lemon/bfs.h
author Balazs Dezso <deba@inf.elte.hu>
Sun, 14 Nov 2010 16:35:31 +0100
changeset 1018 2e959a5a0c2d
parent 877 141f9c0db4a3
parent 975 b873350e6258
child 1074 97d978243703
permissions -rw-r--r--
Add bipartite graph concepts (#69)
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@100
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@100
     4
 *
alpar@877
     5
 * Copyright (C) 2003-2010
alpar@100
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@100
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@100
     8
 *
alpar@100
     9
 * Permission to use, modify and distribute this software is granted
alpar@100
    10
 * provided that this copyright notice appears in all copies. For
alpar@100
    11
 * precise terms see the accompanying LICENSE file.
alpar@100
    12
 *
alpar@100
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@100
    14
 * express or implied, and with no claim as to its suitability for any
alpar@100
    15
 * purpose.
alpar@100
    16
 *
alpar@100
    17
 */
alpar@100
    18
alpar@100
    19
#ifndef LEMON_BFS_H
alpar@100
    20
#define LEMON_BFS_H
alpar@100
    21
alpar@100
    22
///\ingroup search
alpar@100
    23
///\file
kpeter@244
    24
///\brief BFS algorithm.
alpar@100
    25
alpar@100
    26
#include <lemon/list_graph.h>
alpar@100
    27
#include <lemon/bits/path_dump.h>
deba@220
    28
#include <lemon/core.h>
alpar@100
    29
#include <lemon/error.h>
alpar@100
    30
#include <lemon/maps.h>
kpeter@278
    31
#include <lemon/path.h>
alpar@100
    32
alpar@100
    33
namespace lemon {
alpar@100
    34
alpar@100
    35
  ///Default traits class of Bfs class.
alpar@100
    36
alpar@100
    37
  ///Default traits class of Bfs class.
kpeter@157
    38
  ///\tparam GR Digraph type.
alpar@100
    39
  template<class GR>
alpar@100
    40
  struct BfsDefaultTraits
alpar@100
    41
  {
kpeter@244
    42
    ///The type of the digraph the algorithm runs on.
alpar@100
    43
    typedef GR Digraph;
kpeter@244
    44
kpeter@244
    45
    ///\brief The type of the map that stores the predecessor
alpar@100
    46
    ///arcs of the shortest paths.
alpar@209
    47
    ///
kpeter@244
    48
    ///The type of the map that stores the predecessor
alpar@100
    49
    ///arcs of the shortest paths.
kpeter@716
    50
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
kpeter@244
    51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
kpeter@503
    52
    ///Instantiates a \c PredMap.
alpar@209
    53
kpeter@503
    54
    ///This function instantiates a \ref PredMap.
kpeter@244
    55
    ///\param g is the digraph, to which we would like to define the
kpeter@503
    56
    ///\ref PredMap.
kpeter@244
    57
    static PredMap *createPredMap(const Digraph &g)
alpar@100
    58
    {
kpeter@244
    59
      return new PredMap(g);
alpar@100
    60
    }
kpeter@244
    61
alpar@100
    62
    ///The type of the map that indicates which nodes are processed.
alpar@209
    63
alpar@100
    64
    ///The type of the map that indicates which nodes are processed.
kpeter@716
    65
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
kpeter@786
    66
    ///By default, it is a NullMap.
alpar@100
    67
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
kpeter@503
    68
    ///Instantiates a \c ProcessedMap.
alpar@209
    69
kpeter@503
    70
    ///This function instantiates a \ref ProcessedMap.
alpar@100
    71
    ///\param g is the digraph, to which
kpeter@503
    72
    ///we would like to define the \ref ProcessedMap
alpar@100
    73
#ifdef DOXYGEN
kpeter@244
    74
    static ProcessedMap *createProcessedMap(const Digraph &g)
alpar@100
    75
#else
kpeter@244
    76
    static ProcessedMap *createProcessedMap(const Digraph &)
alpar@100
    77
#endif
alpar@100
    78
    {
alpar@100
    79
      return new ProcessedMap();
alpar@100
    80
    }
kpeter@244
    81
alpar@100
    82
    ///The type of the map that indicates which nodes are reached.
alpar@209
    83
kpeter@405
    84
    ///The type of the map that indicates which nodes are reached.
alpar@877
    85
    ///It must conform to
alpar@877
    86
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
alpar@100
    87
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
kpeter@503
    88
    ///Instantiates a \c ReachedMap.
alpar@209
    89
kpeter@503
    90
    ///This function instantiates a \ref ReachedMap.
kpeter@244
    91
    ///\param g is the digraph, to which
kpeter@503
    92
    ///we would like to define the \ref ReachedMap.
kpeter@244
    93
    static ReachedMap *createReachedMap(const Digraph &g)
alpar@100
    94
    {
kpeter@244
    95
      return new ReachedMap(g);
alpar@100
    96
    }
alpar@209
    97
kpeter@244
    98
    ///The type of the map that stores the distances of the nodes.
kpeter@244
    99
kpeter@244
   100
    ///The type of the map that stores the distances of the nodes.
kpeter@716
   101
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
alpar@100
   102
    typedef typename Digraph::template NodeMap<int> DistMap;
kpeter@503
   103
    ///Instantiates a \c DistMap.
alpar@209
   104
kpeter@503
   105
    ///This function instantiates a \ref DistMap.
kpeter@244
   106
    ///\param g is the digraph, to which we would like to define the
kpeter@503
   107
    ///\ref DistMap.
kpeter@244
   108
    static DistMap *createDistMap(const Digraph &g)
alpar@100
   109
    {
kpeter@244
   110
      return new DistMap(g);
alpar@100
   111
    }
alpar@100
   112
  };
alpar@209
   113
alpar@100
   114
  ///%BFS algorithm class.
alpar@209
   115
alpar@100
   116
  ///\ingroup search
alpar@100
   117
  ///This class provides an efficient implementation of the %BFS algorithm.
alpar@100
   118
  ///
kpeter@278
   119
  ///There is also a \ref bfs() "function-type interface" for the BFS
kpeter@244
   120
  ///algorithm, which is convenient in the simplier cases and it can be
kpeter@244
   121
  ///used easier.
kpeter@244
   122
  ///
kpeter@244
   123
  ///\tparam GR The type of the digraph the algorithm runs on.
kpeter@405
   124
  ///The default type is \ref ListDigraph.
kpeter@825
   125
  ///\tparam TR The traits class that defines various types used by the
kpeter@825
   126
  ///algorithm. By default, it is \ref BfsDefaultTraits
kpeter@825
   127
  ///"BfsDefaultTraits<GR>".
kpeter@825
   128
  ///In most cases, this parameter should not be set directly,
kpeter@825
   129
  ///consider to use the named template parameters instead.
alpar@100
   130
#ifdef DOXYGEN
alpar@100
   131
  template <typename GR,
alpar@209
   132
            typename TR>
alpar@100
   133
#else
alpar@100
   134
  template <typename GR=ListDigraph,
alpar@209
   135
            typename TR=BfsDefaultTraits<GR> >
alpar@100
   136
#endif
alpar@100
   137
  class Bfs {
alpar@100
   138
  public:
alpar@100
   139
kpeter@244
   140
    ///The type of the digraph the algorithm runs on.
alpar@100
   141
    typedef typename TR::Digraph Digraph;
alpar@209
   142
kpeter@244
   143
    ///\brief The type of the map that stores the predecessor arcs of the
kpeter@244
   144
    ///shortest paths.
alpar@100
   145
    typedef typename TR::PredMap PredMap;
kpeter@244
   146
    ///The type of the map that stores the distances of the nodes.
kpeter@244
   147
    typedef typename TR::DistMap DistMap;
kpeter@244
   148
    ///The type of the map that indicates which nodes are reached.
alpar@100
   149
    typedef typename TR::ReachedMap ReachedMap;
kpeter@244
   150
    ///The type of the map that indicates which nodes are processed.
alpar@100
   151
    typedef typename TR::ProcessedMap ProcessedMap;
kpeter@244
   152
    ///The type of the paths.
kpeter@244
   153
    typedef PredMapPath<Digraph, PredMap> Path;
kpeter@244
   154
kpeter@405
   155
    ///The \ref BfsDefaultTraits "traits class" of the algorithm.
kpeter@244
   156
    typedef TR Traits;
kpeter@244
   157
alpar@100
   158
  private:
alpar@100
   159
alpar@100
   160
    typedef typename Digraph::Node Node;
alpar@100
   161
    typedef typename Digraph::NodeIt NodeIt;
alpar@100
   162
    typedef typename Digraph::Arc Arc;
alpar@100
   163
    typedef typename Digraph::OutArcIt OutArcIt;
alpar@100
   164
kpeter@244
   165
    //Pointer to the underlying digraph.
alpar@100
   166
    const Digraph *G;
kpeter@244
   167
    //Pointer to the map of predecessor arcs.
alpar@100
   168
    PredMap *_pred;
kpeter@244
   169
    //Indicates if _pred is locally allocated (true) or not.
alpar@100
   170
    bool local_pred;
kpeter@244
   171
    //Pointer to the map of distances.
alpar@100
   172
    DistMap *_dist;
kpeter@244
   173
    //Indicates if _dist is locally allocated (true) or not.
alpar@100
   174
    bool local_dist;
kpeter@244
   175
    //Pointer to the map of reached status of the nodes.
alpar@100
   176
    ReachedMap *_reached;
kpeter@244
   177
    //Indicates if _reached is locally allocated (true) or not.
alpar@100
   178
    bool local_reached;
kpeter@244
   179
    //Pointer to the map of processed status of the nodes.
alpar@100
   180
    ProcessedMap *_processed;
kpeter@244
   181
    //Indicates if _processed is locally allocated (true) or not.
alpar@100
   182
    bool local_processed;
alpar@100
   183
alpar@100
   184
    std::vector<typename Digraph::Node> _queue;
alpar@100
   185
    int _queue_head,_queue_tail,_queue_next_dist;
alpar@100
   186
    int _curr_dist;
alpar@100
   187
alpar@280
   188
    //Creates the maps if necessary.
alpar@209
   189
    void create_maps()
alpar@100
   190
    {
alpar@100
   191
      if(!_pred) {
alpar@209
   192
        local_pred = true;
alpar@209
   193
        _pred = Traits::createPredMap(*G);
alpar@100
   194
      }
alpar@100
   195
      if(!_dist) {
alpar@209
   196
        local_dist = true;
alpar@209
   197
        _dist = Traits::createDistMap(*G);
alpar@100
   198
      }
alpar@100
   199
      if(!_reached) {
alpar@209
   200
        local_reached = true;
alpar@209
   201
        _reached = Traits::createReachedMap(*G);
alpar@100
   202
      }
alpar@100
   203
      if(!_processed) {
alpar@209
   204
        local_processed = true;
alpar@209
   205
        _processed = Traits::createProcessedMap(*G);
alpar@100
   206
      }
alpar@100
   207
    }
alpar@100
   208
alpar@100
   209
  protected:
alpar@209
   210
alpar@100
   211
    Bfs() {}
alpar@209
   212
alpar@100
   213
  public:
alpar@209
   214
alpar@100
   215
    typedef Bfs Create;
alpar@100
   216
kpeter@405
   217
    ///\name Named Template Parameters
alpar@100
   218
alpar@100
   219
    ///@{
alpar@100
   220
alpar@100
   221
    template <class T>
kpeter@257
   222
    struct SetPredMapTraits : public Traits {
alpar@100
   223
      typedef T PredMap;
alpar@209
   224
      static PredMap *createPredMap(const Digraph &)
alpar@100
   225
      {
deba@290
   226
        LEMON_ASSERT(false, "PredMap is not initialized");
deba@290
   227
        return 0; // ignore warnings
alpar@100
   228
      }
alpar@100
   229
    };
alpar@100
   230
    ///\brief \ref named-templ-param "Named parameter" for setting
kpeter@503
   231
    ///\c PredMap type.
alpar@100
   232
    ///
kpeter@244
   233
    ///\ref named-templ-param "Named parameter" for setting
kpeter@503
   234
    ///\c PredMap type.
kpeter@716
   235
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
alpar@100
   236
    template <class T>
kpeter@257
   237
    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
kpeter@257
   238
      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
alpar@100
   239
    };
alpar@209
   240
alpar@100
   241
    template <class T>
kpeter@257
   242
    struct SetDistMapTraits : public Traits {
alpar@100
   243
      typedef T DistMap;
alpar@209
   244
      static DistMap *createDistMap(const Digraph &)
alpar@100
   245
      {
deba@290
   246
        LEMON_ASSERT(false, "DistMap is not initialized");
deba@290
   247
        return 0; // ignore warnings
alpar@100
   248
      }
alpar@100
   249
    };
alpar@100
   250
    ///\brief \ref named-templ-param "Named parameter" for setting
kpeter@503
   251
    ///\c DistMap type.
alpar@100
   252
    ///
kpeter@244
   253
    ///\ref named-templ-param "Named parameter" for setting
kpeter@503
   254
    ///\c DistMap type.
kpeter@716
   255
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
alpar@100
   256
    template <class T>
kpeter@257
   257
    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
kpeter@257
   258
      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
alpar@100
   259
    };
alpar@209
   260
alpar@100
   261
    template <class T>
kpeter@257
   262
    struct SetReachedMapTraits : public Traits {
alpar@100
   263
      typedef T ReachedMap;
alpar@209
   264
      static ReachedMap *createReachedMap(const Digraph &)
alpar@100
   265
      {
deba@290
   266
        LEMON_ASSERT(false, "ReachedMap is not initialized");
deba@290
   267
        return 0; // ignore warnings
alpar@100
   268
      }
alpar@100
   269
    };
alpar@100
   270
    ///\brief \ref named-templ-param "Named parameter" for setting
kpeter@503
   271
    ///\c ReachedMap type.
alpar@100
   272
    ///
kpeter@244
   273
    ///\ref named-templ-param "Named parameter" for setting
kpeter@503
   274
    ///\c ReachedMap type.
alpar@877
   275
    ///It must conform to
alpar@877
   276
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
alpar@100
   277
    template <class T>
kpeter@257
   278
    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
kpeter@257
   279
      typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
alpar@100
   280
    };
alpar@209
   281
alpar@100
   282
    template <class T>
kpeter@257
   283
    struct SetProcessedMapTraits : public Traits {
alpar@100
   284
      typedef T ProcessedMap;
alpar@209
   285
      static ProcessedMap *createProcessedMap(const Digraph &)
alpar@100
   286
      {
deba@290
   287
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
deba@290
   288
        return 0; // ignore warnings
alpar@100
   289
      }
alpar@100
   290
    };
alpar@100
   291
    ///\brief \ref named-templ-param "Named parameter" for setting
kpeter@503
   292
    ///\c ProcessedMap type.
alpar@100
   293
    ///
kpeter@244
   294
    ///\ref named-templ-param "Named parameter" for setting
kpeter@503
   295
    ///\c ProcessedMap type.
kpeter@716
   296
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
alpar@100
   297
    template <class T>
kpeter@257
   298
    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
kpeter@257
   299
      typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;
alpar@100
   300
    };
alpar@209
   301
kpeter@257
   302
    struct SetStandardProcessedMapTraits : public Traits {
alpar@100
   303
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
kpeter@244
   304
      static ProcessedMap *createProcessedMap(const Digraph &g)
alpar@100
   305
      {
kpeter@244
   306
        return new ProcessedMap(g);
deba@290
   307
        return 0; // ignore warnings
alpar@100
   308
      }
alpar@100
   309
    };
kpeter@244
   310
    ///\brief \ref named-templ-param "Named parameter" for setting
kpeter@503
   311
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
alpar@100
   312
    ///
kpeter@244
   313
    ///\ref named-templ-param "Named parameter" for setting
kpeter@503
   314
    ///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
alpar@100
   315
    ///If you don't set it explicitly, it will be automatically allocated.
kpeter@257
   316
    struct SetStandardProcessedMap :
kpeter@257
   317
      public Bfs< Digraph, SetStandardProcessedMapTraits > {
kpeter@257
   318
      typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create;
alpar@100
   319
    };
alpar@209
   320
alpar@100
   321
    ///@}
alpar@100
   322
alpar@209
   323
  public:
alpar@209
   324
alpar@100
   325
    ///Constructor.
alpar@209
   326
kpeter@244
   327
    ///Constructor.
kpeter@244
   328
    ///\param g The digraph the algorithm runs on.
kpeter@244
   329
    Bfs(const Digraph &g) :
kpeter@244
   330
      G(&g),
alpar@100
   331
      _pred(NULL), local_pred(false),
alpar@100
   332
      _dist(NULL), local_dist(false),
alpar@100
   333
      _reached(NULL), local_reached(false),
alpar@100
   334
      _processed(NULL), local_processed(false)
alpar@100
   335
    { }
alpar@209
   336
alpar@100
   337
    ///Destructor.
alpar@209
   338
    ~Bfs()
alpar@100
   339
    {
alpar@100
   340
      if(local_pred) delete _pred;
alpar@100
   341
      if(local_dist) delete _dist;
alpar@100
   342
      if(local_reached) delete _reached;
alpar@100
   343
      if(local_processed) delete _processed;
alpar@100
   344
    }
alpar@100
   345
kpeter@244
   346
    ///Sets the map that stores the predecessor arcs.
alpar@100
   347
kpeter@244
   348
    ///Sets the map that stores the predecessor arcs.
kpeter@405
   349
    ///If you don't use this function before calling \ref run(Node) "run()"
kpeter@405
   350
    ///or \ref init(), an instance will be allocated automatically.
kpeter@405
   351
    ///The destructor deallocates this automatically allocated map,
kpeter@405
   352
    ///of course.
alpar@100
   353
    ///\return <tt> (*this) </tt>
alpar@209
   354
    Bfs &predMap(PredMap &m)
alpar@100
   355
    {
alpar@100
   356
      if(local_pred) {
alpar@209
   357
        delete _pred;
alpar@209
   358
        local_pred=false;
alpar@100
   359
      }
alpar@100
   360
      _pred = &m;
alpar@100
   361
      return *this;
alpar@100
   362
    }
alpar@100
   363
kpeter@244
   364
    ///Sets the map that indicates which nodes are reached.
alpar@100
   365
kpeter@244
   366
    ///Sets the map that indicates which nodes are reached.
kpeter@405
   367
    ///If you don't use this function before calling \ref run(Node) "run()"
kpeter@405
   368
    ///or \ref init(), an instance will be allocated automatically.
kpeter@405
   369
    ///The destructor deallocates this automatically allocated map,
kpeter@405
   370
    ///of course.
alpar@100
   371
    ///\return <tt> (*this) </tt>
alpar@209
   372
    Bfs &reachedMap(ReachedMap &m)
alpar@100
   373
    {
alpar@100
   374
      if(local_reached) {
alpar@209
   375
        delete _reached;
alpar@209
   376
        local_reached=false;
alpar@100
   377
      }
alpar@100
   378
      _reached = &m;
alpar@100
   379
      return *this;
alpar@100
   380
    }
alpar@100
   381
kpeter@244
   382
    ///Sets the map that indicates which nodes are processed.
alpar@100
   383
kpeter@244
   384
    ///Sets the map that indicates which nodes are processed.
kpeter@405
   385
    ///If you don't use this function before calling \ref run(Node) "run()"
kpeter@405
   386
    ///or \ref init(), an instance will be allocated automatically.
kpeter@405
   387
    ///The destructor deallocates this automatically allocated map,
kpeter@405
   388
    ///of course.
alpar@100
   389
    ///\return <tt> (*this) </tt>
alpar@209
   390
    Bfs &processedMap(ProcessedMap &m)
alpar@100
   391
    {
alpar@100
   392
      if(local_processed) {
alpar@209
   393
        delete _processed;
alpar@209
   394
        local_processed=false;
alpar@100
   395
      }
alpar@100
   396
      _processed = &m;
alpar@100
   397
      return *this;
alpar@100
   398
    }
alpar@100
   399
kpeter@244
   400
    ///Sets the map that stores the distances of the nodes.
alpar@100
   401
kpeter@244
   402
    ///Sets the map that stores the distances of the nodes calculated by
kpeter@244
   403
    ///the algorithm.
kpeter@405
   404
    ///If you don't use this function before calling \ref run(Node) "run()"
kpeter@405
   405
    ///or \ref init(), an instance will be allocated automatically.
kpeter@405
   406
    ///The destructor deallocates this automatically allocated map,
kpeter@405
   407
    ///of course.
alpar@100
   408
    ///\return <tt> (*this) </tt>
alpar@209
   409
    Bfs &distMap(DistMap &m)
alpar@100
   410
    {
alpar@100
   411
      if(local_dist) {
alpar@209
   412
        delete _dist;
alpar@209
   413
        local_dist=false;
alpar@100
   414
      }
alpar@100
   415
      _dist = &m;
alpar@100
   416
      return *this;
alpar@100
   417
    }
alpar@100
   418
alpar@100
   419
  public:
kpeter@244
   420
kpeter@405
   421
    ///\name Execution Control
kpeter@405
   422
    ///The simplest way to execute the BFS algorithm is to use one of the
kpeter@405
   423
    ///member functions called \ref run(Node) "run()".\n
kpeter@713
   424
    ///If you need better control on the execution, you have to call
kpeter@713
   425
    ///\ref init() first, then you can add several source nodes with
kpeter@405
   426
    ///\ref addSource(). Finally the actual path computation can be
kpeter@405
   427
    ///performed with one of the \ref start() functions.
alpar@100
   428
alpar@100
   429
    ///@{
alpar@100
   430
kpeter@405
   431
    ///\brief Initializes the internal data structures.
kpeter@405
   432
    ///
kpeter@244
   433
    ///Initializes the internal data structures.
alpar@100
   434
    void init()
alpar@100
   435
    {
alpar@100
   436
      create_maps();
alpar@100
   437
      _queue.resize(countNodes(*G));
alpar@100
   438
      _queue_head=_queue_tail=0;
alpar@100
   439
      _curr_dist=1;
alpar@100
   440
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
alpar@209
   441
        _pred->set(u,INVALID);
alpar@209
   442
        _reached->set(u,false);
alpar@209
   443
        _processed->set(u,false);
alpar@100
   444
      }
alpar@100
   445
    }
alpar@209
   446
alpar@100
   447
    ///Adds a new source node.
alpar@100
   448
alpar@100
   449
    ///Adds a new source node to the set of nodes to be processed.
alpar@100
   450
    ///
alpar@100
   451
    void addSource(Node s)
alpar@100
   452
    {
alpar@100
   453
      if(!(*_reached)[s])
alpar@209
   454
        {
alpar@209
   455
          _reached->set(s,true);
alpar@209
   456
          _pred->set(s,INVALID);
alpar@209
   457
          _dist->set(s,0);
alpar@209
   458
          _queue[_queue_head++]=s;
alpar@209
   459
          _queue_next_dist=_queue_head;
alpar@209
   460
        }
alpar@100
   461
    }
alpar@209
   462
alpar@100
   463
    ///Processes the next node.
alpar@100
   464
alpar@100
   465
    ///Processes the next node.
alpar@100
   466
    ///
alpar@100
   467
    ///\return The processed node.
alpar@100
   468
    ///
kpeter@244
   469
    ///\pre The queue must not be empty.
alpar@100
   470
    Node processNextNode()
alpar@100
   471
    {
alpar@100
   472
      if(_queue_tail==_queue_next_dist) {
alpar@209
   473
        _curr_dist++;
alpar@209
   474
        _queue_next_dist=_queue_head;
alpar@100
   475
      }
alpar@100
   476
      Node n=_queue[_queue_tail++];
alpar@100
   477
      _processed->set(n,true);
alpar@100
   478
      Node m;
alpar@100
   479
      for(OutArcIt e(*G,n);e!=INVALID;++e)
alpar@209
   480
        if(!(*_reached)[m=G->target(e)]) {
alpar@209
   481
          _queue[_queue_head++]=m;
alpar@209
   482
          _reached->set(m,true);
alpar@209
   483
          _pred->set(m,e);
alpar@209
   484
          _dist->set(m,_curr_dist);
alpar@209
   485
        }
alpar@100
   486
      return n;
alpar@100
   487
    }
alpar@100
   488
alpar@100
   489
    ///Processes the next node.
alpar@100
   490
kpeter@244
   491
    ///Processes the next node and checks if the given target node
alpar@100
   492
    ///is reached. If the target node is reachable from the processed
kpeter@244
   493
    ///node, then the \c reach parameter will be set to \c true.
alpar@100
   494
    ///
alpar@100
   495
    ///\param target The target node.
kpeter@244
   496
    ///\retval reach Indicates if the target node is reached.
kpeter@244
   497
    ///It should be initially \c false.
kpeter@244
   498
    ///
alpar@100
   499
    ///\return The processed node.
alpar@100
   500
    ///
kpeter@244
   501
    ///\pre The queue must not be empty.
alpar@100
   502
    Node processNextNode(Node target, bool& reach)
alpar@100
   503
    {
alpar@100
   504
      if(_queue_tail==_queue_next_dist) {
alpar@209
   505
        _curr_dist++;
alpar@209
   506
        _queue_next_dist=_queue_head;
alpar@100
   507
      }
alpar@100
   508
      Node n=_queue[_queue_tail++];
alpar@100
   509
      _processed->set(n,true);
alpar@100
   510
      Node m;
alpar@100
   511
      for(OutArcIt e(*G,n);e!=INVALID;++e)
alpar@209
   512
        if(!(*_reached)[m=G->target(e)]) {
alpar@209
   513
          _queue[_queue_head++]=m;
alpar@209
   514
          _reached->set(m,true);
alpar@209
   515
          _pred->set(m,e);
alpar@209
   516
          _dist->set(m,_curr_dist);
alpar@100
   517
          reach = reach || (target == m);
alpar@209
   518
        }
alpar@100
   519
      return n;
alpar@100
   520
    }
alpar@100
   521
alpar@100
   522
    ///Processes the next node.
alpar@100
   523
kpeter@244
   524
    ///Processes the next node and checks if at least one of reached
kpeter@244
   525
    ///nodes has \c true value in the \c nm node map. If one node
kpeter@244
   526
    ///with \c true value is reachable from the processed node, then the
kpeter@244
   527
    ///\c rnode parameter will be set to the first of such nodes.
alpar@100
   528
    ///
kpeter@244
   529
    ///\param nm A \c bool (or convertible) node map that indicates the
kpeter@244
   530
    ///possible targets.
alpar@100
   531
    ///\retval rnode The reached target node.
kpeter@244
   532
    ///It should be initially \c INVALID.
kpeter@244
   533
    ///
alpar@100
   534
    ///\return The processed node.
alpar@100
   535
    ///
kpeter@244
   536
    ///\pre The queue must not be empty.
alpar@100
   537
    template<class NM>
alpar@100
   538
    Node processNextNode(const NM& nm, Node& rnode)
alpar@100
   539
    {
alpar@100
   540
      if(_queue_tail==_queue_next_dist) {
alpar@209
   541
        _curr_dist++;
alpar@209
   542
        _queue_next_dist=_queue_head;
alpar@100
   543
      }
alpar@100
   544
      Node n=_queue[_queue_tail++];
alpar@100
   545
      _processed->set(n,true);
alpar@100
   546
      Node m;
alpar@100
   547
      for(OutArcIt e(*G,n);e!=INVALID;++e)
alpar@209
   548
        if(!(*_reached)[m=G->target(e)]) {
alpar@209
   549
          _queue[_queue_head++]=m;
alpar@209
   550
          _reached->set(m,true);
alpar@209
   551
          _pred->set(m,e);
alpar@209
   552
          _dist->set(m,_curr_dist);
alpar@209
   553
          if (nm[m] && rnode == INVALID) rnode = m;
alpar@209
   554
        }
alpar@100
   555
      return n;
alpar@100
   556
    }
alpar@209
   557
kpeter@244
   558
    ///The next node to be processed.
alpar@100
   559
kpeter@244
   560
    ///Returns the next node to be processed or \c INVALID if the queue
kpeter@244
   561
    ///is empty.
kpeter@244
   562
    Node nextNode() const
alpar@209
   563
    {
alpar@100
   564
      return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
alpar@100
   565
    }
alpar@209
   566
kpeter@405
   567
    ///Returns \c false if there are nodes to be processed.
kpeter@405
   568
kpeter@405
   569
    ///Returns \c false if there are nodes to be processed
kpeter@405
   570
    ///in the queue.
kpeter@244
   571
    bool emptyQueue() const { return _queue_tail==_queue_head; }
kpeter@244
   572
alpar@100
   573
    ///Returns the number of the nodes to be processed.
alpar@209
   574
kpeter@405
   575
    ///Returns the number of the nodes to be processed
kpeter@405
   576
    ///in the queue.
kpeter@244
   577
    int queueSize() const { return _queue_head-_queue_tail; }
alpar@209
   578
alpar@100
   579
    ///Executes the algorithm.
alpar@100
   580
alpar@100
   581
    ///Executes the algorithm.
alpar@100
   582
    ///
kpeter@244
   583
    ///This method runs the %BFS algorithm from the root node(s)
kpeter@244
   584
    ///in order to compute the shortest path to each node.
alpar@100
   585
    ///
kpeter@244
   586
    ///The algorithm computes
kpeter@244
   587
    ///- the shortest path tree (forest),
kpeter@244
   588
    ///- the distance of each node from the root(s).
kpeter@244
   589
    ///
kpeter@244
   590
    ///\pre init() must be called and at least one root node should be
kpeter@244
   591
    ///added with addSource() before using this function.
kpeter@244
   592
    ///
kpeter@244
   593
    ///\note <tt>b.start()</tt> is just a shortcut of the following code.
kpeter@244
   594
    ///\code
kpeter@244
   595
    ///  while ( !b.emptyQueue() ) {
kpeter@244
   596
    ///    b.processNextNode();
kpeter@244
   597
    ///  }
kpeter@244
   598
    ///\endcode
alpar@100
   599
    void start()
alpar@100
   600
    {
alpar@100
   601
      while ( !emptyQueue() ) processNextNode();
alpar@100
   602
    }
alpar@209
   603
kpeter@244
   604
    ///Executes the algorithm until the given target node is reached.
alpar@100
   605
kpeter@244
   606
    ///Executes the algorithm until the given target node is reached.
alpar@100
   607
    ///
alpar@100
   608
    ///This method runs the %BFS algorithm from the root node(s)
kpeter@286
   609
    ///in order to compute the shortest path to \c t.
kpeter@244
   610
    ///
alpar@100
   611
    ///The algorithm computes
kpeter@286
   612
    ///- the shortest path to \c t,
kpeter@286
   613
    ///- the distance of \c t from the root(s).
kpeter@244
   614
    ///
kpeter@244
   615
    ///\pre init() must be called and at least one root node should be
kpeter@244
   616
    ///added with addSource() before using this function.
kpeter@244
   617
    ///
kpeter@244
   618
    ///\note <tt>b.start(t)</tt> is just a shortcut of the following code.
kpeter@244
   619
    ///\code
kpeter@244
   620
    ///  bool reach = false;
kpeter@244
   621
    ///  while ( !b.emptyQueue() && !reach ) {
kpeter@244
   622
    ///    b.processNextNode(t, reach);
kpeter@244
   623
    ///  }
kpeter@244
   624
    ///\endcode
kpeter@286
   625
    void start(Node t)
alpar@100
   626
    {
alpar@100
   627
      bool reach = false;
kpeter@286
   628
      while ( !emptyQueue() && !reach ) processNextNode(t, reach);
alpar@100
   629
    }
alpar@209
   630
alpar@100
   631
    ///Executes the algorithm until a condition is met.
alpar@100
   632
alpar@100
   633
    ///Executes the algorithm until a condition is met.
alpar@100
   634
    ///
kpeter@244
   635
    ///This method runs the %BFS algorithm from the root node(s) in
kpeter@244
   636
    ///order to compute the shortest path to a node \c v with
kpeter@244
   637
    /// <tt>nm[v]</tt> true, if such a node can be found.
alpar@100
   638
    ///
kpeter@244
   639
    ///\param nm A \c bool (or convertible) node map. The algorithm
kpeter@244
   640
    ///will stop when it reaches a node \c v with <tt>nm[v]</tt> true.
alpar@100
   641
    ///
alpar@100
   642
    ///\return The reached node \c v with <tt>nm[v]</tt> true or
alpar@100
   643
    ///\c INVALID if no such node was found.
kpeter@244
   644
    ///
kpeter@244
   645
    ///\pre init() must be called and at least one root node should be
kpeter@244
   646
    ///added with addSource() before using this function.
kpeter@244
   647
    ///
kpeter@244
   648
    ///\note <tt>b.start(nm)</tt> is just a shortcut of the following code.
kpeter@244
   649
    ///\code
kpeter@244
   650
    ///  Node rnode = INVALID;
kpeter@244
   651
    ///  while ( !b.emptyQueue() && rnode == INVALID ) {
kpeter@244
   652
    ///    b.processNextNode(nm, rnode);
kpeter@244
   653
    ///  }
kpeter@244
   654
    ///  return rnode;
kpeter@244
   655
    ///\endcode
kpeter@244
   656
    template<class NodeBoolMap>
kpeter@244
   657
    Node start(const NodeBoolMap &nm)
alpar@100
   658
    {
alpar@100
   659
      Node rnode = INVALID;
alpar@100
   660
      while ( !emptyQueue() && rnode == INVALID ) {
alpar@209
   661
        processNextNode(nm, rnode);
alpar@100
   662
      }
alpar@100
   663
      return rnode;
alpar@100
   664
    }
alpar@209
   665
kpeter@286
   666
    ///Runs the algorithm from the given source node.
alpar@209
   667
kpeter@244
   668
    ///This method runs the %BFS algorithm from node \c s
kpeter@244
   669
    ///in order to compute the shortest path to each node.
alpar@100
   670
    ///
kpeter@244
   671
    ///The algorithm computes
kpeter@244
   672
    ///- the shortest path tree,
kpeter@244
   673
    ///- the distance of each node from the root.
kpeter@244
   674
    ///
kpeter@244
   675
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
alpar@100
   676
    ///\code
alpar@100
   677
    ///  b.init();
alpar@100
   678
    ///  b.addSource(s);
alpar@100
   679
    ///  b.start();
alpar@100
   680
    ///\endcode
alpar@100
   681
    void run(Node s) {
alpar@100
   682
      init();
alpar@100
   683
      addSource(s);
alpar@100
   684
      start();
alpar@100
   685
    }
alpar@209
   686
alpar@100
   687
    ///Finds the shortest path between \c s and \c t.
alpar@209
   688
kpeter@244
   689
    ///This method runs the %BFS algorithm from node \c s
kpeter@286
   690
    ///in order to compute the shortest path to node \c t
kpeter@286
   691
    ///(it stops searching when \c t is processed).
alpar@100
   692
    ///
kpeter@286
   693
    ///\return \c true if \c t is reachable form \c s.
kpeter@244
   694
    ///
kpeter@244
   695
    ///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a
kpeter@244
   696
    ///shortcut of the following code.
alpar@100
   697
    ///\code
alpar@100
   698
    ///  b.init();
alpar@100
   699
    ///  b.addSource(s);
alpar@100
   700
    ///  b.start(t);
alpar@100
   701
    ///\endcode
kpeter@286
   702
    bool run(Node s,Node t) {
alpar@100
   703
      init();
alpar@100
   704
      addSource(s);
alpar@100
   705
      start(t);
kpeter@286
   706
      return reached(t);
alpar@100
   707
    }
alpar@209
   708
kpeter@244
   709
    ///Runs the algorithm to visit all nodes in the digraph.
kpeter@244
   710
kpeter@787
   711
    ///This method runs the %BFS algorithm in order to visit all nodes
kpeter@787
   712
    ///in the digraph.
kpeter@244
   713
    ///
kpeter@244
   714
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
kpeter@244
   715
    ///\code
kpeter@244
   716
    ///  b.init();
kpeter@244
   717
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
kpeter@244
   718
    ///    if (!b.reached(n)) {
kpeter@244
   719
    ///      b.addSource(n);
kpeter@244
   720
    ///      b.start();
kpeter@244
   721
    ///    }
kpeter@244
   722
    ///  }
kpeter@244
   723
    ///\endcode
kpeter@244
   724
    void run() {
kpeter@244
   725
      init();
kpeter@244
   726
      for (NodeIt n(*G); n != INVALID; ++n) {
kpeter@244
   727
        if (!reached(n)) {
kpeter@244
   728
          addSource(n);
kpeter@244
   729
          start();
kpeter@244
   730
        }
kpeter@244
   731
      }
kpeter@244
   732
    }
kpeter@244
   733
alpar@100
   734
    ///@}
alpar@100
   735
alpar@100
   736
    ///\name Query Functions
kpeter@405
   737
    ///The results of the BFS algorithm can be obtained using these
alpar@100
   738
    ///functions.\n
kpeter@405
   739
    ///Either \ref run(Node) "run()" or \ref start() should be called
kpeter@405
   740
    ///before using them.
alpar@209
   741
alpar@100
   742
    ///@{
alpar@100
   743
kpeter@716
   744
    ///The shortest path to the given node.
alpar@100
   745
kpeter@716
   746
    ///Returns the shortest path to the given node from the root(s).
kpeter@244
   747
    ///
kpeter@405
   748
    ///\warning \c t should be reached from the root(s).
kpeter@244
   749
    ///
kpeter@405
   750
    ///\pre Either \ref run(Node) "run()" or \ref init()
kpeter@405
   751
    ///must be called before using this function.
kpeter@244
   752
    Path path(Node t) const { return Path(*G, *_pred, t); }
alpar@100
   753
kpeter@716
   754
    ///The distance of the given node from the root(s).
alpar@100
   755
kpeter@716
   756
    ///Returns the distance of the given node from the root(s).
kpeter@244
   757
    ///
kpeter@405
   758
    ///\warning If node \c v is not reached from the root(s), then
kpeter@244
   759
    ///the return value of this function is undefined.
kpeter@244
   760
    ///
kpeter@405
   761
    ///\pre Either \ref run(Node) "run()" or \ref init()
kpeter@405
   762
    ///must be called before using this function.
alpar@100
   763
    int dist(Node v) const { return (*_dist)[v]; }
alpar@100
   764
kpeter@716
   765
    ///\brief Returns the 'previous arc' of the shortest path tree for
kpeter@716
   766
    ///the given node.
kpeter@716
   767
    ///
kpeter@244
   768
    ///This function returns the 'previous arc' of the shortest path
kpeter@244
   769
    ///tree for the node \c v, i.e. it returns the last arc of a
kpeter@405
   770
    ///shortest path from a root to \c v. It is \c INVALID if \c v
kpeter@405
   771
    ///is not reached from the root(s) or if \c v is a root.
kpeter@244
   772
    ///
kpeter@244
   773
    ///The shortest path tree used here is equal to the shortest path
kpeter@716
   774
    ///tree used in \ref predNode() and \ref predMap().
kpeter@244
   775
    ///
kpeter@405
   776
    ///\pre Either \ref run(Node) "run()" or \ref init()
kpeter@405
   777
    ///must be called before using this function.
alpar@100
   778
    Arc predArc(Node v) const { return (*_pred)[v];}
alpar@100
   779
kpeter@716
   780
    ///\brief Returns the 'previous node' of the shortest path tree for
kpeter@716
   781
    ///the given node.
kpeter@716
   782
    ///
kpeter@244
   783
    ///This function returns the 'previous node' of the shortest path
kpeter@244
   784
    ///tree for the node \c v, i.e. it returns the last but one node
kpeter@716
   785
    ///of a shortest path from a root to \c v. It is \c INVALID
kpeter@405
   786
    ///if \c v is not reached from the root(s) or if \c v is a root.
kpeter@244
   787
    ///
alpar@100
   788
    ///The shortest path tree used here is equal to the shortest path
kpeter@716
   789
    ///tree used in \ref predArc() and \ref predMap().
kpeter@244
   790
    ///
kpeter@405
   791
    ///\pre Either \ref run(Node) "run()" or \ref init()
kpeter@405
   792
    ///must be called before using this function.
alpar@100
   793
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
alpar@209
   794
                                  G->source((*_pred)[v]); }
alpar@209
   795
kpeter@244
   796
    ///\brief Returns a const reference to the node map that stores the
kpeter@244
   797
    /// distances of the nodes.
kpeter@244
   798
    ///
kpeter@244
   799
    ///Returns a const reference to the node map that stores the distances
kpeter@244
   800
    ///of the nodes calculated by the algorithm.
kpeter@244
   801
    ///
kpeter@405
   802
    ///\pre Either \ref run(Node) "run()" or \ref init()
kpeter@244
   803
    ///must be called before using this function.
alpar@100
   804
    const DistMap &distMap() const { return *_dist;}
alpar@209
   805
kpeter@244
   806
    ///\brief Returns a const reference to the node map that stores the
kpeter@244
   807
    ///predecessor arcs.
kpeter@244
   808
    ///
kpeter@244
   809
    ///Returns a const reference to the node map that stores the predecessor
kpeter@716
   810
    ///arcs, which form the shortest path tree (forest).
kpeter@244
   811
    ///
kpeter@405
   812
    ///\pre Either \ref run(Node) "run()" or \ref init()
alpar@100
   813
    ///must be called before using this function.
alpar@100
   814
    const PredMap &predMap() const { return *_pred;}
alpar@209
   815
kpeter@716
   816
    ///Checks if the given node is reached from the root(s).
alpar@100
   817
kpeter@405
   818
    ///Returns \c true if \c v is reached from the root(s).
kpeter@405
   819
    ///
kpeter@405
   820
    ///\pre Either \ref run(Node) "run()" or \ref init()
alpar@100
   821
    ///must be called before using this function.
kpeter@244
   822
    bool reached(Node v) const { return (*_reached)[v]; }
alpar@209
   823
alpar@100
   824
    ///@}
alpar@100
   825
  };
alpar@100
   826
kpeter@244
   827
  ///Default traits class of bfs() function.
alpar@100
   828
kpeter@244
   829
  ///Default traits class of bfs() function.
kpeter@157
   830
  ///\tparam GR Digraph type.
alpar@100
   831
  template<class GR>
alpar@100
   832
  struct BfsWizardDefaultTraits
alpar@100
   833
  {
kpeter@244
   834
    ///The type of the digraph the algorithm runs on.
alpar@100
   835
    typedef GR Digraph;
kpeter@244
   836
kpeter@244
   837
    ///\brief The type of the map that stores the predecessor
alpar@100
   838
    ///arcs of the shortest paths.
alpar@209
   839
    ///
kpeter@244
   840
    ///The type of the map that stores the predecessor
alpar@100
   841
    ///arcs of the shortest paths.
kpeter@716
   842
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
kpeter@278
   843
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
kpeter@301
   844
    ///Instantiates a PredMap.
alpar@209
   845
kpeter@301
   846
    ///This function instantiates a PredMap.
kpeter@244
   847
    ///\param g is the digraph, to which we would like to define the
kpeter@301
   848
    ///PredMap.
kpeter@244
   849
    static PredMap *createPredMap(const Digraph &g)
alpar@100
   850
    {
kpeter@278
   851
      return new PredMap(g);
alpar@100
   852
    }
alpar@100
   853
alpar@100
   854
    ///The type of the map that indicates which nodes are processed.
alpar@209
   855
alpar@100
   856
    ///The type of the map that indicates which nodes are processed.
kpeter@716
   857
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
kpeter@786
   858
    ///By default, it is a NullMap.
alpar@100
   859
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
kpeter@301
   860
    ///Instantiates a ProcessedMap.
alpar@209
   861
kpeter@301
   862
    ///This function instantiates a ProcessedMap.
alpar@100
   863
    ///\param g is the digraph, to which
kpeter@301
   864
    ///we would like to define the ProcessedMap.
alpar@100
   865
#ifdef DOXYGEN
kpeter@244
   866
    static ProcessedMap *createProcessedMap(const Digraph &g)
alpar@100
   867
#else
kpeter@244
   868
    static ProcessedMap *createProcessedMap(const Digraph &)
alpar@100
   869
#endif
alpar@100
   870
    {
alpar@100
   871
      return new ProcessedMap();
alpar@100
   872
    }
kpeter@244
   873
alpar@100
   874
    ///The type of the map that indicates which nodes are reached.
alpar@209
   875
alpar@100
   876
    ///The type of the map that indicates which nodes are reached.
alpar@877
   877
    ///It must conform to
alpar@877
   878
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
alpar@100
   879
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
kpeter@301
   880
    ///Instantiates a ReachedMap.
alpar@209
   881
kpeter@301
   882
    ///This function instantiates a ReachedMap.
kpeter@244
   883
    ///\param g is the digraph, to which
kpeter@301
   884
    ///we would like to define the ReachedMap.
kpeter@244
   885
    static ReachedMap *createReachedMap(const Digraph &g)
alpar@100
   886
    {
kpeter@244
   887
      return new ReachedMap(g);
alpar@100
   888
    }
alpar@209
   889
kpeter@244
   890
    ///The type of the map that stores the distances of the nodes.
kpeter@244
   891
kpeter@244
   892
    ///The type of the map that stores the distances of the nodes.
kpeter@716
   893
    ///It must conform to the \ref concepts::WriteMap "WriteMap" concept.
kpeter@278
   894
    typedef typename Digraph::template NodeMap<int> DistMap;
kpeter@301
   895
    ///Instantiates a DistMap.
alpar@209
   896
kpeter@301
   897
    ///This function instantiates a DistMap.
alpar@210
   898
    ///\param g is the digraph, to which we would like to define
kpeter@301
   899
    ///the DistMap
kpeter@244
   900
    static DistMap *createDistMap(const Digraph &g)
alpar@100
   901
    {
kpeter@278
   902
      return new DistMap(g);
alpar@100
   903
    }
kpeter@278
   904
kpeter@278
   905
    ///The type of the shortest paths.
kpeter@278
   906
kpeter@278
   907
    ///The type of the shortest paths.
kpeter@716
   908
    ///It must conform to the \ref concepts::Path "Path" concept.
kpeter@278
   909
    typedef lemon::Path<Digraph> Path;
alpar@100
   910
  };
alpar@209
   911
kpeter@301
   912
  /// Default traits class used by BfsWizard
alpar@100
   913
kpeter@716
   914
  /// Default traits class used by BfsWizard.
kpeter@716
   915
  /// \tparam GR The type of the digraph.
alpar@100
   916
  template<class GR>
alpar@100
   917
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
alpar@100
   918
  {
alpar@100
   919
alpar@100
   920
    typedef BfsWizardDefaultTraits<GR> Base;
alpar@100
   921
  protected:
kpeter@244
   922
    //The type of the nodes in the digraph.
alpar@100
   923
    typedef typename Base::Digraph::Node Node;
alpar@100
   924
kpeter@244
   925
    //Pointer to the digraph the algorithm runs on.
alpar@100
   926
    void *_g;
kpeter@244
   927
    //Pointer to the map of reached nodes.
alpar@100
   928
    void *_reached;
kpeter@244
   929
    //Pointer to the map of processed nodes.
alpar@100
   930
    void *_processed;
kpeter@244
   931
    //Pointer to the map of predecessors arcs.
alpar@100
   932
    void *_pred;
kpeter@244
   933
    //Pointer to the map of distances.
alpar@100
   934
    void *_dist;
kpeter@278
   935
    //Pointer to the shortest path to the target node.
kpeter@278
   936
    void *_path;
kpeter@278
   937
    //Pointer to the distance of the target node.
kpeter@278
   938
    int *_di;
alpar@209
   939
alpar@100
   940
    public:
alpar@100
   941
    /// Constructor.
alpar@209
   942
kpeter@716
   943
    /// This constructor does not require parameters, it initiates
kpeter@278
   944
    /// all of the attributes to \c 0.
alpar@100
   945
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
kpeter@278
   946
                      _dist(0), _path(0), _di(0) {}
alpar@100
   947
alpar@100
   948
    /// Constructor.
alpar@209
   949
kpeter@278
   950
    /// This constructor requires one parameter,
kpeter@278
   951
    /// others are initiated to \c 0.
kpeter@244
   952
    /// \param g The digraph the algorithm runs on.
kpeter@278
   953
    BfsWizardBase(const GR &g) :
alpar@209
   954
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
kpeter@278
   955
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
alpar@100
   956
alpar@100
   957
  };
alpar@209
   958
kpeter@278
   959
  /// Auxiliary class for the function-type interface of BFS algorithm.
alpar@100
   960
kpeter@278
   961
  /// This auxiliary class is created to implement the
kpeter@278
   962
  /// \ref bfs() "function-type interface" of \ref Bfs algorithm.
kpeter@405
   963
  /// It does not have own \ref run(Node) "run()" method, it uses the
kpeter@405
   964
  /// functions and features of the plain \ref Bfs.
alpar@100
   965
  ///
kpeter@278
   966
  /// This class should only be used through the \ref bfs() function,
kpeter@278
   967
  /// which makes it easier to use the algorithm.
kpeter@825
   968
  ///
kpeter@825
   969
  /// \tparam TR The traits class that defines various types used by the
kpeter@825
   970
  /// algorithm.
alpar@100
   971
  template<class TR>
alpar@100
   972
  class BfsWizard : public TR
alpar@100
   973
  {
alpar@100
   974
    typedef TR Base;
alpar@100
   975
alpar@100
   976
    typedef typename TR::Digraph Digraph;
kpeter@244
   977
alpar@100
   978
    typedef typename Digraph::Node Node;
alpar@100
   979
    typedef typename Digraph::NodeIt NodeIt;
alpar@100
   980
    typedef typename Digraph::Arc Arc;
alpar@100
   981
    typedef typename Digraph::OutArcIt OutArcIt;
alpar@209
   982
alpar@100
   983
    typedef typename TR::PredMap PredMap;
alpar@100
   984
    typedef typename TR::DistMap DistMap;
kpeter@244
   985
    typedef typename TR::ReachedMap ReachedMap;
kpeter@244
   986
    typedef typename TR::ProcessedMap ProcessedMap;
kpeter@278
   987
    typedef typename TR::Path Path;
alpar@100
   988
alpar@100
   989
  public:
kpeter@244
   990
alpar@100
   991
    /// Constructor.
alpar@100
   992
    BfsWizard() : TR() {}
alpar@100
   993
alpar@100
   994
    /// Constructor that requires parameters.
alpar@100
   995
alpar@100
   996
    /// Constructor that requires parameters.
alpar@100
   997
    /// These parameters will be the default values for the traits class.
kpeter@278
   998
    /// \param g The digraph the algorithm runs on.
kpeter@278
   999
    BfsWizard(const Digraph &g) :
kpeter@278
  1000
      TR(g) {}
alpar@100
  1001
alpar@100
  1002
    ///Copy constructor
alpar@100
  1003
    BfsWizard(const TR &b) : TR(b) {}
alpar@100
  1004
alpar@100
  1005
    ~BfsWizard() {}
alpar@100
  1006
kpeter@278
  1007
    ///Runs BFS algorithm from the given source node.
alpar@209
  1008
kpeter@278
  1009
    ///This method runs BFS algorithm from node \c s
kpeter@278
  1010
    ///in order to compute the shortest path to each node.
kpeter@278
  1011
    void run(Node s)
kpeter@278
  1012
    {
kpeter@278
  1013
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
kpeter@278
  1014
      if (Base::_pred)
kpeter@278
  1015
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
kpeter@278
  1016
      if (Base::_dist)
kpeter@278
  1017
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
kpeter@278
  1018
      if (Base::_reached)
kpeter@278
  1019
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
kpeter@278
  1020
      if (Base::_processed)
kpeter@278
  1021
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
kpeter@278
  1022
      if (s!=INVALID)
kpeter@278
  1023
        alg.run(s);
kpeter@278
  1024
      else
kpeter@278
  1025
        alg.run();
kpeter@278
  1026
    }
kpeter@278
  1027
kpeter@278
  1028
    ///Finds the shortest path between \c s and \c t.
kpeter@278
  1029
kpeter@278
  1030
    ///This method runs BFS algorithm from node \c s
kpeter@278
  1031
    ///in order to compute the shortest path to node \c t
kpeter@278
  1032
    ///(it stops searching when \c t is processed).
kpeter@278
  1033
    ///
kpeter@278
  1034
    ///\return \c true if \c t is reachable form \c s.
kpeter@278
  1035
    bool run(Node s, Node t)
kpeter@278
  1036
    {
kpeter@278
  1037
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
kpeter@278
  1038
      if (Base::_pred)
kpeter@278
  1039
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
kpeter@278
  1040
      if (Base::_dist)
kpeter@278
  1041
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
kpeter@278
  1042
      if (Base::_reached)
kpeter@278
  1043
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
kpeter@278
  1044
      if (Base::_processed)
kpeter@278
  1045
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
kpeter@278
  1046
      alg.run(s,t);
kpeter@278
  1047
      if (Base::_path)
kpeter@278
  1048
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
kpeter@278
  1049
      if (Base::_di)
kpeter@278
  1050
        *Base::_di = alg.dist(t);
kpeter@278
  1051
      return alg.reached(t);
kpeter@278
  1052
    }
kpeter@278
  1053
kpeter@278
  1054
    ///Runs BFS algorithm to visit all nodes in the digraph.
kpeter@278
  1055
kpeter@787
  1056
    ///This method runs BFS algorithm in order to visit all nodes
kpeter@787
  1057
    ///in the digraph.
alpar@100
  1058
    void run()
alpar@100
  1059
    {
kpeter@278
  1060
      run(INVALID);
alpar@100
  1061
    }
alpar@209
  1062
kpeter@244
  1063
    template<class T>
kpeter@257
  1064
    struct SetPredMapBase : public Base {
kpeter@244
  1065
      typedef T PredMap;
kpeter@244
  1066
      static PredMap *createPredMap(const Digraph &) { return 0; };
kpeter@257
  1067
      SetPredMapBase(const TR &b) : TR(b) {}
kpeter@244
  1068
    };
kpeter@716
  1069
kpeter@716
  1070
    ///\brief \ref named-templ-param "Named parameter" for setting
kpeter@716
  1071
    ///the predecessor map.
kpeter@244
  1072
    ///
kpeter@716
  1073
    ///\ref named-templ-param "Named parameter" function for setting
kpeter@716
  1074
    ///the map that stores the predecessor arcs of the nodes.
kpeter@244
  1075
    template<class T>
kpeter@257
  1076
    BfsWizard<SetPredMapBase<T> > predMap(const T &t)
kpeter@244
  1077
    {
kpeter@244
  1078
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
kpeter@257
  1079
      return BfsWizard<SetPredMapBase<T> >(*this);
kpeter@244
  1080
    }
kpeter@244
  1081
kpeter@244
  1082
    template<class T>
kpeter@257
  1083
    struct SetReachedMapBase : public Base {
kpeter@244
  1084
      typedef T ReachedMap;
kpeter@244
  1085
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
kpeter@257
  1086
      SetReachedMapBase(const TR &b) : TR(b) {}
kpeter@244
  1087
    };
kpeter@716
  1088
kpeter@716
  1089
    ///\brief \ref named-templ-param "Named parameter" for setting
kpeter@716
  1090
    ///the reached map.
kpeter@244
  1091
    ///
kpeter@716
  1092
    ///\ref named-templ-param "Named parameter" function for setting
kpeter@716
  1093
    ///the map that indicates which nodes are reached.
kpeter@244
  1094
    template<class T>
kpeter@257
  1095
    BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
kpeter@244
  1096
    {
kpeter@244
  1097
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
kpeter@257
  1098
      return BfsWizard<SetReachedMapBase<T> >(*this);
kpeter@244
  1099
    }
kpeter@244
  1100
kpeter@244
  1101
    template<class T>
kpeter@278
  1102
    struct SetDistMapBase : public Base {
kpeter@278
  1103
      typedef T DistMap;
kpeter@278
  1104
      static DistMap *createDistMap(const Digraph &) { return 0; };
kpeter@278
  1105
      SetDistMapBase(const TR &b) : TR(b) {}
kpeter@278
  1106
    };
kpeter@716
  1107
kpeter@716
  1108
    ///\brief \ref named-templ-param "Named parameter" for setting
kpeter@716
  1109
    ///the distance map.
kpeter@278
  1110
    ///
kpeter@716
  1111
    ///\ref named-templ-param "Named parameter" function for setting
kpeter@716
  1112
    ///the map that stores the distances of the nodes calculated
kpeter@716
  1113
    ///by the algorithm.
kpeter@278
  1114
    template<class T>
kpeter@278
  1115
    BfsWizard<SetDistMapBase<T> > distMap(const T &t)
kpeter@278
  1116
    {
kpeter@278
  1117
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
kpeter@278
  1118
      return BfsWizard<SetDistMapBase<T> >(*this);
kpeter@278
  1119
    }
kpeter@278
  1120
kpeter@278
  1121
    template<class T>
kpeter@257
  1122
    struct SetProcessedMapBase : public Base {
kpeter@244
  1123
      typedef T ProcessedMap;
kpeter@244
  1124
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
kpeter@257
  1125
      SetProcessedMapBase(const TR &b) : TR(b) {}
kpeter@244
  1126
    };
kpeter@716
  1127
kpeter@716
  1128
    ///\brief \ref named-func-param "Named parameter" for setting
kpeter@716
  1129
    ///the processed map.
kpeter@244
  1130
    ///
kpeter@716
  1131
    ///\ref named-templ-param "Named parameter" function for setting
kpeter@716
  1132
    ///the map that indicates which nodes are processed.
kpeter@244
  1133
    template<class T>
kpeter@257
  1134
    BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
kpeter@244
  1135
    {
kpeter@244
  1136
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
kpeter@257
  1137
      return BfsWizard<SetProcessedMapBase<T> >(*this);
kpeter@244
  1138
    }
kpeter@244
  1139
kpeter@244
  1140
    template<class T>
kpeter@278
  1141
    struct SetPathBase : public Base {
kpeter@278
  1142
      typedef T Path;
kpeter@278
  1143
      SetPathBase(const TR &b) : TR(b) {}
kpeter@244
  1144
    };
kpeter@278
  1145
    ///\brief \ref named-func-param "Named parameter"
kpeter@278
  1146
    ///for getting the shortest path to the target node.
kpeter@244
  1147
    ///
kpeter@278
  1148
    ///\ref named-func-param "Named parameter"
kpeter@278
  1149
    ///for getting the shortest path to the target node.
kpeter@244
  1150
    template<class T>
kpeter@278
  1151
    BfsWizard<SetPathBase<T> > path(const T &t)
kpeter@244
  1152
    {
kpeter@278
  1153
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
kpeter@278
  1154
      return BfsWizard<SetPathBase<T> >(*this);
kpeter@278
  1155
    }
kpeter@278
  1156
kpeter@278
  1157
    ///\brief \ref named-func-param "Named parameter"
kpeter@278
  1158
    ///for getting the distance of the target node.
kpeter@278
  1159
    ///
kpeter@278
  1160
    ///\ref named-func-param "Named parameter"
kpeter@278
  1161
    ///for getting the distance of the target node.
kpeter@278
  1162
    BfsWizard dist(const int &d)
kpeter@278
  1163
    {
kpeter@278
  1164
      Base::_di=const_cast<int*>(&d);
kpeter@278
  1165
      return *this;
kpeter@244
  1166
    }
kpeter@244
  1167
alpar@100
  1168
  };
alpar@209
  1169
kpeter@278
  1170
  ///Function-type interface for BFS algorithm.
alpar@100
  1171
alpar@100
  1172
  /// \ingroup search
kpeter@278
  1173
  ///Function-type interface for BFS algorithm.
alpar@100
  1174
  ///
kpeter@278
  1175
  ///This function also has several \ref named-func-param "named parameters",
alpar@100
  1176
  ///they are declared as the members of class \ref BfsWizard.
kpeter@278
  1177
  ///The following examples show how to use these parameters.
alpar@100
  1178
  ///\code
kpeter@278
  1179
  ///  // Compute shortest path from node s to each node
kpeter@278
  1180
  ///  bfs(g).predMap(preds).distMap(dists).run(s);
kpeter@278
  1181
  ///
kpeter@278
  1182
  ///  // Compute shortest path from s to t
kpeter@278
  1183
  ///  bool reached = bfs(g).path(p).dist(d).run(s,t);
alpar@100
  1184
  ///\endcode
kpeter@405
  1185
  ///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()"
alpar@100
  1186
  ///to the end of the parameter list.
alpar@100
  1187
  ///\sa BfsWizard
alpar@100
  1188
  ///\sa Bfs
alpar@100
  1189
  template<class GR>
alpar@100
  1190
  BfsWizard<BfsWizardBase<GR> >
kpeter@278
  1191
  bfs(const GR &digraph)
alpar@100
  1192
  {
kpeter@278
  1193
    return BfsWizard<BfsWizardBase<GR> >(digraph);
alpar@100
  1194
  }
alpar@100
  1195
alpar@100
  1196
#ifdef DOXYGEN
kpeter@244
  1197
  /// \brief Visitor class for BFS.
alpar@209
  1198
  ///
alpar@100
  1199
  /// This class defines the interface of the BfsVisit events, and
kpeter@244
  1200
  /// it could be the base of a real visitor class.
kpeter@503
  1201
  template <typename GR>
alpar@100
  1202
  struct BfsVisitor {
kpeter@503
  1203
    typedef GR Digraph;
alpar@100
  1204
    typedef typename Digraph::Arc Arc;
alpar@100
  1205
    typedef typename Digraph::Node Node;
kpeter@244
  1206
    /// \brief Called for the source node(s) of the BFS.
alpar@209
  1207
    ///
kpeter@244
  1208
    /// This function is called for the source node(s) of the BFS.
kpeter@244
  1209
    void start(const Node& node) {}
kpeter@244
  1210
    /// \brief Called when a node is reached first time.
kpeter@244
  1211
    ///
kpeter@244
  1212
    /// This function is called when a node is reached first time.
kpeter@244
  1213
    void reach(const Node& node) {}
kpeter@244
  1214
    /// \brief Called when a node is processed.
kpeter@244
  1215
    ///
kpeter@244
  1216
    /// This function is called when a node is processed.
kpeter@244
  1217
    void process(const Node& node) {}
kpeter@244
  1218
    /// \brief Called when an arc reaches a new node.
kpeter@244
  1219
    ///
kpeter@244
  1220
    /// This function is called when the BFS finds an arc whose target node
kpeter@244
  1221
    /// is not reached yet.
alpar@100
  1222
    void discover(const Arc& arc) {}
kpeter@244
  1223
    /// \brief Called when an arc is examined but its target node is
alpar@100
  1224
    /// already discovered.
alpar@209
  1225
    ///
kpeter@244
  1226
    /// This function is called when an arc is examined but its target node is
alpar@100
  1227
    /// already discovered.
alpar@100
  1228
    void examine(const Arc& arc) {}
alpar@100
  1229
  };
alpar@100
  1230
#else
kpeter@503
  1231
  template <typename GR>
alpar@100
  1232
  struct BfsVisitor {
kpeter@503
  1233
    typedef GR Digraph;
alpar@100
  1234
    typedef typename Digraph::Arc Arc;
alpar@100
  1235
    typedef typename Digraph::Node Node;
kpeter@244
  1236
    void start(const Node&) {}
kpeter@244
  1237
    void reach(const Node&) {}
kpeter@244
  1238
    void process(const Node&) {}
alpar@100
  1239
    void discover(const Arc&) {}
alpar@100
  1240
    void examine(const Arc&) {}
alpar@100
  1241
alpar@100
  1242
    template <typename _Visitor>
alpar@100
  1243
    struct Constraints {
alpar@100
  1244
      void constraints() {
alpar@209
  1245
        Arc arc;
alpar@209
  1246
        Node node;
kpeter@244
  1247
        visitor.start(node);
kpeter@244
  1248
        visitor.reach(node);
kpeter@244
  1249
        visitor.process(node);
alpar@209
  1250
        visitor.discover(arc);
alpar@209
  1251
        visitor.examine(arc);
alpar@100
  1252
      }
alpar@100
  1253
      _Visitor& visitor;
alpar@975
  1254
      Constraints() {}
alpar@100
  1255
    };
alpar@100
  1256
  };
alpar@100
  1257
#endif
alpar@100
  1258
alpar@100
  1259
  /// \brief Default traits class of BfsVisit class.
alpar@100
  1260
  ///
alpar@100
  1261
  /// Default traits class of BfsVisit class.
kpeter@503
  1262
  /// \tparam GR The type of the digraph the algorithm runs on.
kpeter@503
  1263
  template<class GR>
alpar@100
  1264
  struct BfsVisitDefaultTraits {
alpar@100
  1265
kpeter@244
  1266
    /// \brief The type of the digraph the algorithm runs on.
kpeter@503
  1267
    typedef GR Digraph;
alpar@100
  1268
alpar@100
  1269
    /// \brief The type of the map that indicates which nodes are reached.
alpar@209
  1270
    ///
alpar@100
  1271
    /// The type of the map that indicates which nodes are reached.
alpar@877
  1272
    /// It must conform to
alpar@877
  1273
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
alpar@100
  1274
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
alpar@100
  1275
kpeter@301
  1276
    /// \brief Instantiates a ReachedMap.
alpar@100
  1277
    ///
kpeter@301
  1278
    /// This function instantiates a ReachedMap.
alpar@100
  1279
    /// \param digraph is the digraph, to which
kpeter@301
  1280
    /// we would like to define the ReachedMap.
alpar@100
  1281
    static ReachedMap *createReachedMap(const Digraph &digraph) {
alpar@100
  1282
      return new ReachedMap(digraph);
alpar@100
  1283
    }
alpar@100
  1284
alpar@100
  1285
  };
alpar@100
  1286
alpar@100
  1287
  /// \ingroup search
alpar@209
  1288
  ///
kpeter@503
  1289
  /// \brief BFS algorithm class with visitor interface.
alpar@209
  1290
  ///
kpeter@503
  1291
  /// This class provides an efficient implementation of the BFS algorithm
alpar@100
  1292
  /// with visitor interface.
alpar@100
  1293
  ///
kpeter@503
  1294
  /// The BfsVisit class provides an alternative interface to the Bfs
alpar@100
  1295
  /// class. It works with callback mechanism, the BfsVisit object calls
kpeter@244
  1296
  /// the member functions of the \c Visitor class on every BFS event.
alpar@100
  1297
  ///
kpeter@252
  1298
  /// This interface of the BFS algorithm should be used in special cases
kpeter@252
  1299
  /// when extra actions have to be performed in connection with certain
kpeter@252
  1300
  /// events of the BFS algorithm. Otherwise consider to use Bfs or bfs()
kpeter@252
  1301
  /// instead.
kpeter@252
  1302
  ///
kpeter@503
  1303
  /// \tparam GR The type of the digraph the algorithm runs on.
kpeter@503
  1304
  /// The default type is \ref ListDigraph.
kpeter@503
  1305
  /// The value of GR is not used directly by \ref BfsVisit,
kpeter@503
  1306
  /// it is only passed to \ref BfsVisitDefaultTraits.
kpeter@503
  1307
  /// \tparam VS The Visitor type that is used by the algorithm.
kpeter@503
  1308
  /// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which
kpeter@244
  1309
  /// does not observe the BFS events. If you want to observe the BFS
kpeter@244
  1310
  /// events, you should implement your own visitor class.
kpeter@825
  1311
  /// \tparam TR The traits class that defines various types used by the
kpeter@825
  1312
  /// algorithm. By default, it is \ref BfsVisitDefaultTraits
kpeter@825
  1313
  /// "BfsVisitDefaultTraits<GR>".
kpeter@825
  1314
  /// In most cases, this parameter should not be set directly,
kpeter@825
  1315
  /// consider to use the named template parameters instead.
alpar@100
  1316
#ifdef DOXYGEN
kpeter@503
  1317
  template <typename GR, typename VS, typename TR>
alpar@100
  1318
#else
kpeter@503
  1319
  template <typename GR = ListDigraph,
kpeter@503
  1320
            typename VS = BfsVisitor<GR>,
kpeter@503
  1321
            typename TR = BfsVisitDefaultTraits<GR> >
alpar@100
  1322
#endif
alpar@100
  1323
  class BfsVisit {
alpar@100
  1324
  public:
alpar@209
  1325
kpeter@244
  1326
    ///The traits class.
kpeter@503
  1327
    typedef TR Traits;
alpar@100
  1328
kpeter@244
  1329
    ///The type of the digraph the algorithm runs on.
alpar@100
  1330
    typedef typename Traits::Digraph Digraph;
alpar@100
  1331
kpeter@244
  1332
    ///The visitor type used by the algorithm.
kpeter@503
  1333
    typedef VS Visitor;
alpar@100
  1334
kpeter@244
  1335
    ///The type of the map that indicates which nodes are reached.
alpar@100
  1336
    typedef typename Traits::ReachedMap ReachedMap;
alpar@100
  1337
alpar@100
  1338
  private:
alpar@100
  1339
alpar@100
  1340
    typedef typename Digraph::Node Node;
alpar@100
  1341
    typedef typename Digraph::NodeIt NodeIt;
alpar@100
  1342
    typedef typename Digraph::Arc Arc;
alpar@100
  1343
    typedef typename Digraph::OutArcIt OutArcIt;
alpar@100
  1344
kpeter@244
  1345
    //Pointer to the underlying digraph.
alpar@100
  1346
    const Digraph *_digraph;
kpeter@244
  1347
    //Pointer to the visitor object.
alpar@100
  1348
    Visitor *_visitor;
kpeter@244
  1349
    //Pointer to the map of reached status of the nodes.
alpar@100
  1350
    ReachedMap *_reached;
kpeter@244
  1351
    //Indicates if _reached is locally allocated (true) or not.
alpar@100
  1352
    bool local_reached;
alpar@100
  1353
alpar@100
  1354
    std::vector<typename Digraph::Node> _list;
alpar@100
  1355
    int _list_front, _list_back;
alpar@100
  1356
alpar@280
  1357
    //Creates the maps if necessary.
alpar@100
  1358
    void create_maps() {
alpar@100
  1359
      if(!_reached) {
alpar@209
  1360
        local_reached = true;
alpar@209
  1361
        _reached = Traits::createReachedMap(*_digraph);
alpar@100
  1362
      }
alpar@100
  1363
    }
alpar@100
  1364
alpar@100
  1365
  protected:
alpar@100
  1366
alpar@100
  1367
    BfsVisit() {}
alpar@209
  1368
alpar@100
  1369
  public:
alpar@100
  1370
alpar@100
  1371
    typedef BfsVisit Create;
alpar@100
  1372
kpeter@405
  1373
    /// \name Named Template Parameters
alpar@100
  1374
alpar@100
  1375
    ///@{
alpar@100
  1376
    template <class T>
kpeter@257
  1377
    struct SetReachedMapTraits : public Traits {
alpar@100
  1378
      typedef T ReachedMap;
alpar@100
  1379
      static ReachedMap *createReachedMap(const Digraph &digraph) {
deba@290
  1380
        LEMON_ASSERT(false, "ReachedMap is not initialized");
deba@290
  1381
        return 0; // ignore warnings
alpar@100
  1382
      }
alpar@100
  1383
    };
alpar@209
  1384
    /// \brief \ref named-templ-param "Named parameter" for setting
kpeter@244
  1385
    /// ReachedMap type.
alpar@100
  1386
    ///
kpeter@244
  1387
    /// \ref named-templ-param "Named parameter" for setting ReachedMap type.
alpar@100
  1388
    template <class T>
kpeter@257
  1389
    struct SetReachedMap : public BfsVisit< Digraph, Visitor,
kpeter@257
  1390
                                            SetReachedMapTraits<T> > {
kpeter@257
  1391
      typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
alpar@100
  1392
    };
alpar@100
  1393
    ///@}
alpar@100
  1394
alpar@209
  1395
  public:
alpar@209
  1396
alpar@100
  1397
    /// \brief Constructor.
alpar@100
  1398
    ///
alpar@100
  1399
    /// Constructor.
alpar@100
  1400
    ///
kpeter@244
  1401
    /// \param digraph The digraph the algorithm runs on.
kpeter@244
  1402
    /// \param visitor The visitor object of the algorithm.
alpar@209
  1403
    BfsVisit(const Digraph& digraph, Visitor& visitor)
alpar@100
  1404
      : _digraph(&digraph), _visitor(&visitor),
alpar@209
  1405
        _reached(0), local_reached(false) {}
alpar@209
  1406
alpar@100
  1407
    /// \brief Destructor.
alpar@100
  1408
    ~BfsVisit() {
alpar@100
  1409
      if(local_reached) delete _reached;
alpar@100
  1410
    }
alpar@100
  1411
kpeter@244
  1412
    /// \brief Sets the map that indicates which nodes are reached.
alpar@100
  1413
    ///
kpeter@244
  1414
    /// Sets the map that indicates which nodes are reached.
kpeter@405
  1415
    /// If you don't use this function before calling \ref run(Node) "run()"
kpeter@405
  1416
    /// or \ref init(), an instance will be allocated automatically.
kpeter@405
  1417
    /// The destructor deallocates this automatically allocated map,
kpeter@405
  1418
    /// of course.
alpar@100
  1419
    /// \return <tt> (*this) </tt>
alpar@100
  1420
    BfsVisit &reachedMap(ReachedMap &m) {
alpar@100
  1421
      if(local_reached) {
alpar@209
  1422
        delete _reached;
alpar@209
  1423
        local_reached = false;
alpar@100
  1424
      }
alpar@100
  1425
      _reached = &m;
alpar@100
  1426
      return *this;
alpar@100
  1427
    }
alpar@100
  1428
alpar@100
  1429
  public:
kpeter@244
  1430
kpeter@405
  1431
    /// \name Execution Control
kpeter@405
  1432
    /// The simplest way to execute the BFS algorithm is to use one of the
kpeter@405
  1433
    /// member functions called \ref run(Node) "run()".\n
kpeter@713
  1434
    /// If you need better control on the execution, you have to call
kpeter@713
  1435
    /// \ref init() first, then you can add several source nodes with
kpeter@405
  1436
    /// \ref addSource(). Finally the actual path computation can be
kpeter@405
  1437
    /// performed with one of the \ref start() functions.
alpar@100
  1438
alpar@100
  1439
    /// @{
kpeter@244
  1440
alpar@100
  1441
    /// \brief Initializes the internal data structures.
alpar@100
  1442
    ///
alpar@100
  1443
    /// Initializes the internal data structures.
alpar@100
  1444
    void init() {
alpar@100
  1445
      create_maps();
alpar@100
  1446
      _list.resize(countNodes(*_digraph));
alpar@100
  1447
      _list_front = _list_back = -1;
alpar@100
  1448
      for (NodeIt u(*_digraph) ; u != INVALID ; ++u) {
alpar@209
  1449
        _reached->set(u, false);
alpar@100
  1450
      }
alpar@100
  1451
    }
alpar@209
  1452
alpar@100
  1453
    /// \brief Adds a new source node.
alpar@100
  1454
    ///
alpar@100
  1455
    /// Adds a new source node to the set of nodes to be processed.
alpar@100
  1456
    void addSource(Node s) {
alpar@100
  1457
      if(!(*_reached)[s]) {
alpar@209
  1458
          _reached->set(s,true);
alpar@209
  1459
          _visitor->start(s);
alpar@209
  1460
          _visitor->reach(s);
alpar@100
  1461
          _list[++_list_back] = s;
alpar@209
  1462
        }
alpar@100
  1463
    }
alpar@209
  1464
alpar@100
  1465
    /// \brief Processes the next node.
alpar@100
  1466
    ///
alpar@100
  1467
    /// Processes the next node.
alpar@100
  1468
    ///
alpar@100
  1469
    /// \return The processed node.
alpar@100
  1470
    ///
kpeter@244
  1471
    /// \pre The queue must not be empty.
alpar@209
  1472
    Node processNextNode() {
alpar@100
  1473
      Node n = _list[++_list_front];
alpar@100
  1474
      _visitor->process(n);
alpar@100
  1475
      Arc e;
alpar@100
  1476
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
alpar@100
  1477
        Node m = _digraph->target(e);
alpar@100
  1478
        if (!(*_reached)[m]) {
alpar@100
  1479
          _visitor->discover(e);
alpar@100
  1480
          _visitor->reach(m);
alpar@100
  1481
          _reached->set(m, true);
alpar@100
  1482
          _list[++_list_back] = m;
alpar@100
  1483
        } else {
alpar@100
  1484
          _visitor->examine(e);
alpar@100
  1485
        }
alpar@100
  1486
      }
alpar@100
  1487
      return n;
alpar@100
  1488
    }
alpar@100
  1489
alpar@100
  1490
    /// \brief Processes the next node.
alpar@100
  1491
    ///
kpeter@244
  1492
    /// Processes the next node and checks if the given target node
alpar@100
  1493
    /// is reached. If the target node is reachable from the processed
kpeter@244
  1494
    /// node, then the \c reach parameter will be set to \c true.
alpar@100
  1495
    ///
alpar@100
  1496
    /// \param target The target node.
kpeter@244
  1497
    /// \retval reach Indicates if the target node is reached.
kpeter@244
  1498
    /// It should be initially \c false.
kpeter@244
  1499
    ///
alpar@100
  1500
    /// \return The processed node.
alpar@100
  1501
    ///
kpeter@244
  1502
    /// \pre The queue must not be empty.
alpar@100
  1503
    Node processNextNode(Node target, bool& reach) {
alpar@100
  1504
      Node n = _list[++_list_front];
alpar@100
  1505
      _visitor->process(n);
alpar@100
  1506
      Arc e;
alpar@100
  1507
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
alpar@100
  1508
        Node m = _digraph->target(e);
alpar@100
  1509
        if (!(*_reached)[m]) {
alpar@100
  1510
          _visitor->discover(e);
alpar@100
  1511
          _visitor->reach(m);
alpar@100
  1512
          _reached->set(m, true);
alpar@100
  1513
          _list[++_list_back] = m;
alpar@100
  1514
          reach = reach || (target == m);
alpar@100
  1515
        } else {
alpar@100
  1516
          _visitor->examine(e);
alpar@100
  1517
        }
alpar@100
  1518
      }
alpar@100
  1519
      return n;
alpar@100
  1520
    }
alpar@100
  1521
alpar@100
  1522
    /// \brief Processes the next node.
alpar@100
  1523
    ///
kpeter@244
  1524
    /// Processes the next node and checks if at least one of reached
kpeter@244
  1525
    /// nodes has \c true value in the \c nm node map. If one node
kpeter@244
  1526
    /// with \c true value is reachable from the processed node, then the
kpeter@244
  1527
    /// \c rnode parameter will be set to the first of such nodes.
alpar@100
  1528
    ///
kpeter@244
  1529
    /// \param nm A \c bool (or convertible) node map that indicates the
kpeter@244
  1530
    /// possible targets.
alpar@100
  1531
    /// \retval rnode The reached target node.
kpeter@244
  1532
    /// It should be initially \c INVALID.
kpeter@244
  1533
    ///
alpar@100
  1534
    /// \return The processed node.
alpar@100
  1535
    ///
kpeter@244
  1536
    /// \pre The queue must not be empty.
alpar@100
  1537
    template <typename NM>
alpar@100
  1538
    Node processNextNode(const NM& nm, Node& rnode) {
alpar@100
  1539
      Node n = _list[++_list_front];
alpar@100
  1540
      _visitor->process(n);
alpar@100
  1541
      Arc e;
alpar@100
  1542
      for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) {
alpar@100
  1543
        Node m = _digraph->target(e);
alpar@100
  1544
        if (!(*_reached)[m]) {
alpar@100
  1545
          _visitor->discover(e);
alpar@100
  1546
          _visitor->reach(m);
alpar@100
  1547
          _reached->set(m, true);
alpar@100
  1548
          _list[++_list_back] = m;
alpar@100
  1549
          if (nm[m] && rnode == INVALID) rnode = m;
alpar@100
  1550
        } else {
alpar@100
  1551
          _visitor->examine(e);
alpar@100
  1552
        }
alpar@100
  1553
      }
alpar@100
  1554
      return n;
alpar@100
  1555
    }
alpar@100
  1556
kpeter@244
  1557
    /// \brief The next node to be processed.
alpar@100
  1558
    ///
kpeter@244
  1559
    /// Returns the next node to be processed or \c INVALID if the queue
kpeter@244
  1560
    /// is empty.
kpeter@244
  1561
    Node nextNode() const {
alpar@100
  1562
      return _list_front != _list_back ? _list[_list_front + 1] : INVALID;
alpar@100
  1563
    }
alpar@100
  1564
alpar@100
  1565
    /// \brief Returns \c false if there are nodes
kpeter@244
  1566
    /// to be processed.
alpar@100
  1567
    ///
alpar@100
  1568
    /// Returns \c false if there are nodes
kpeter@244
  1569
    /// to be processed in the queue.
kpeter@244
  1570
    bool emptyQueue() const { return _list_front == _list_back; }
alpar@100
  1571
alpar@100
  1572
    /// \brief Returns the number of the nodes to be processed.
alpar@100
  1573
    ///
alpar@100
  1574
    /// Returns the number of the nodes to be processed in the queue.
kpeter@244
  1575
    int queueSize() const { return _list_back - _list_front; }
alpar@209
  1576
alpar@100
  1577
    /// \brief Executes the algorithm.
alpar@100
  1578
    ///
alpar@100
  1579
    /// Executes the algorithm.
alpar@100
  1580
    ///
kpeter@244
  1581
    /// This method runs the %BFS algorithm from the root node(s)
kpeter@244
  1582
    /// in order to compute the shortest path to each node.
kpeter@244
  1583
    ///
kpeter@244
  1584
    /// The algorithm computes
kpeter@244
  1585
    /// - the shortest path tree (forest),
kpeter@244
  1586
    /// - the distance of each node from the root(s).
kpeter@244
  1587
    ///
kpeter@244
  1588
    /// \pre init() must be called and at least one root node should be added
alpar@100
  1589
    /// with addSource() before using this function.
kpeter@244
  1590
    ///
kpeter@244
  1591
    /// \note <tt>b.start()</tt> is just a shortcut of the following code.
kpeter@244
  1592
    /// \code
kpeter@244
  1593
    ///   while ( !b.emptyQueue() ) {
kpeter@244
  1594
    ///     b.processNextNode();
kpeter@244
  1595
    ///   }
kpeter@244
  1596
    /// \endcode
alpar@100
  1597
    void start() {
alpar@100
  1598
      while ( !emptyQueue() ) processNextNode();
alpar@100
  1599
    }
alpar@209
  1600
kpeter@244
  1601
    /// \brief Executes the algorithm until the given target node is reached.
alpar@100
  1602
    ///
kpeter@244
  1603
    /// Executes the algorithm until the given target node is reached.
alpar@100
  1604
    ///
kpeter@244
  1605
    /// This method runs the %BFS algorithm from the root node(s)
kpeter@286
  1606
    /// in order to compute the shortest path to \c t.
kpeter@244
  1607
    ///
kpeter@244
  1608
    /// The algorithm computes
kpeter@286
  1609
    /// - the shortest path to \c t,
kpeter@286
  1610
    /// - the distance of \c t from the root(s).
kpeter@244
  1611
    ///
kpeter@244
  1612
    /// \pre init() must be called and at least one root node should be
kpeter@244
  1613
    /// added with addSource() before using this function.
kpeter@244
  1614
    ///
kpeter@244
  1615
    /// \note <tt>b.start(t)</tt> is just a shortcut of the following code.
kpeter@244
  1616
    /// \code
kpeter@244
  1617
    ///   bool reach = false;
kpeter@244
  1618
    ///   while ( !b.emptyQueue() && !reach ) {
kpeter@244
  1619
    ///     b.processNextNode(t, reach);
kpeter@244
  1620
    ///   }
kpeter@244
  1621
    /// \endcode
kpeter@286
  1622
    void start(Node t) {
alpar@100
  1623
      bool reach = false;
kpeter@286
  1624
      while ( !emptyQueue() && !reach ) processNextNode(t, reach);
alpar@100
  1625
    }
alpar@209
  1626
alpar@100
  1627
    /// \brief Executes the algorithm until a condition is met.
alpar@100
  1628
    ///
alpar@100
  1629
    /// Executes the algorithm until a condition is met.
alpar@100
  1630
    ///
kpeter@244
  1631
    /// This method runs the %BFS algorithm from the root node(s) in
kpeter@244
  1632
    /// order to compute the shortest path to a node \c v with
kpeter@244
  1633
    /// <tt>nm[v]</tt> true, if such a node can be found.
alpar@100
  1634
    ///
kpeter@244
  1635
    /// \param nm must be a bool (or convertible) node map. The
kpeter@244
  1636
    /// algorithm will stop when it reaches a node \c v with
alpar@100
  1637
    /// <tt>nm[v]</tt> true.
alpar@100
  1638
    ///
kpeter@244
  1639
    /// \return The reached node \c v with <tt>nm[v]</tt> true or
kpeter@244
  1640
    /// \c INVALID if no such node was found.
kpeter@244
  1641
    ///
kpeter@244
  1642
    /// \pre init() must be called and at least one root node should be
kpeter@244
  1643
    /// added with addSource() before using this function.
kpeter@244
  1644
    ///
kpeter@244
  1645
    /// \note <tt>b.start(nm)</tt> is just a shortcut of the following code.
kpeter@244
  1646
    /// \code
kpeter@244
  1647
    ///   Node rnode = INVALID;
kpeter@244
  1648
    ///   while ( !b.emptyQueue() && rnode == INVALID ) {
kpeter@244
  1649
    ///     b.processNextNode(nm, rnode);
kpeter@244
  1650
    ///   }
kpeter@244
  1651
    ///   return rnode;
kpeter@244
  1652
    /// \endcode
alpar@100
  1653
    template <typename NM>
alpar@100
  1654
    Node start(const NM &nm) {
alpar@100
  1655
      Node rnode = INVALID;
alpar@100
  1656
      while ( !emptyQueue() && rnode == INVALID ) {
alpar@209
  1657
        processNextNode(nm, rnode);
alpar@100
  1658
      }
alpar@100
  1659
      return rnode;
alpar@100
  1660
    }
alpar@100
  1661
kpeter@286
  1662
    /// \brief Runs the algorithm from the given source node.
alpar@100
  1663
    ///
kpeter@244
  1664
    /// This method runs the %BFS algorithm from node \c s
kpeter@244
  1665
    /// in order to compute the shortest path to each node.
kpeter@244
  1666
    ///
kpeter@244
  1667
    /// The algorithm computes
kpeter@244
  1668
    /// - the shortest path tree,
kpeter@244
  1669
    /// - the distance of each node from the root.
kpeter@244
  1670
    ///
kpeter@244
  1671
    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
alpar@100
  1672
    ///\code
alpar@100
  1673
    ///   b.init();
alpar@100
  1674
    ///   b.addSource(s);
alpar@100
  1675
    ///   b.start();
alpar@100
  1676
    ///\endcode
alpar@100
  1677
    void run(Node s) {
alpar@100
  1678
      init();
alpar@100
  1679
      addSource(s);
alpar@100
  1680
      start();
alpar@100
  1681
    }
alpar@100
  1682
kpeter@286
  1683
    /// \brief Finds the shortest path between \c s and \c t.
kpeter@286
  1684
    ///
kpeter@286
  1685
    /// This method runs the %BFS algorithm from node \c s
kpeter@286
  1686
    /// in order to compute the shortest path to node \c t
kpeter@286
  1687
    /// (it stops searching when \c t is processed).
kpeter@286
  1688
    ///
kpeter@286
  1689
    /// \return \c true if \c t is reachable form \c s.
kpeter@286
  1690
    ///
kpeter@286
  1691
    /// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a
kpeter@286
  1692
    /// shortcut of the following code.
kpeter@286
  1693
    ///\code
kpeter@286
  1694
    ///   b.init();
kpeter@286
  1695
    ///   b.addSource(s);
kpeter@286
  1696
    ///   b.start(t);
kpeter@286
  1697
    ///\endcode
kpeter@286
  1698
    bool run(Node s,Node t) {
kpeter@286
  1699
      init();
kpeter@286
  1700
      addSource(s);
kpeter@286
  1701
      start(t);
kpeter@286
  1702
      return reached(t);
kpeter@286
  1703
    }
kpeter@286
  1704
kpeter@244
  1705
    /// \brief Runs the algorithm to visit all nodes in the digraph.
alpar@209
  1706
    ///
kpeter@787
  1707
    /// This method runs the %BFS algorithm in order to visit all nodes
kpeter@787
  1708
    /// in the digraph.
kpeter@244
  1709
    ///
kpeter@244
  1710
    /// \note <tt>b.run(s)</tt> is just a shortcut of the following code.
alpar@100
  1711
    ///\code
alpar@100
  1712
    ///  b.init();
kpeter@244
  1713
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
kpeter@244
  1714
    ///    if (!b.reached(n)) {
kpeter@244
  1715
    ///      b.addSource(n);
alpar@100
  1716
    ///      b.start();
alpar@100
  1717
    ///    }
alpar@100
  1718
    ///  }
alpar@100
  1719
    ///\endcode
alpar@100
  1720
    void run() {
alpar@100
  1721
      init();
alpar@100
  1722
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
alpar@100
  1723
        if (!reached(it)) {
alpar@100
  1724
          addSource(it);
alpar@100
  1725
          start();
alpar@100
  1726
        }
alpar@100
  1727
      }
alpar@100
  1728
    }
kpeter@244
  1729
alpar@100
  1730
    ///@}
alpar@100
  1731
alpar@100
  1732
    /// \name Query Functions
kpeter@405
  1733
    /// The results of the BFS algorithm can be obtained using these
alpar@100
  1734
    /// functions.\n
kpeter@405
  1735
    /// Either \ref run(Node) "run()" or \ref start() should be called
kpeter@405
  1736
    /// before using them.
kpeter@405
  1737
alpar@100
  1738
    ///@{
alpar@100
  1739
kpeter@716
  1740
    /// \brief Checks if the given node is reached from the root(s).
alpar@100
  1741
    ///
kpeter@405
  1742
    /// Returns \c true if \c v is reached from the root(s).
kpeter@405
  1743
    ///
kpeter@405
  1744
    /// \pre Either \ref run(Node) "run()" or \ref init()
alpar@100
  1745
    /// must be called before using this function.
kpeter@420
  1746
    bool reached(Node v) const { return (*_reached)[v]; }
kpeter@244
  1747
alpar@100
  1748
    ///@}
kpeter@244
  1749
alpar@100
  1750
  };
alpar@100
  1751
alpar@100
  1752
} //END OF NAMESPACE LEMON
alpar@100
  1753
alpar@100
  1754
#endif