the given item. - /// \param item The item. - /// \pre \e item must be in the heap. - const Prio& operator[](const Item& item) const { - return _data[_iim[item]].prio; - } - - /// \brief Remove the item having minimum priority. - /// - /// This function removes the item having minimum priority. - /// \pre The heap must be non-empty. - void pop() { - _data[_min].in=false; - - int head_child=-1; - if ( _data[_min].child!=-1 ) { - int child=_data[_min].child; - int neighb; - while( child!=-1 ) { - neighb=_data[child].right_neighbor; - _data[child].parent=-1; - _data[child].right_neighbor=head_child; - head_child=child; - child=neighb; - } - } - - if ( _data[_head].right_neighbor==-1 ) { - // there was only one root - _head=head_child; - } - else { - // there were more roots - if( _head!=_min ) { unlace(_min); } - else { _head=_data[_head].right_neighbor; } - merge(head_child); - } - _min=findMin(); - --_num_items; - } - - /// \brief Remove the given item from the heap. - /// - /// This function removes the given item from the heap if it is - /// already stored. - /// \param item The item to delete. - /// \pre \e item must be in the heap. - void erase (const Item& item) { - int i=_iim[item]; - if ( i >= 0 && _data[i].in ) { - decrease( item, _data[_min].prio-1 ); - pop(); - } - } - - /// \brief Decrease the priority of an item to the given value. - /// - /// This function decreases the priority of an item to the given value. - /// \param item The item. - /// \param value The priority. - /// \pre \e item must be stored in the heap with priority at least \e value. - void decrease (Item item, const Prio& value) { - int i=_iim[item]; - int p=_data[i].parent; - _data[i].prio=value; - - while( p!=-1 && _comp(value, _data[p].prio) ) { - _data[i].name=_data[p].name; - _data[i].prio=_data[p].prio; - _data[p].name=item; - _data[p].prio=value; - _iim[_data[i].name]=i; - i=p; - p=_data[p].parent; - } - _iim[item]=i; - if ( _comp(value, _data[_min].prio) ) _min=i; - } - - /// \brief Increase the priority of an item to the given value. - /// - /// This function increases the priority of an item to the given value. - /// \param item The item. - /// \param value The priority. - /// \pre \e item must be stored in the heap with priority at most \e value. - void increase (Item item, const Prio& value) { - erase(item); - push(item, value); - } - - /// \brief Return the state of an item. - /// - /// This method returns \c PRE_HEAP if the given item has never - /// been in the heap, \c IN_HEAP if it is in the heap at the moment, - /// and \c POST_HEAP otherwise. - /// In the latter case it is possible that the item will get back - /// to the heap again. - /// \param item The item. - State state(const Item &item) const { - int i=_iim[item]; - if( i>=0 ) { - if ( _data[i].in ) i=0; - else i=-2; - } - return State(i); - } - - /// \brief Set the state of an item in the heap. - /// - /// This function sets the state of the given item in the heap. - /// It can be used to manually clear the heap when it is important - /// to achive better time complexity. - /// \param i The item. - /// \param st The state. It should not be \c IN_HEAP. - void state(const Item& i, State st) { - switch (st) { - case POST_HEAP: - case PRE_HEAP: - if (state(i) == IN_HEAP) { - erase(i); - } - _iim[i] = st; - break; - case IN_HEAP: - break; - } - } - - private: - - // Find the minimum of the roots - int findMin() { - if( _head!=-1 ) { - int min_loc=_head, min_val=_data[_head].prio; - for( int x=_data[_head].right_neighbor; x!=-1; - x=_data[x].right_neighbor ) { - if( _comp( _data[x].prio,min_val ) ) { - min_val=_data[x].prio; - min_loc=x; - } - } - return min_loc; - } - else return -1; - } - - // Merge the heap with another heap starting at the given position - void merge(int a) { - if( _head==-1 || a==-1 ) return; - if( _data[a].right_neighbor==-1 && - _data[a].degree<=_data[_head].degree ) { - _data[a].right_neighbor=_head; - _head=a; - } else { - interleave(a); - } - if( _data[_head].right_neighbor==-1 ) return; - - int x=_head; - int x_prev=-1, x_next=_data[x].right_neighbor; - while( x_next!=-1 ) { - if( _data[x].degree!=_data[x_next].degree || - ( _data[x_next].right_neighbor!=-1 && - _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { - x_prev=x; - x=x_next; - } - else { - if( _comp(_data[x_next].prio,_data[x].prio) ) { - if( x_prev==-1 ) { - _head=x_next; - } else { - _data[x_prev].right_neighbor=x_next; - } - fuse(x,x_next); - x=x_next; - } - else { - _data[x].right_neighbor=_data[x_next].right_neighbor; - fuse(x_next,x); - } - } - x_next=_data[x].right_neighbor; - } - } - - // Interleave the elements of the given list into the list of the roots - void interleave(int a) { - int p=_head, q=a; - int curr=_data.size(); - _data.push_back(Store()); - - while( p!=-1 || q!=-1 ) { - if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) { - _data[curr].right_neighbor=p; - curr=p; - p=_data[p].right_neighbor; - } - else { - _data[curr].right_neighbor=q; - curr=q; - q=_data[q].right_neighbor; - } - } - - _head=_data.back().right_neighbor; - _data.pop_back(); - } - - // Lace node a under node b - void fuse(int a, int b) { - _data[a].parent=b; - _data[a].right_neighbor=_data[b].child; - _data[b].child=a; - - ++_data[b].degree; - } - - // Unlace node a (if it has siblings) - void unlace(int a) { - int neighb=_data[a].right_neighbor; - int other=_head; - - while( _data[other].right_neighbor!=a ) - other=_data[other].right_neighbor; - _data[other].right_neighbor=neighb; - } - - private: - - class Store { - friend class BinomHeap; - - Item name; - int parent; - int right_neighbor; - int child; - int degree; - bool in; - Prio prio; - - Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), - in(true) {} - }; - }; - -} //namespace lemon - -#endif //LEMON_BINOM_HEAP_H - diff -r 0977046c60d2 -r 65a0521e744e lemon/binomial_heap.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/binomial_heap.h Tue Sep 29 13:32:01 2009 +0200 @@ -0,0 +1,445 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_BINOMIAL_HEAP_H +#define LEMON_BINOMIAL_HEAP_H + +///\file +///\ingroup heaps +///\brief Binomial Heap implementation. + +#include +#include +#include +#include +#include + +namespace lemon { + + /// \ingroup heaps + /// + ///\brief Binomial heap data structure. + /// + /// This class implements the \e binomial \e heap data structure. + /// It fully conforms to the \ref concepts::Heap "heap concept". + /// + /// The methods \ref increase() and \ref erase() are not efficient + /// in a binomial heap. In case of many calls of these operations, + /// it is better to use other heap structure, e.g. \ref BinHeap + /// "binary heap". + /// + /// \tparam PR Type of the priorities of the items. + /// \tparam IM A read-writable item map with \c int values, used + /// internally to handle the cross references. + /// \tparam CMP A functor class for comparing the priorities. + /// The default is \c std::less. +#ifdef DOXYGEN + template +#else + template > +#endif + class BinomialHeap { + public: + /// Type of the item-int map. + typedef IM ItemIntMap; + /// Type of the priorities. + typedef PR Prio; + /// Type of the items stored in the heap. + typedef typename ItemIntMap::Key Item; + /// Functor type for comparing the priorities. + typedef CMP Compare; + + /// \brief Type to represent the states of the items. + /// + /// Each item has a state associated to it. It can be "in heap", + /// "pre-heap" or "post-heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The item-int map must be initialized in such way that it assigns + /// \c PRE_HEAP (-1) to any element to be put in the heap. + enum State { + IN_HEAP = 0, ///< = 0. + PRE_HEAP = -1, ///< = -1. + POST_HEAP = -2 ///< = -2. + }; + + private: + class Store; + + std::vector _data; + int _min, _head; + ItemIntMap &_iim; + Compare _comp; + int _num_items; + + public: + /// \brief Constructor. + /// + /// Constructor. + /// \param map A map that assigns \c int values to the items. + /// It is used internally to handle the cross references. + /// The assigned value must be \c PRE_HEAP (-1) for each item. + explicit BinomialHeap(ItemIntMap &map) + : _min(0), _head(-1), _iim(map), _num_items(0) {} + + /// \brief Constructor. + /// + /// Constructor. + /// \param map A map that assigns \c int values to the items. + /// It is used internally to handle the cross references. + /// The assigned value must be \c PRE_HEAP (-1) for each item. + /// \param comp The function object used for comparing the priorities. + BinomialHeap(ItemIntMap &map, const Compare &comp) + : _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} + + /// \brief The number of items stored in the heap. + /// + /// This function returns the number of items stored in the heap. + int size() const { return _num_items; } + + /// \brief Check if the heap is empty. + /// + /// This function returns \c true if the heap is empty. + bool empty() const { return _num_items==0; } + + /// \brief Make the heap empty. + /// + /// This functon makes the heap empty. + /// It does not change the cross reference map. If you want to reuse + /// a heap that is not surely empty, you should first clear it and + /// then you should set the cross reference map to \c PRE_HEAP + /// for each item. + void clear() { + _data.clear(); _min=0; _num_items=0; _head=-1; + } + + /// \brief Set the priority of an item or insert it, if it is + /// not stored in the heap. + /// + /// This method sets the priority of the given item if it is + /// already stored in the heap. Otherwise it inserts the given + /// item into the heap with the given priority. + /// \param item The item. + /// \param value The priority. + void set (const Item& item, const Prio& value) { + int i=_iim[item]; + if ( i >= 0 && _data[i].in ) { + if ( _comp(value, _data[i].prio) ) decrease(item, value); + if ( _comp(_data[i].prio, value) ) increase(item, value); + } else push(item, value); + } + + /// \brief Insert an item into the heap with the given priority. + /// + /// This function inserts the given item into the heap with the + /// given priority. + /// \param item The item to insert. + /// \param value The priority of the item. + /// \pre \e item must not be stored in the heap. + void push (const Item& item, const Prio& value) { + int i=_iim[item]; + if ( i<0 ) { + int s=_data.size(); + _iim.set( item,s ); + Store st; + st.name=item; + st.prio=value; + _data.push_back(st); + i=s; + } + else { + _data[i].parent=_data[i].right_neighbor=_data[i].child=-1; + _data[i].degree=0; + _data[i].in=true; + _data[i].prio=value; + } + + if( 0==_num_items ) { + _head=i; + _min=i; + } else { + merge(i); + if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; + } + ++_num_items; + } + + /// \brief Return the item having minimum priority. + /// + /// This function returns the item having minimum priority. + /// \pre The heap must be non-empty. + Item top() const { return _data[_min].name; } + + /// \brief The minimum priority. + /// + /// This function returns the minimum priority. + /// \pre The heap must be non-empty. + Prio prio() const { return _data[_min].prio; } + + /// \brief The priority of the given item. + /// + /// This function returns the priority of the given item. + /// \param item The item. + /// \pre \e item must be in the heap. + const Prio& operator[](const Item& item) const { + return _data[_iim[item]].prio; + } + + /// \brief Remove the item having minimum priority. + /// + /// This function removes the item having minimum priority. + /// \pre The heap must be non-empty. + void pop() { + _data[_min].in=false; + + int head_child=-1; + if ( _data[_min].child!=-1 ) { + int child=_data[_min].child; + int neighb; + while( child!=-1 ) { + neighb=_data[child].right_neighbor; + _data[child].parent=-1; + _data[child].right_neighbor=head_child; + head_child=child; + child=neighb; + } + } + + if ( _data[_head].right_neighbor==-1 ) { + // there was only one root + _head=head_child; + } + else { + // there were more roots + if( _head!=_min ) { unlace(_min); } + else { _head=_data[_head].right_neighbor; } + merge(head_child); + } + _min=findMin(); + --_num_items; + } + + /// \brief Remove the given item from the heap. + /// + /// This function removes the given item from the heap if it is + /// already stored. + /// \param item The item to delete. + /// \pre \e item must be in the heap. + void erase (const Item& item) { + int i=_iim[item]; + if ( i >= 0 && _data[i].in ) { + decrease( item, _data[_min].prio-1 ); + pop(); + } + } + + /// \brief Decrease the priority of an item to the given value. + /// + /// This function decreases the priority of an item to the given value. + /// \param item The item. + /// \param value The priority. + /// \pre \e item must be stored in the heap with priority at least \e value. + void decrease (Item item, const Prio& value) { + int i=_iim[item]; + int p=_data[i].parent; + _data[i].prio=value; + + while( p!=-1 && _comp(value, _data[p].prio) ) { + _data[i].name=_data[p].name; + _data[i].prio=_data[p].prio; + _data[p].name=item; + _data[p].prio=value; + _iim[_data[i].name]=i; + i=p; + p=_data[p].parent; + } + _iim[item]=i; + if ( _comp(value, _data[_min].prio) ) _min=i; + } + + /// \brief Increase the priority of an item to the given value. + /// + /// This function increases the priority of an item to the given value. + /// \param item The item. + /// \param value The priority. + /// \pre \e item must be stored in the heap with priority at most \e value. + void increase (Item item, const Prio& value) { + erase(item); + push(item, value); + } + + /// \brief Return the state of an item. + /// + /// This method returns \c PRE_HEAP if the given item has never + /// been in the heap, \c IN_HEAP if it is in the heap at the moment, + /// and \c POST_HEAP otherwise. + /// In the latter case it is possible that the item will get back + /// to the heap again. + /// \param item The item. + State state(const Item &item) const { + int i=_iim[item]; + if( i>=0 ) { + if ( _data[i].in ) i=0; + else i=-2; + } + return State(i); + } + + /// \brief Set the state of an item in the heap. + /// + /// This function sets the state of the given item in the heap. + /// It can be used to manually clear the heap when it is important + /// to achive better time complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) { + erase(i); + } + _iim[i] = st; + break; + case IN_HEAP: + break; + } + } + + private: + + // Find the minimum of the roots + int findMin() { + if( _head!=-1 ) { + int min_loc=_head, min_val=_data[_head].prio; + for( int x=_data[_head].right_neighbor; x!=-1; + x=_data[x].right_neighbor ) { + if( _comp( _data[x].prio,min_val ) ) { + min_val=_data[x].prio; + min_loc=x; + } + } + return min_loc; + } + else return -1; + } + + // Merge the heap with another heap starting at the given position + void merge(int a) { + if( _head==-1 || a==-1 ) return; + if( _data[a].right_neighbor==-1 && + _data[a].degree<=_data[_head].degree ) { + _data[a].right_neighbor=_head; + _head=a; + } else { + interleave(a); + } + if( _data[_head].right_neighbor==-1 ) return; + + int x=_head; + int x_prev=-1, x_next=_data[x].right_neighbor; + while( x_next!=-1 ) { + if( _data[x].degree!=_data[x_next].degree || + ( _data[x_next].right_neighbor!=-1 && + _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { + x_prev=x; + x=x_next; + } + else { + if( _comp(_data[x_next].prio,_data[x].prio) ) { + if( x_prev==-1 ) { + _head=x_next; + } else { + _data[x_prev].right_neighbor=x_next; + } + fuse(x,x_next); + x=x_next; + } + else { + _data[x].right_neighbor=_data[x_next].right_neighbor; + fuse(x_next,x); + } + } + x_next=_data[x].right_neighbor; + } + } + + // Interleave the elements of the given list into the list of the roots + void interleave(int a) { + int p=_head, q=a; + int curr=_data.size(); + _data.push_back(Store()); + + while( p!=-1 || q!=-1 ) { + if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) { + _data[curr].right_neighbor=p; + curr=p; + p=_data[p].right_neighbor; + } + else { + _data[curr].right_neighbor=q; + curr=q; + q=_data[q].right_neighbor; + } + } + + _head=_data.back().right_neighbor; + _data.pop_back(); + } + + // Lace node a under node b + void fuse(int a, int b) { + _data[a].parent=b; + _data[a].right_neighbor=_data[b].child; + _data[b].child=a; + + ++_data[b].degree; + } + + // Unlace node a (if it has siblings) + void unlace(int a) { + int neighb=_data[a].right_neighbor; + int other=_head; + + while( _data[other].right_neighbor!=a ) + other=_data[other].right_neighbor; + _data[other].right_neighbor=neighb; + } + + private: + + class Store { + friend class BinomialHeap; + + Item name; + int parent; + int right_neighbor; + int child; + int degree; + bool in; + Prio prio; + + Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), + in(true) {} + }; + }; + +} //namespace lemon + +#endif //LEMON_BINOMIAL_HEAP_H + diff -r 0977046c60d2 -r 65a0521e744e lemon/dheap.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/dheap.h Tue Sep 29 13:32:01 2009 +0200 @@ -0,0 +1,352 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_DHEAP_H +#define LEMON_DHEAP_H + +///\ingroup heaps +///\file +///\brief D-ary heap implementation. + +#include +#include +#include + +namespace lemon { + + /// \ingroup heaps + /// + ///\brief D-ary heap data structure. + /// + /// This class implements the \e D-ary \e heap data structure. + /// It fully conforms to the \ref concepts::Heap "heap concept". + /// + /// The \ref DHeap "D-ary heap" is a generalization of the + /// \ref BinHeap "binary heap" structure, its nodes have at most + /// \c D children, instead of two. + /// \ref BinHeap and \ref QuadHeap are specialized implementations + /// of this structure for D=2 and D=4, respectively. + /// + /// \tparam PR Type of the priorities of the items. + /// \tparam IM A read-writable item map with \c int values, used + /// internally to handle the cross references. + /// \tparam D The degree of the heap, each node have at most \e D + /// children. The default is 16. Powers of two are suggested to use + /// so that the multiplications and divisions needed to traverse the + /// nodes of the heap could be performed faster. + /// \tparam CMP A functor class for comparing the priorities. + /// The default is \c std::less. + /// + ///\sa BinHeap + ///\sa FouraryHeap +#ifdef DOXYGEN + template +#else + template > +#endif + class DHeap { + public: + /// Type of the item-int map. + typedef IM ItemIntMap; + /// Type of the priorities. + typedef PR Prio; + /// Type of the items stored in the heap. + typedef typename ItemIntMap::Key Item; + /// Type of the item-priority pairs. + typedef std::pair Pair; + /// Functor type for comparing the priorities. + typedef CMP Compare; + + /// \brief Type to represent the states of the items. + /// + /// Each item has a state associated to it. It can be "in heap", + /// "pre-heap" or "post-heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The item-int map must be initialized in such way that it assigns + /// \c PRE_HEAP (-1) to any element to be put in the heap. + enum State { + IN_HEAP = 0, ///< = 0. + PRE_HEAP = -1, ///< = -1. + POST_HEAP = -2 ///< = -2. + }; + + private: + std::vector _data; + Compare _comp; + ItemIntMap &_iim; + + public: + /// \brief Constructor. + /// + /// Constructor. + /// \param map A map that assigns \c int values to the items. + /// It is used internally to handle the cross references. + /// The assigned value must be \c PRE_HEAP (-1) for each item. + explicit DHeap(ItemIntMap &map) : _iim(map) {} + + /// \brief Constructor. + /// + /// Constructor. + /// \param map A map that assigns \c int values to the items. + /// It is used internally to handle the cross references. + /// The assigned value must be \c PRE_HEAP (-1) for each item. + /// \param comp The function object used for comparing the priorities. + DHeap(ItemIntMap &map, const Compare &comp) + : _iim(map), _comp(comp) {} + + /// \brief The number of items stored in the heap. + /// + /// This function returns the number of items stored in the heap. + int size() const { return _data.size(); } + + /// \brief Check if the heap is empty. + /// + /// This function returns \c true if the heap is empty. + bool empty() const { return _data.empty(); } + + /// \brief Make the heap empty. + /// + /// This functon makes the heap empty. + /// It does not change the cross reference map. If you want to reuse + /// a heap that is not surely empty, you should first clear it and + /// then you should set the cross reference map to \c PRE_HEAP + /// for each item. + void clear() { _data.clear(); } + + private: + int parent(int i) { return (i-1)/D; } + int firstChild(int i) { return D*i+1; } + + bool less(const Pair &p1, const Pair &p2) const { + return _comp(p1.second, p2.second); + } + + void bubbleUp(int hole, Pair p) { + int par = parent(hole); + while( hole>0 && less(p,_data[par]) ) { + move(_data[par],hole); + hole = par; + par = parent(hole); + } + move(p, hole); + } + + void bubbleDown(int hole, Pair p, int length) { + if( length>1 ) { + int child = firstChild(hole); + while( child+D<=length ) { + int min=child; + for (int i=1; i0) bubbleDown(0, _data[n], n); + _data.pop_back(); + } + + /// \brief Remove the given item from the heap. + /// + /// This function removes the given item from the heap if it is + /// already stored. + /// \param i The item to delete. + /// \pre \e i must be in the heap. + void erase(const Item &i) { + int h = _iim[i]; + int n = _data.size()-1; + _iim.set(_data[h].first, POST_HEAP); + if( h=0) s=0; + return State(s); + } + + /// \brief Set the state of an item in the heap. + /// + /// This function sets the state of the given item in the heap. + /// It can be used to manually clear the heap when it is important + /// to achive better time complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) erase(i); + _iim[i] = st; + break; + case IN_HEAP: + break; + } + } + + /// \brief Replace an item in the heap. + /// + /// This function replaces item \c i with item \c j. + /// Item \c i must be in the heap, while \c j must be out of the heap. + /// After calling this method, item \c i will be out of the + /// heap and \c j will be in the heap with the same prioriority + /// as item \c i had before. + void replace(const Item& i, const Item& j) { + int idx=_iim[i]; + _iim.set(i, _iim[j]); + _iim.set(j, idx); + _data[idx].first=j; + } + + }; // class DHeap + +} // namespace lemon + +#endif // LEMON_DHEAP_H diff -r 0977046c60d2 -r 65a0521e744e lemon/fourary_heap.h --- a/lemon/fourary_heap.h Sat Sep 26 07:21:54 2009 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,342 +0,0 @@ -/* -*- mode: C++; indent-tabs-mode: nil; -*- - * - * This file is a part of LEMON, a generic C++ optimization library. - * - * Copyright (C) 2003-2009 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport - * (Egervary Research Group on Combinatorial Optimization, EGRES). - * - * Permission to use, modify and distribute this software is granted - * provided that this copyright notice appears in all copies. For - * precise terms see the accompanying LICENSE file. - * - * This software is provided "AS IS" with no warranty of any kind, - * express or implied, and with no claim as to its suitability for any - * purpose. - * - */ - -#ifndef LEMON_FOURARY_HEAP_H -#define LEMON_FOURARY_HEAP_H - -///\ingroup heaps -///\file -///\brief Fourary heap implementation. - -#include -#include -#include - -namespace lemon { - - /// \ingroup heaps - /// - ///\brief Fourary heap data structure. - /// - /// This class implements the \e fourary \e heap data structure. - /// It fully conforms to the \ref concepts::Heap "heap concept". - /// - /// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap" - /// for K=4. It is similar to the \ref BinHeap "binary heap", - /// but its nodes have at most four children, instead of two. - /// - /// \tparam PR Type of the priorities of the items. - /// \tparam IM A read-writable item map with \c int values, used - /// internally to handle the cross references. - /// \tparam CMP A functor class for comparing the priorities. - /// The default is \c std::less. - /// - ///\sa BinHeap - ///\sa KaryHeap -#ifdef DOXYGEN - template -#else - template > -#endif - class FouraryHeap { - public: - /// Type of the item-int map. - typedef IM ItemIntMap; - /// Type of the priorities. - typedef PR Prio; - /// Type of the items stored in the heap. - typedef typename ItemIntMap::Key Item; - /// Type of the item-priority pairs. - typedef std::pair Pair; - /// Functor type for comparing the priorities. - typedef CMP Compare; - - /// \brief Type to represent the states of the items. - /// - /// Each item has a state associated to it. It can be "in heap", - /// "pre-heap" or "post-heap". The latter two are indifferent from the - /// heap's point of view, but may be useful to the user. - /// - /// The item-int map must be initialized in such way that it assigns - /// \c PRE_HEAP (-1) to any element to be put in the heap. - enum State { - IN_HEAP = 0, ///< = 0. - PRE_HEAP = -1, ///< = -1. - POST_HEAP = -2 ///< = -2. - }; - - private: - std::vector _data; - Compare _comp; - ItemIntMap &_iim; - - public: - /// \brief Constructor. - /// - /// Constructor. - /// \param map A map that assigns \c int values to the items. - /// It is used internally to handle the cross references. - /// The assigned value must be \c PRE_HEAP (-1) for each item. - explicit FouraryHeap(ItemIntMap &map) : _iim(map) {} - - /// \brief Constructor. - /// - /// Constructor. - /// \param map A map that assigns \c int values to the items. - /// It is used internally to handle the cross references. - /// The assigned value must be \c PRE_HEAP (-1) for each item. - /// \param comp The function object used for comparing the priorities. - FouraryHeap(ItemIntMap &map, const Compare &comp) - : _iim(map), _comp(comp) {} - - /// \brief The number of items stored in the heap. - /// - /// This function returns the number of items stored in the heap. - int size() const { return _data.size(); } - - /// \brief Check if the heap is empty. - /// - /// This function returns \c true if the heap is empty. - bool empty() const { return _data.empty(); } - - /// \brief Make the heap empty. - /// - /// This functon makes the heap empty. - /// It does not change the cross reference map. If you want to reuse - /// a heap that is not surely empty, you should first clear it and - /// then you should set the cross reference map to \c PRE_HEAP - /// for each item. - void clear() { _data.clear(); } - - private: - static int parent(int i) { return (i-1)/4; } - static int firstChild(int i) { return 4*i+1; } - - bool less(const Pair &p1, const Pair &p2) const { - return _comp(p1.second, p2.second); - } - - void bubbleUp(int hole, Pair p) { - int par = parent(hole); - while( hole>0 && less(p,_data[par]) ) { - move(_data[par],hole); - hole = par; - par = parent(hole); - } - move(p, hole); - } - - void bubbleDown(int hole, Pair p, int length) { - if( length>1 ) { - int child = firstChild(hole); - while( child+30) bubbleDown(0, _data[n], n); - _data.pop_back(); - } - - /// \brief Remove the given item from the heap. - /// - /// This function removes the given item from the heap if it is - /// already stored. - /// \param i The item to delete. - /// \pre \e i must be in the heap. - void erase(const Item &i) { - int h = _iim[i]; - int n = _data.size()-1; - _iim.set(_data[h].first, POST_HEAP); - if( h=0) s=0; - return State(s); - } - - /// \brief Set the state of an item in the heap. - /// - /// This function sets the state of the given item in the heap. - /// It can be used to manually clear the heap when it is important - /// to achive better time complexity. - /// \param i The item. - /// \param st The state. It should not be \c IN_HEAP. - void state(const Item& i, State st) { - switch (st) { - case POST_HEAP: - case PRE_HEAP: - if (state(i) == IN_HEAP) erase(i); - _iim[i] = st; - break; - case IN_HEAP: - break; - } - } - - /// \brief Replace an item in the heap. - /// - /// This function replaces item \c i with item \c j. - /// Item \c i must be in the heap, while \c j must be out of the heap. - /// After calling this method, item \c i will be out of the - /// heap and \c j will be in the heap with the same prioriority - /// as item \c i had before. - void replace(const Item& i, const Item& j) { - int idx = _iim[i]; - _iim.set(i, _iim[j]); - _iim.set(j, idx); - _data[idx].first = j; - } - - }; // class FouraryHeap - -} // namespace lemon - -#endif // LEMON_FOURARY_HEAP_H diff -r 0977046c60d2 -r 65a0521e744e lemon/kary_heap.h --- a/lemon/kary_heap.h Sat Sep 26 07:21:54 2009 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,352 +0,0 @@ -/* -*- mode: C++; indent-tabs-mode: nil; -*- - * - * This file is a part of LEMON, a generic C++ optimization library. - * - * Copyright (C) 2003-2009 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport - * (Egervary Research Group on Combinatorial Optimization, EGRES). - * - * Permission to use, modify and distribute this software is granted - * provided that this copyright notice appears in all copies. For - * precise terms see the accompanying LICENSE file. - * - * This software is provided "AS IS" with no warranty of any kind, - * express or implied, and with no claim as to its suitability for any - * purpose. - * - */ - -#ifndef LEMON_KARY_HEAP_H -#define LEMON_KARY_HEAP_H - -///\ingroup heaps -///\file -///\brief Fourary heap implementation. - -#include -#include -#include - -namespace lemon { - - /// \ingroup heaps - /// - ///\brief K-ary heap data structure. - /// - /// This class implements the \e K-ary \e heap data structure. - /// It fully conforms to the \ref concepts::Heap "heap concept". - /// - /// The \ref KaryHeap "K-ary heap" is a generalization of the - /// \ref BinHeap "binary heap" structure, its nodes have at most - /// \c K children, instead of two. - /// \ref BinHeap and \ref FouraryHeap are specialized implementations - /// of this structure for K=2 and K=4, respectively. - /// - /// \tparam PR Type of the priorities of the items. - /// \tparam IM A read-writable item map with \c int values, used - /// internally to handle the cross references. - /// \tparam K The degree of the heap, each node have at most \e K - /// children. The default is 16. Powers of two are suggested to use - /// so that the multiplications and divisions needed to traverse the - /// nodes of the heap could be performed faster. - /// \tparam CMP A functor class for comparing the priorities. - /// The default is \c std::less. - /// - ///\sa BinHeap - ///\sa FouraryHeap -#ifdef DOXYGEN - template -#else - template > -#endif - class KaryHeap { - public: - /// Type of the item-int map. - typedef IM ItemIntMap; - /// Type of the priorities. - typedef PR Prio; - /// Type of the items stored in the heap. - typedef typename ItemIntMap::Key Item; - /// Type of the item-priority pairs. - typedef std::pair Pair; - /// Functor type for comparing the priorities. - typedef CMP Compare; - - /// \brief Type to represent the states of the items. - /// - /// Each item has a state associated to it. It can be "in heap", - /// "pre-heap" or "post-heap". The latter two are indifferent from the - /// heap's point of view, but may be useful to the user. - /// - /// The item-int map must be initialized in such way that it assigns - /// \c PRE_HEAP (-1) to any element to be put in the heap. - enum State { - IN_HEAP = 0, ///< = 0. - PRE_HEAP = -1, ///< = -1. - POST_HEAP = -2 ///< = -2. - }; - - private: - std::vector _data; - Compare _comp; - ItemIntMap &_iim; - - public: - /// \brief Constructor. - /// - /// Constructor. - /// \param map A map that assigns \c int values to the items. - /// It is used internally to handle the cross references. - /// The assigned value must be \c PRE_HEAP (-1) for each item. - explicit KaryHeap(ItemIntMap &map) : _iim(map) {} - - /// \brief Constructor. - /// - /// Constructor. - /// \param map A map that assigns \c int values to the items. - /// It is used internally to handle the cross references. - /// The assigned value must be \c PRE_HEAP (-1) for each item. - /// \param comp The function object used for comparing the priorities. - KaryHeap(ItemIntMap &map, const Compare &comp) - : _iim(map), _comp(comp) {} - - /// \brief The number of items stored in the heap. - /// - /// This function returns the number of items stored in the heap. - int size() const { return _data.size(); } - - /// \brief Check if the heap is empty. - /// - /// This function returns \c true if the heap is empty. - bool empty() const { return _data.empty(); } - - /// \brief Make the heap empty. - /// - /// This functon makes the heap empty. - /// It does not change the cross reference map. If you want to reuse - /// a heap that is not surely empty, you should first clear it and - /// then you should set the cross reference map to \c PRE_HEAP - /// for each item. - void clear() { _data.clear(); } - - private: - int parent(int i) { return (i-1)/K; } - int firstChild(int i) { return K*i+1; } - - bool less(const Pair &p1, const Pair &p2) const { - return _comp(p1.second, p2.second); - } - - void bubbleUp(int hole, Pair p) { - int par = parent(hole); - while( hole>0 && less(p,_data[par]) ) { - move(_data[par],hole); - hole = par; - par = parent(hole); - } - move(p, hole); - } - - void bubbleDown(int hole, Pair p, int length) { - if( length>1 ) { - int child = firstChild(hole); - while( child+K<=length ) { - int min=child; - for (int i=1; i0) bubbleDown(0, _data[n], n); - _data.pop_back(); - } - - /// \brief Remove the given item from the heap. - /// - /// This function removes the given item from the heap if it is - /// already stored. - /// \param i The item to delete. - /// \pre \e i must be in the heap. - void erase(const Item &i) { - int h = _iim[i]; - int n = _data.size()-1; - _iim.set(_data[h].first, POST_HEAP); - if( h=0) s=0; - return State(s); - } - - /// \brief Set the state of an item in the heap. - /// - /// This function sets the state of the given item in the heap. - /// It can be used to manually clear the heap when it is important - /// to achive better time complexity. - /// \param i The item. - /// \param st The state. It should not be \c IN_HEAP. - void state(const Item& i, State st) { - switch (st) { - case POST_HEAP: - case PRE_HEAP: - if (state(i) == IN_HEAP) erase(i); - _iim[i] = st; - break; - case IN_HEAP: - break; - } - } - - /// \brief Replace an item in the heap. - /// - /// This function replaces item \c i with item \c j. - /// Item \c i must be in the heap, while \c j must be out of the heap. - /// After calling this method, item \c i will be out of the - /// heap and \c j will be in the heap with the same prioriority - /// as item \c i had before. - void replace(const Item& i, const Item& j) { - int idx=_iim[i]; - _iim.set(i, _iim[j]); - _iim.set(j, idx); - _data[idx].first=j; - } - - }; // class KaryHeap - -} // namespace lemon - -#endif // LEMON_KARY_HEAP_H diff -r 0977046c60d2 -r 65a0521e744e lemon/quad_heap.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/quad_heap.h Tue Sep 29 13:32:01 2009 +0200 @@ -0,0 +1,343 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_QUAD_HEAP_H +#define LEMON_QUAD_HEAP_H + +///\ingroup heaps +///\file +///\brief Fourary (quaternary) heap implementation. + +#include +#include +#include + +namespace lemon { + + /// \ingroup heaps + /// + ///\brief Fourary (quaternary) heap data structure. + /// + /// This class implements the \e Fourary (\e quaternary) \e heap + /// data structure. + /// It fully conforms to the \ref concepts::Heap "heap concept". + /// + /// The fourary heap is a specialization of the \ref DHeap "D-ary heap" + /// for D=4. It is similar to the \ref BinHeap "binary heap", + /// but its nodes have at most four children, instead of two. + /// + /// \tparam PR Type of the priorities of the items. + /// \tparam IM A read-writable item map with \c int values, used + /// internally to handle the cross references. + /// \tparam CMP A functor class for comparing the priorities. + /// The default is \c std::less. + /// + ///\sa BinHeap + ///\sa DHeap +#ifdef DOXYGEN + template +#else + template > +#endif + class QuadHeap { + public: + /// Type of the item-int map. + typedef IM ItemIntMap; + /// Type of the priorities. + typedef PR Prio; + /// Type of the items stored in the heap. + typedef typename ItemIntMap::Key Item; + /// Type of the item-priority pairs. + typedef std::pair Pair; + /// Functor type for comparing the priorities. + typedef CMP Compare; + + /// \brief Type to represent the states of the items. + /// + /// Each item has a state associated to it. It can be "in heap", + /// "pre-heap" or "post-heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The item-int map must be initialized in such way that it assigns + /// \c PRE_HEAP (-1) to any element to be put in the heap. + enum State { + IN_HEAP = 0, ///< = 0. + PRE_HEAP = -1, ///< = -1. + POST_HEAP = -2 ///< = -2. + }; + + private: + std::vector _data; + Compare _comp; + ItemIntMap &_iim; + + public: + /// \brief Constructor. + /// + /// Constructor. + /// \param map A map that assigns \c int values to the items. + /// It is used internally to handle the cross references. + /// The assigned value must be \c PRE_HEAP (-1) for each item. + explicit QuadHeap(ItemIntMap &map) : _iim(map) {} + + /// \brief Constructor. + /// + /// Constructor. + /// \param map A map that assigns \c int values to the items. + /// It is used internally to handle the cross references. + /// The assigned value must be \c PRE_HEAP (-1) for each item. + /// \param comp The function object used for comparing the priorities. + QuadHeap(ItemIntMap &map, const Compare &comp) + : _iim(map), _comp(comp) {} + + /// \brief The number of items stored in the heap. + /// + /// This function returns the number of items stored in the heap. + int size() const { return _data.size(); } + + /// \brief Check if the heap is empty. + /// + /// This function returns \c true if the heap is empty. + bool empty() const { return _data.empty(); } + + /// \brief Make the heap empty. + /// + /// This functon makes the heap empty. + /// It does not change the cross reference map. If you want to reuse + /// a heap that is not surely empty, you should first clear it and + /// then you should set the cross reference map to \c PRE_HEAP + /// for each item. + void clear() { _data.clear(); } + + private: + static int parent(int i) { return (i-1)/4; } + static int firstChild(int i) { return 4*i+1; } + + bool less(const Pair &p1, const Pair &p2) const { + return _comp(p1.second, p2.second); + } + + void bubbleUp(int hole, Pair p) { + int par = parent(hole); + while( hole>0 && less(p,_data[par]) ) { + move(_data[par],hole); + hole = par; + par = parent(hole); + } + move(p, hole); + } + + void bubbleDown(int hole, Pair p, int length) { + if( length>1 ) { + int child = firstChild(hole); + while( child+30) bubbleDown(0, _data[n], n); + _data.pop_back(); + } + + /// \brief Remove the given item from the heap. + /// + /// This function removes the given item from the heap if it is + /// already stored. + /// \param i The item to delete. + /// \pre \e i must be in the heap. + void erase(const Item &i) { + int h = _iim[i]; + int n = _data.size()-1; + _iim.set(_data[h].first, POST_HEAP); + if( h=0) s=0; + return State(s); + } + + /// \brief Set the state of an item in the heap. + /// + /// This function sets the state of the given item in the heap. + /// It can be used to manually clear the heap when it is important + /// to achive better time complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) erase(i); + _iim[i] = st; + break; + case IN_HEAP: + break; + } + } + + /// \brief Replace an item in the heap. + /// + /// This function replaces item \c i with item \c j. + /// Item \c i must be in the heap, while \c j must be out of the heap. + /// After calling this method, item \c i will be out of the + /// heap and \c j will be in the heap with the same prioriority + /// as item \c i had before. + void replace(const Item& i, const Item& j) { + int idx = _iim[i]; + _iim.set(i, _iim[j]); + _iim.set(j, idx); + _data[idx].first = j; + } + + }; // class QuadHeap + +} // namespace lemon + +#endif // LEMON_FOURARY_HEAP_H diff -r 0977046c60d2 -r 65a0521e744e test/heap_test.cc --- a/test/heap_test.cc Sat Sep 26 07:21:54 2009 +0200 +++ b/test/heap_test.cc Tue Sep 29 13:32:01 2009 +0200 @@ -30,12 +30,12 @@ #include #include -#include -#include +#include +#include #include #include #include -#include +#include #include #include "test_tools.h" @@ -185,26 +185,26 @@ dijkstraHeapTest(digraph, length, source); } - // FouraryHeap + // QuadHeap { - typedef FouraryHeap IntHeap; + typedef QuadHeap IntHeap; checkConcept, IntHeap>(); heapSortTest(); heapIncreaseTest(); - typedef FouraryHeap NodeHeap; + typedef QuadHeap NodeHeap; checkConcept, NodeHeap>(); dijkstraHeapTest(digraph, length, source); } - // KaryHeap + // DHeap { - typedef KaryHeap IntHeap; + typedef DHeap IntHeap; checkConcept, IntHeap>(); heapSortTest(); heapIncreaseTest(); - typedef KaryHeap NodeHeap; + typedef DHeap NodeHeap; checkConcept, NodeHeap>(); dijkstraHeapTest(digraph, length, source); } @@ -245,14 +245,14 @@ dijkstraHeapTest(digraph, length, source); } - // BinomHeap + // BinomialHeap { - typedef BinomHeap IntHeap; + typedef BinomialHeap IntHeap; checkConcept, IntHeap>(); heapSortTest(); heapIncreaseTest(); - typedef BinomHeap NodeHeap; + typedef BinomialHeap NodeHeap; checkConcept, NodeHeap>(); dijkstraHeapTest(digraph, length, source); }