alpar@877
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
kpeter@808
|
2 |
*
|
alpar@877
|
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
kpeter@808
|
4 |
*
|
alpar@877
|
5 |
* Copyright (C) 2003-2010
|
kpeter@808
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
kpeter@808
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
kpeter@808
|
8 |
*
|
kpeter@808
|
9 |
* Permission to use, modify and distribute this software is granted
|
kpeter@808
|
10 |
* provided that this copyright notice appears in all copies. For
|
kpeter@808
|
11 |
* precise terms see the accompanying LICENSE file.
|
kpeter@808
|
12 |
*
|
kpeter@808
|
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
kpeter@808
|
14 |
* express or implied, and with no claim as to its suitability for any
|
kpeter@808
|
15 |
* purpose.
|
kpeter@808
|
16 |
*
|
kpeter@808
|
17 |
*/
|
kpeter@808
|
18 |
|
kpeter@808
|
19 |
#ifndef LEMON_COST_SCALING_H
|
kpeter@808
|
20 |
#define LEMON_COST_SCALING_H
|
kpeter@808
|
21 |
|
kpeter@808
|
22 |
/// \ingroup min_cost_flow_algs
|
kpeter@808
|
23 |
/// \file
|
kpeter@808
|
24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow.
|
kpeter@808
|
25 |
|
kpeter@808
|
26 |
#include <vector>
|
kpeter@808
|
27 |
#include <deque>
|
kpeter@808
|
28 |
#include <limits>
|
kpeter@808
|
29 |
|
kpeter@808
|
30 |
#include <lemon/core.h>
|
kpeter@808
|
31 |
#include <lemon/maps.h>
|
kpeter@808
|
32 |
#include <lemon/math.h>
|
kpeter@809
|
33 |
#include <lemon/static_graph.h>
|
kpeter@808
|
34 |
#include <lemon/circulation.h>
|
kpeter@808
|
35 |
#include <lemon/bellman_ford.h>
|
kpeter@808
|
36 |
|
kpeter@808
|
37 |
namespace lemon {
|
kpeter@808
|
38 |
|
kpeter@809
|
39 |
/// \brief Default traits class of CostScaling algorithm.
|
kpeter@809
|
40 |
///
|
kpeter@809
|
41 |
/// Default traits class of CostScaling algorithm.
|
kpeter@809
|
42 |
/// \tparam GR Digraph type.
|
kpeter@812
|
43 |
/// \tparam V The number type used for flow amounts, capacity bounds
|
kpeter@809
|
44 |
/// and supply values. By default it is \c int.
|
kpeter@812
|
45 |
/// \tparam C The number type used for costs and potentials.
|
kpeter@809
|
46 |
/// By default it is the same as \c V.
|
kpeter@809
|
47 |
#ifdef DOXYGEN
|
kpeter@809
|
48 |
template <typename GR, typename V = int, typename C = V>
|
kpeter@809
|
49 |
#else
|
kpeter@809
|
50 |
template < typename GR, typename V = int, typename C = V,
|
kpeter@809
|
51 |
bool integer = std::numeric_limits<C>::is_integer >
|
kpeter@809
|
52 |
#endif
|
kpeter@809
|
53 |
struct CostScalingDefaultTraits
|
kpeter@809
|
54 |
{
|
kpeter@809
|
55 |
/// The type of the digraph
|
kpeter@809
|
56 |
typedef GR Digraph;
|
kpeter@809
|
57 |
/// The type of the flow amounts, capacity bounds and supply values
|
kpeter@809
|
58 |
typedef V Value;
|
kpeter@809
|
59 |
/// The type of the arc costs
|
kpeter@809
|
60 |
typedef C Cost;
|
kpeter@809
|
61 |
|
kpeter@809
|
62 |
/// \brief The large cost type used for internal computations
|
kpeter@809
|
63 |
///
|
kpeter@809
|
64 |
/// The large cost type used for internal computations.
|
kpeter@809
|
65 |
/// It is \c long \c long if the \c Cost type is integer,
|
kpeter@809
|
66 |
/// otherwise it is \c double.
|
kpeter@809
|
67 |
/// \c Cost must be convertible to \c LargeCost.
|
kpeter@809
|
68 |
typedef double LargeCost;
|
kpeter@809
|
69 |
};
|
kpeter@809
|
70 |
|
kpeter@809
|
71 |
// Default traits class for integer cost types
|
kpeter@809
|
72 |
template <typename GR, typename V, typename C>
|
kpeter@809
|
73 |
struct CostScalingDefaultTraits<GR, V, C, true>
|
kpeter@809
|
74 |
{
|
kpeter@809
|
75 |
typedef GR Digraph;
|
kpeter@809
|
76 |
typedef V Value;
|
kpeter@809
|
77 |
typedef C Cost;
|
kpeter@809
|
78 |
#ifdef LEMON_HAVE_LONG_LONG
|
kpeter@809
|
79 |
typedef long long LargeCost;
|
kpeter@809
|
80 |
#else
|
kpeter@809
|
81 |
typedef long LargeCost;
|
kpeter@809
|
82 |
#endif
|
kpeter@809
|
83 |
};
|
kpeter@809
|
84 |
|
kpeter@809
|
85 |
|
kpeter@808
|
86 |
/// \addtogroup min_cost_flow_algs
|
kpeter@808
|
87 |
/// @{
|
kpeter@808
|
88 |
|
kpeter@809
|
89 |
/// \brief Implementation of the Cost Scaling algorithm for
|
kpeter@809
|
90 |
/// finding a \ref min_cost_flow "minimum cost flow".
|
kpeter@808
|
91 |
///
|
kpeter@809
|
92 |
/// \ref CostScaling implements a cost scaling algorithm that performs
|
kpeter@813
|
93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow
|
kpeter@813
|
94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
|
alpar@877
|
95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient.
|
kpeter@813
|
96 |
/// It is a highly efficient primal-dual solution method, which
|
kpeter@809
|
97 |
/// can be viewed as the generalization of the \ref Preflow
|
kpeter@809
|
98 |
/// "preflow push-relabel" algorithm for the maximum flow problem.
|
kpeter@808
|
99 |
///
|
kpeter@919
|
100 |
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
|
kpeter@1003
|
101 |
/// implementations available in LEMON for solving this problem.
|
kpeter@1003
|
102 |
/// (For more information, see \ref min_cost_flow_algs "the module page".)
|
kpeter@919
|
103 |
///
|
kpeter@809
|
104 |
/// Most of the parameters of the problem (except for the digraph)
|
kpeter@809
|
105 |
/// can be given using separate functions, and the algorithm can be
|
kpeter@809
|
106 |
/// executed using the \ref run() function. If some parameters are not
|
kpeter@809
|
107 |
/// specified, then default values will be used.
|
kpeter@808
|
108 |
///
|
kpeter@809
|
109 |
/// \tparam GR The digraph type the algorithm runs on.
|
kpeter@812
|
110 |
/// \tparam V The number type used for flow amounts, capacity bounds
|
kpeter@825
|
111 |
/// and supply values in the algorithm. By default, it is \c int.
|
kpeter@812
|
112 |
/// \tparam C The number type used for costs and potentials in the
|
kpeter@825
|
113 |
/// algorithm. By default, it is the same as \c V.
|
kpeter@825
|
114 |
/// \tparam TR The traits class that defines various types used by the
|
kpeter@825
|
115 |
/// algorithm. By default, it is \ref CostScalingDefaultTraits
|
kpeter@825
|
116 |
/// "CostScalingDefaultTraits<GR, V, C>".
|
kpeter@825
|
117 |
/// In most cases, this parameter should not be set directly,
|
kpeter@825
|
118 |
/// consider to use the named template parameters instead.
|
kpeter@808
|
119 |
///
|
kpeter@921
|
120 |
/// \warning Both \c V and \c C must be signed number types.
|
kpeter@921
|
121 |
/// \warning All input data (capacities, supply values, and costs) must
|
kpeter@809
|
122 |
/// be integer.
|
kpeter@919
|
123 |
/// \warning This algorithm does not support negative costs for
|
kpeter@919
|
124 |
/// arcs having infinite upper bound.
|
kpeter@810
|
125 |
///
|
kpeter@810
|
126 |
/// \note %CostScaling provides three different internal methods,
|
kpeter@810
|
127 |
/// from which the most efficient one is used by default.
|
kpeter@810
|
128 |
/// For more information, see \ref Method.
|
kpeter@809
|
129 |
#ifdef DOXYGEN
|
kpeter@809
|
130 |
template <typename GR, typename V, typename C, typename TR>
|
kpeter@809
|
131 |
#else
|
kpeter@809
|
132 |
template < typename GR, typename V = int, typename C = V,
|
kpeter@809
|
133 |
typename TR = CostScalingDefaultTraits<GR, V, C> >
|
kpeter@809
|
134 |
#endif
|
kpeter@808
|
135 |
class CostScaling
|
kpeter@808
|
136 |
{
|
kpeter@809
|
137 |
public:
|
kpeter@808
|
138 |
|
kpeter@809
|
139 |
/// The type of the digraph
|
kpeter@809
|
140 |
typedef typename TR::Digraph Digraph;
|
kpeter@809
|
141 |
/// The type of the flow amounts, capacity bounds and supply values
|
kpeter@809
|
142 |
typedef typename TR::Value Value;
|
kpeter@809
|
143 |
/// The type of the arc costs
|
kpeter@809
|
144 |
typedef typename TR::Cost Cost;
|
kpeter@808
|
145 |
|
kpeter@809
|
146 |
/// \brief The large cost type
|
kpeter@809
|
147 |
///
|
kpeter@809
|
148 |
/// The large cost type used for internal computations.
|
kpeter@825
|
149 |
/// By default, it is \c long \c long if the \c Cost type is integer,
|
kpeter@809
|
150 |
/// otherwise it is \c double.
|
kpeter@809
|
151 |
typedef typename TR::LargeCost LargeCost;
|
kpeter@808
|
152 |
|
kpeter@809
|
153 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm
|
kpeter@809
|
154 |
typedef TR Traits;
|
kpeter@808
|
155 |
|
kpeter@808
|
156 |
public:
|
kpeter@808
|
157 |
|
kpeter@809
|
158 |
/// \brief Problem type constants for the \c run() function.
|
kpeter@809
|
159 |
///
|
kpeter@809
|
160 |
/// Enum type containing the problem type constants that can be
|
kpeter@809
|
161 |
/// returned by the \ref run() function of the algorithm.
|
kpeter@809
|
162 |
enum ProblemType {
|
kpeter@809
|
163 |
/// The problem has no feasible solution (flow).
|
kpeter@809
|
164 |
INFEASIBLE,
|
kpeter@809
|
165 |
/// The problem has optimal solution (i.e. it is feasible and
|
kpeter@809
|
166 |
/// bounded), and the algorithm has found optimal flow and node
|
kpeter@809
|
167 |
/// potentials (primal and dual solutions).
|
kpeter@809
|
168 |
OPTIMAL,
|
kpeter@809
|
169 |
/// The digraph contains an arc of negative cost and infinite
|
kpeter@809
|
170 |
/// upper bound. It means that the objective function is unbounded
|
kpeter@812
|
171 |
/// on that arc, however, note that it could actually be bounded
|
kpeter@809
|
172 |
/// over the feasible flows, but this algroithm cannot handle
|
kpeter@809
|
173 |
/// these cases.
|
kpeter@809
|
174 |
UNBOUNDED
|
kpeter@809
|
175 |
};
|
kpeter@808
|
176 |
|
kpeter@810
|
177 |
/// \brief Constants for selecting the internal method.
|
kpeter@810
|
178 |
///
|
kpeter@810
|
179 |
/// Enum type containing constants for selecting the internal method
|
kpeter@810
|
180 |
/// for the \ref run() function.
|
kpeter@810
|
181 |
///
|
kpeter@810
|
182 |
/// \ref CostScaling provides three internal methods that differ mainly
|
kpeter@810
|
183 |
/// in their base operations, which are used in conjunction with the
|
kpeter@810
|
184 |
/// relabel operation.
|
kpeter@810
|
185 |
/// By default, the so called \ref PARTIAL_AUGMENT
|
kpeter@919
|
186 |
/// "Partial Augment-Relabel" method is used, which turned out to be
|
kpeter@810
|
187 |
/// the most efficient and the most robust on various test inputs.
|
kpeter@810
|
188 |
/// However, the other methods can be selected using the \ref run()
|
kpeter@810
|
189 |
/// function with the proper parameter.
|
kpeter@810
|
190 |
enum Method {
|
kpeter@810
|
191 |
/// Local push operations are used, i.e. flow is moved only on one
|
kpeter@810
|
192 |
/// admissible arc at once.
|
kpeter@810
|
193 |
PUSH,
|
kpeter@810
|
194 |
/// Augment operations are used, i.e. flow is moved on admissible
|
kpeter@810
|
195 |
/// paths from a node with excess to a node with deficit.
|
kpeter@810
|
196 |
AUGMENT,
|
alpar@877
|
197 |
/// Partial augment operations are used, i.e. flow is moved on
|
kpeter@810
|
198 |
/// admissible paths started from a node with excess, but the
|
kpeter@810
|
199 |
/// lengths of these paths are limited. This method can be viewed
|
kpeter@810
|
200 |
/// as a combined version of the previous two operations.
|
kpeter@810
|
201 |
PARTIAL_AUGMENT
|
kpeter@810
|
202 |
};
|
kpeter@810
|
203 |
|
kpeter@808
|
204 |
private:
|
kpeter@808
|
205 |
|
kpeter@809
|
206 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
|
kpeter@808
|
207 |
|
kpeter@809
|
208 |
typedef std::vector<int> IntVector;
|
kpeter@809
|
209 |
typedef std::vector<Value> ValueVector;
|
kpeter@809
|
210 |
typedef std::vector<Cost> CostVector;
|
kpeter@809
|
211 |
typedef std::vector<LargeCost> LargeCostVector;
|
kpeter@839
|
212 |
typedef std::vector<char> BoolVector;
|
kpeter@839
|
213 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons
|
kpeter@808
|
214 |
|
kpeter@809
|
215 |
private:
|
alpar@877
|
216 |
|
kpeter@809
|
217 |
template <typename KT, typename VT>
|
kpeter@820
|
218 |
class StaticVectorMap {
|
kpeter@808
|
219 |
public:
|
kpeter@809
|
220 |
typedef KT Key;
|
kpeter@809
|
221 |
typedef VT Value;
|
alpar@877
|
222 |
|
kpeter@820
|
223 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {}
|
alpar@877
|
224 |
|
kpeter@809
|
225 |
const Value& operator[](const Key& key) const {
|
kpeter@809
|
226 |
return _v[StaticDigraph::id(key)];
|
kpeter@808
|
227 |
}
|
kpeter@808
|
228 |
|
kpeter@809
|
229 |
Value& operator[](const Key& key) {
|
kpeter@809
|
230 |
return _v[StaticDigraph::id(key)];
|
kpeter@809
|
231 |
}
|
alpar@877
|
232 |
|
kpeter@809
|
233 |
void set(const Key& key, const Value& val) {
|
kpeter@809
|
234 |
_v[StaticDigraph::id(key)] = val;
|
kpeter@808
|
235 |
}
|
kpeter@808
|
236 |
|
kpeter@809
|
237 |
private:
|
kpeter@809
|
238 |
std::vector<Value>& _v;
|
kpeter@809
|
239 |
};
|
kpeter@809
|
240 |
|
kpeter@820
|
241 |
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
|
kpeter@808
|
242 |
|
kpeter@808
|
243 |
private:
|
kpeter@808
|
244 |
|
kpeter@809
|
245 |
// Data related to the underlying digraph
|
kpeter@809
|
246 |
const GR &_graph;
|
kpeter@809
|
247 |
int _node_num;
|
kpeter@809
|
248 |
int _arc_num;
|
kpeter@809
|
249 |
int _res_node_num;
|
kpeter@809
|
250 |
int _res_arc_num;
|
kpeter@809
|
251 |
int _root;
|
kpeter@808
|
252 |
|
kpeter@809
|
253 |
// Parameters of the problem
|
kpeter@809
|
254 |
bool _have_lower;
|
kpeter@809
|
255 |
Value _sum_supply;
|
kpeter@839
|
256 |
int _sup_node_num;
|
kpeter@808
|
257 |
|
kpeter@809
|
258 |
// Data structures for storing the digraph
|
kpeter@809
|
259 |
IntNodeMap _node_id;
|
kpeter@809
|
260 |
IntArcMap _arc_idf;
|
kpeter@809
|
261 |
IntArcMap _arc_idb;
|
kpeter@809
|
262 |
IntVector _first_out;
|
kpeter@809
|
263 |
BoolVector _forward;
|
kpeter@809
|
264 |
IntVector _source;
|
kpeter@809
|
265 |
IntVector _target;
|
kpeter@809
|
266 |
IntVector _reverse;
|
kpeter@809
|
267 |
|
kpeter@809
|
268 |
// Node and arc data
|
kpeter@809
|
269 |
ValueVector _lower;
|
kpeter@809
|
270 |
ValueVector _upper;
|
kpeter@809
|
271 |
CostVector _scost;
|
kpeter@809
|
272 |
ValueVector _supply;
|
kpeter@809
|
273 |
|
kpeter@809
|
274 |
ValueVector _res_cap;
|
kpeter@809
|
275 |
LargeCostVector _cost;
|
kpeter@809
|
276 |
LargeCostVector _pi;
|
kpeter@809
|
277 |
ValueVector _excess;
|
kpeter@809
|
278 |
IntVector _next_out;
|
kpeter@809
|
279 |
std::deque<int> _active_nodes;
|
kpeter@809
|
280 |
|
kpeter@809
|
281 |
// Data for scaling
|
kpeter@809
|
282 |
LargeCost _epsilon;
|
kpeter@808
|
283 |
int _alpha;
|
kpeter@808
|
284 |
|
kpeter@839
|
285 |
IntVector _buckets;
|
kpeter@839
|
286 |
IntVector _bucket_next;
|
kpeter@839
|
287 |
IntVector _bucket_prev;
|
kpeter@839
|
288 |
IntVector _rank;
|
kpeter@839
|
289 |
int _max_rank;
|
alpar@877
|
290 |
|
kpeter@809
|
291 |
public:
|
alpar@877
|
292 |
|
kpeter@809
|
293 |
/// \brief Constant for infinite upper bounds (capacities).
|
kpeter@809
|
294 |
///
|
kpeter@809
|
295 |
/// Constant for infinite upper bounds (capacities).
|
kpeter@809
|
296 |
/// It is \c std::numeric_limits<Value>::infinity() if available,
|
kpeter@809
|
297 |
/// \c std::numeric_limits<Value>::max() otherwise.
|
kpeter@809
|
298 |
const Value INF;
|
kpeter@809
|
299 |
|
kpeter@808
|
300 |
public:
|
kpeter@808
|
301 |
|
kpeter@809
|
302 |
/// \name Named Template Parameters
|
kpeter@809
|
303 |
/// @{
|
kpeter@809
|
304 |
|
kpeter@809
|
305 |
template <typename T>
|
kpeter@809
|
306 |
struct SetLargeCostTraits : public Traits {
|
kpeter@809
|
307 |
typedef T LargeCost;
|
kpeter@809
|
308 |
};
|
kpeter@809
|
309 |
|
kpeter@809
|
310 |
/// \brief \ref named-templ-param "Named parameter" for setting
|
kpeter@809
|
311 |
/// \c LargeCost type.
|
kpeter@808
|
312 |
///
|
kpeter@809
|
313 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost
|
kpeter@809
|
314 |
/// type, which is used for internal computations in the algorithm.
|
kpeter@809
|
315 |
/// \c Cost must be convertible to \c LargeCost.
|
kpeter@809
|
316 |
template <typename T>
|
kpeter@809
|
317 |
struct SetLargeCost
|
kpeter@809
|
318 |
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
|
kpeter@809
|
319 |
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
|
kpeter@809
|
320 |
};
|
kpeter@809
|
321 |
|
kpeter@809
|
322 |
/// @}
|
kpeter@809
|
323 |
|
kpeter@863
|
324 |
protected:
|
kpeter@863
|
325 |
|
kpeter@863
|
326 |
CostScaling() {}
|
kpeter@863
|
327 |
|
kpeter@809
|
328 |
public:
|
kpeter@809
|
329 |
|
kpeter@809
|
330 |
/// \brief Constructor.
|
kpeter@808
|
331 |
///
|
kpeter@809
|
332 |
/// The constructor of the class.
|
kpeter@809
|
333 |
///
|
kpeter@809
|
334 |
/// \param graph The digraph the algorithm runs on.
|
kpeter@809
|
335 |
CostScaling(const GR& graph) :
|
kpeter@809
|
336 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
|
kpeter@809
|
337 |
INF(std::numeric_limits<Value>::has_infinity ?
|
kpeter@809
|
338 |
std::numeric_limits<Value>::infinity() :
|
kpeter@809
|
339 |
std::numeric_limits<Value>::max())
|
kpeter@808
|
340 |
{
|
kpeter@812
|
341 |
// Check the number types
|
kpeter@809
|
342 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
|
kpeter@809
|
343 |
"The flow type of CostScaling must be signed");
|
kpeter@809
|
344 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
|
kpeter@809
|
345 |
"The cost type of CostScaling must be signed");
|
alpar@877
|
346 |
|
kpeter@830
|
347 |
// Reset data structures
|
kpeter@809
|
348 |
reset();
|
kpeter@808
|
349 |
}
|
kpeter@808
|
350 |
|
kpeter@809
|
351 |
/// \name Parameters
|
kpeter@809
|
352 |
/// The parameters of the algorithm can be specified using these
|
kpeter@809
|
353 |
/// functions.
|
kpeter@809
|
354 |
|
kpeter@809
|
355 |
/// @{
|
kpeter@809
|
356 |
|
kpeter@809
|
357 |
/// \brief Set the lower bounds on the arcs.
|
kpeter@808
|
358 |
///
|
kpeter@809
|
359 |
/// This function sets the lower bounds on the arcs.
|
kpeter@809
|
360 |
/// If it is not used before calling \ref run(), the lower bounds
|
kpeter@809
|
361 |
/// will be set to zero on all arcs.
|
kpeter@808
|
362 |
///
|
kpeter@809
|
363 |
/// \param map An arc map storing the lower bounds.
|
kpeter@809
|
364 |
/// Its \c Value type must be convertible to the \c Value type
|
kpeter@809
|
365 |
/// of the algorithm.
|
kpeter@809
|
366 |
///
|
kpeter@809
|
367 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
368 |
template <typename LowerMap>
|
kpeter@809
|
369 |
CostScaling& lowerMap(const LowerMap& map) {
|
kpeter@809
|
370 |
_have_lower = true;
|
kpeter@809
|
371 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
372 |
_lower[_arc_idf[a]] = map[a];
|
kpeter@809
|
373 |
_lower[_arc_idb[a]] = map[a];
|
kpeter@808
|
374 |
}
|
kpeter@808
|
375 |
return *this;
|
kpeter@808
|
376 |
}
|
kpeter@808
|
377 |
|
kpeter@809
|
378 |
/// \brief Set the upper bounds (capacities) on the arcs.
|
kpeter@808
|
379 |
///
|
kpeter@809
|
380 |
/// This function sets the upper bounds (capacities) on the arcs.
|
kpeter@809
|
381 |
/// If it is not used before calling \ref run(), the upper bounds
|
kpeter@809
|
382 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be
|
kpeter@812
|
383 |
/// unbounded from above).
|
kpeter@808
|
384 |
///
|
kpeter@809
|
385 |
/// \param map An arc map storing the upper bounds.
|
kpeter@809
|
386 |
/// Its \c Value type must be convertible to the \c Value type
|
kpeter@809
|
387 |
/// of the algorithm.
|
kpeter@809
|
388 |
///
|
kpeter@809
|
389 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
390 |
template<typename UpperMap>
|
kpeter@809
|
391 |
CostScaling& upperMap(const UpperMap& map) {
|
kpeter@809
|
392 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
393 |
_upper[_arc_idf[a]] = map[a];
|
kpeter@808
|
394 |
}
|
kpeter@808
|
395 |
return *this;
|
kpeter@808
|
396 |
}
|
kpeter@808
|
397 |
|
kpeter@809
|
398 |
/// \brief Set the costs of the arcs.
|
kpeter@809
|
399 |
///
|
kpeter@809
|
400 |
/// This function sets the costs of the arcs.
|
kpeter@809
|
401 |
/// If it is not used before calling \ref run(), the costs
|
kpeter@809
|
402 |
/// will be set to \c 1 on all arcs.
|
kpeter@809
|
403 |
///
|
kpeter@809
|
404 |
/// \param map An arc map storing the costs.
|
kpeter@809
|
405 |
/// Its \c Value type must be convertible to the \c Cost type
|
kpeter@809
|
406 |
/// of the algorithm.
|
kpeter@809
|
407 |
///
|
kpeter@809
|
408 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
409 |
template<typename CostMap>
|
kpeter@809
|
410 |
CostScaling& costMap(const CostMap& map) {
|
kpeter@809
|
411 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
412 |
_scost[_arc_idf[a]] = map[a];
|
kpeter@809
|
413 |
_scost[_arc_idb[a]] = -map[a];
|
kpeter@809
|
414 |
}
|
kpeter@809
|
415 |
return *this;
|
kpeter@809
|
416 |
}
|
kpeter@809
|
417 |
|
kpeter@809
|
418 |
/// \brief Set the supply values of the nodes.
|
kpeter@809
|
419 |
///
|
kpeter@809
|
420 |
/// This function sets the supply values of the nodes.
|
kpeter@809
|
421 |
/// If neither this function nor \ref stSupply() is used before
|
kpeter@809
|
422 |
/// calling \ref run(), the supply of each node will be set to zero.
|
kpeter@809
|
423 |
///
|
kpeter@809
|
424 |
/// \param map A node map storing the supply values.
|
kpeter@809
|
425 |
/// Its \c Value type must be convertible to the \c Value type
|
kpeter@809
|
426 |
/// of the algorithm.
|
kpeter@809
|
427 |
///
|
kpeter@809
|
428 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
429 |
template<typename SupplyMap>
|
kpeter@809
|
430 |
CostScaling& supplyMap(const SupplyMap& map) {
|
kpeter@809
|
431 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@809
|
432 |
_supply[_node_id[n]] = map[n];
|
kpeter@809
|
433 |
}
|
kpeter@809
|
434 |
return *this;
|
kpeter@809
|
435 |
}
|
kpeter@809
|
436 |
|
kpeter@809
|
437 |
/// \brief Set single source and target nodes and a supply value.
|
kpeter@809
|
438 |
///
|
kpeter@809
|
439 |
/// This function sets a single source node and a single target node
|
kpeter@809
|
440 |
/// and the required flow value.
|
kpeter@809
|
441 |
/// If neither this function nor \ref supplyMap() is used before
|
kpeter@809
|
442 |
/// calling \ref run(), the supply of each node will be set to zero.
|
kpeter@809
|
443 |
///
|
kpeter@809
|
444 |
/// Using this function has the same effect as using \ref supplyMap()
|
kpeter@919
|
445 |
/// with a map in which \c k is assigned to \c s, \c -k is
|
kpeter@809
|
446 |
/// assigned to \c t and all other nodes have zero supply value.
|
kpeter@809
|
447 |
///
|
kpeter@809
|
448 |
/// \param s The source node.
|
kpeter@809
|
449 |
/// \param t The target node.
|
kpeter@809
|
450 |
/// \param k The required amount of flow from node \c s to node \c t
|
kpeter@809
|
451 |
/// (i.e. the supply of \c s and the demand of \c t).
|
kpeter@809
|
452 |
///
|
kpeter@809
|
453 |
/// \return <tt>(*this)</tt>
|
kpeter@809
|
454 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) {
|
kpeter@809
|
455 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@809
|
456 |
_supply[i] = 0;
|
kpeter@809
|
457 |
}
|
kpeter@809
|
458 |
_supply[_node_id[s]] = k;
|
kpeter@809
|
459 |
_supply[_node_id[t]] = -k;
|
kpeter@809
|
460 |
return *this;
|
kpeter@809
|
461 |
}
|
alpar@877
|
462 |
|
kpeter@809
|
463 |
/// @}
|
kpeter@809
|
464 |
|
kpeter@808
|
465 |
/// \name Execution control
|
kpeter@809
|
466 |
/// The algorithm can be executed using \ref run().
|
kpeter@808
|
467 |
|
kpeter@808
|
468 |
/// @{
|
kpeter@808
|
469 |
|
kpeter@808
|
470 |
/// \brief Run the algorithm.
|
kpeter@808
|
471 |
///
|
kpeter@809
|
472 |
/// This function runs the algorithm.
|
kpeter@809
|
473 |
/// The paramters can be specified using functions \ref lowerMap(),
|
kpeter@809
|
474 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
|
kpeter@809
|
475 |
/// For example,
|
kpeter@809
|
476 |
/// \code
|
kpeter@809
|
477 |
/// CostScaling<ListDigraph> cs(graph);
|
kpeter@809
|
478 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
|
kpeter@809
|
479 |
/// .supplyMap(sup).run();
|
kpeter@809
|
480 |
/// \endcode
|
kpeter@809
|
481 |
///
|
kpeter@830
|
482 |
/// This function can be called more than once. All the given parameters
|
kpeter@830
|
483 |
/// are kept for the next call, unless \ref resetParams() or \ref reset()
|
kpeter@830
|
484 |
/// is used, thus only the modified parameters have to be set again.
|
kpeter@830
|
485 |
/// If the underlying digraph was also modified after the construction
|
kpeter@830
|
486 |
/// of the class (or the last \ref reset() call), then the \ref reset()
|
kpeter@830
|
487 |
/// function must be called.
|
kpeter@808
|
488 |
///
|
kpeter@810
|
489 |
/// \param method The internal method that will be used in the
|
kpeter@810
|
490 |
/// algorithm. For more information, see \ref Method.
|
kpeter@938
|
491 |
/// \param factor The cost scaling factor. It must be at least two.
|
kpeter@808
|
492 |
///
|
kpeter@809
|
493 |
/// \return \c INFEASIBLE if no feasible flow exists,
|
kpeter@809
|
494 |
/// \n \c OPTIMAL if the problem has optimal solution
|
kpeter@809
|
495 |
/// (i.e. it is feasible and bounded), and the algorithm has found
|
kpeter@809
|
496 |
/// optimal flow and node potentials (primal and dual solutions),
|
kpeter@809
|
497 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost
|
kpeter@809
|
498 |
/// and infinite upper bound. It means that the objective function
|
kpeter@812
|
499 |
/// is unbounded on that arc, however, note that it could actually be
|
kpeter@809
|
500 |
/// bounded over the feasible flows, but this algroithm cannot handle
|
kpeter@809
|
501 |
/// these cases.
|
kpeter@809
|
502 |
///
|
kpeter@810
|
503 |
/// \see ProblemType, Method
|
kpeter@830
|
504 |
/// \see resetParams(), reset()
|
kpeter@938
|
505 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 16) {
|
kpeter@938
|
506 |
LEMON_ASSERT(factor >= 2, "The scaling factor must be at least 2");
|
kpeter@810
|
507 |
_alpha = factor;
|
kpeter@809
|
508 |
ProblemType pt = init();
|
kpeter@809
|
509 |
if (pt != OPTIMAL) return pt;
|
kpeter@810
|
510 |
start(method);
|
kpeter@809
|
511 |
return OPTIMAL;
|
kpeter@809
|
512 |
}
|
kpeter@809
|
513 |
|
kpeter@809
|
514 |
/// \brief Reset all the parameters that have been given before.
|
kpeter@809
|
515 |
///
|
kpeter@809
|
516 |
/// This function resets all the paramaters that have been given
|
kpeter@809
|
517 |
/// before using functions \ref lowerMap(), \ref upperMap(),
|
kpeter@809
|
518 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply().
|
kpeter@809
|
519 |
///
|
kpeter@830
|
520 |
/// It is useful for multiple \ref run() calls. Basically, all the given
|
kpeter@830
|
521 |
/// parameters are kept for the next \ref run() call, unless
|
kpeter@830
|
522 |
/// \ref resetParams() or \ref reset() is used.
|
kpeter@830
|
523 |
/// If the underlying digraph was also modified after the construction
|
kpeter@830
|
524 |
/// of the class or the last \ref reset() call, then the \ref reset()
|
kpeter@830
|
525 |
/// function must be used, otherwise \ref resetParams() is sufficient.
|
kpeter@809
|
526 |
///
|
kpeter@809
|
527 |
/// For example,
|
kpeter@809
|
528 |
/// \code
|
kpeter@809
|
529 |
/// CostScaling<ListDigraph> cs(graph);
|
kpeter@809
|
530 |
///
|
kpeter@809
|
531 |
/// // First run
|
kpeter@809
|
532 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost)
|
kpeter@809
|
533 |
/// .supplyMap(sup).run();
|
kpeter@809
|
534 |
///
|
kpeter@830
|
535 |
/// // Run again with modified cost map (resetParams() is not called,
|
kpeter@809
|
536 |
/// // so only the cost map have to be set again)
|
kpeter@809
|
537 |
/// cost[e] += 100;
|
kpeter@809
|
538 |
/// cs.costMap(cost).run();
|
kpeter@809
|
539 |
///
|
kpeter@830
|
540 |
/// // Run again from scratch using resetParams()
|
kpeter@809
|
541 |
/// // (the lower bounds will be set to zero on all arcs)
|
kpeter@830
|
542 |
/// cs.resetParams();
|
kpeter@809
|
543 |
/// cs.upperMap(capacity).costMap(cost)
|
kpeter@809
|
544 |
/// .supplyMap(sup).run();
|
kpeter@809
|
545 |
/// \endcode
|
kpeter@809
|
546 |
///
|
kpeter@809
|
547 |
/// \return <tt>(*this)</tt>
|
kpeter@830
|
548 |
///
|
kpeter@830
|
549 |
/// \see reset(), run()
|
kpeter@830
|
550 |
CostScaling& resetParams() {
|
kpeter@809
|
551 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@809
|
552 |
_supply[i] = 0;
|
kpeter@808
|
553 |
}
|
kpeter@809
|
554 |
int limit = _first_out[_root];
|
kpeter@809
|
555 |
for (int j = 0; j != limit; ++j) {
|
kpeter@809
|
556 |
_lower[j] = 0;
|
kpeter@809
|
557 |
_upper[j] = INF;
|
kpeter@809
|
558 |
_scost[j] = _forward[j] ? 1 : -1;
|
kpeter@809
|
559 |
}
|
kpeter@809
|
560 |
for (int j = limit; j != _res_arc_num; ++j) {
|
kpeter@809
|
561 |
_lower[j] = 0;
|
kpeter@809
|
562 |
_upper[j] = INF;
|
kpeter@809
|
563 |
_scost[j] = 0;
|
kpeter@809
|
564 |
_scost[_reverse[j]] = 0;
|
alpar@877
|
565 |
}
|
kpeter@809
|
566 |
_have_lower = false;
|
kpeter@809
|
567 |
return *this;
|
kpeter@808
|
568 |
}
|
kpeter@808
|
569 |
|
kpeter@934
|
570 |
/// \brief Reset the internal data structures and all the parameters
|
kpeter@934
|
571 |
/// that have been given before.
|
kpeter@830
|
572 |
///
|
kpeter@934
|
573 |
/// This function resets the internal data structures and all the
|
kpeter@934
|
574 |
/// paramaters that have been given before using functions \ref lowerMap(),
|
kpeter@934
|
575 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
|
kpeter@830
|
576 |
///
|
kpeter@934
|
577 |
/// It is useful for multiple \ref run() calls. By default, all the given
|
kpeter@934
|
578 |
/// parameters are kept for the next \ref run() call, unless
|
kpeter@934
|
579 |
/// \ref resetParams() or \ref reset() is used.
|
kpeter@934
|
580 |
/// If the underlying digraph was also modified after the construction
|
kpeter@934
|
581 |
/// of the class or the last \ref reset() call, then the \ref reset()
|
kpeter@934
|
582 |
/// function must be used, otherwise \ref resetParams() is sufficient.
|
kpeter@934
|
583 |
///
|
kpeter@934
|
584 |
/// See \ref resetParams() for examples.
|
kpeter@934
|
585 |
///
|
kpeter@830
|
586 |
/// \return <tt>(*this)</tt>
|
kpeter@934
|
587 |
///
|
kpeter@934
|
588 |
/// \see resetParams(), run()
|
kpeter@830
|
589 |
CostScaling& reset() {
|
kpeter@830
|
590 |
// Resize vectors
|
kpeter@830
|
591 |
_node_num = countNodes(_graph);
|
kpeter@830
|
592 |
_arc_num = countArcs(_graph);
|
kpeter@830
|
593 |
_res_node_num = _node_num + 1;
|
kpeter@830
|
594 |
_res_arc_num = 2 * (_arc_num + _node_num);
|
kpeter@830
|
595 |
_root = _node_num;
|
kpeter@830
|
596 |
|
kpeter@830
|
597 |
_first_out.resize(_res_node_num + 1);
|
kpeter@830
|
598 |
_forward.resize(_res_arc_num);
|
kpeter@830
|
599 |
_source.resize(_res_arc_num);
|
kpeter@830
|
600 |
_target.resize(_res_arc_num);
|
kpeter@830
|
601 |
_reverse.resize(_res_arc_num);
|
kpeter@830
|
602 |
|
kpeter@830
|
603 |
_lower.resize(_res_arc_num);
|
kpeter@830
|
604 |
_upper.resize(_res_arc_num);
|
kpeter@830
|
605 |
_scost.resize(_res_arc_num);
|
kpeter@830
|
606 |
_supply.resize(_res_node_num);
|
alpar@877
|
607 |
|
kpeter@830
|
608 |
_res_cap.resize(_res_arc_num);
|
kpeter@830
|
609 |
_cost.resize(_res_arc_num);
|
kpeter@830
|
610 |
_pi.resize(_res_node_num);
|
kpeter@830
|
611 |
_excess.resize(_res_node_num);
|
kpeter@830
|
612 |
_next_out.resize(_res_node_num);
|
kpeter@830
|
613 |
|
kpeter@830
|
614 |
// Copy the graph
|
kpeter@830
|
615 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num;
|
kpeter@830
|
616 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
kpeter@830
|
617 |
_node_id[n] = i;
|
kpeter@830
|
618 |
}
|
kpeter@830
|
619 |
i = 0;
|
kpeter@830
|
620 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
kpeter@830
|
621 |
_first_out[i] = j;
|
kpeter@830
|
622 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
kpeter@830
|
623 |
_arc_idf[a] = j;
|
kpeter@830
|
624 |
_forward[j] = true;
|
kpeter@830
|
625 |
_source[j] = i;
|
kpeter@830
|
626 |
_target[j] = _node_id[_graph.runningNode(a)];
|
kpeter@830
|
627 |
}
|
kpeter@830
|
628 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
|
kpeter@830
|
629 |
_arc_idb[a] = j;
|
kpeter@830
|
630 |
_forward[j] = false;
|
kpeter@830
|
631 |
_source[j] = i;
|
kpeter@830
|
632 |
_target[j] = _node_id[_graph.runningNode(a)];
|
kpeter@830
|
633 |
}
|
kpeter@830
|
634 |
_forward[j] = false;
|
kpeter@830
|
635 |
_source[j] = i;
|
kpeter@830
|
636 |
_target[j] = _root;
|
kpeter@830
|
637 |
_reverse[j] = k;
|
kpeter@830
|
638 |
_forward[k] = true;
|
kpeter@830
|
639 |
_source[k] = _root;
|
kpeter@830
|
640 |
_target[k] = i;
|
kpeter@830
|
641 |
_reverse[k] = j;
|
kpeter@830
|
642 |
++j; ++k;
|
kpeter@830
|
643 |
}
|
kpeter@830
|
644 |
_first_out[i] = j;
|
kpeter@830
|
645 |
_first_out[_res_node_num] = k;
|
kpeter@830
|
646 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@830
|
647 |
int fi = _arc_idf[a];
|
kpeter@830
|
648 |
int bi = _arc_idb[a];
|
kpeter@830
|
649 |
_reverse[fi] = bi;
|
kpeter@830
|
650 |
_reverse[bi] = fi;
|
kpeter@830
|
651 |
}
|
alpar@877
|
652 |
|
kpeter@830
|
653 |
// Reset parameters
|
kpeter@830
|
654 |
resetParams();
|
kpeter@830
|
655 |
return *this;
|
kpeter@830
|
656 |
}
|
kpeter@830
|
657 |
|
kpeter@808
|
658 |
/// @}
|
kpeter@808
|
659 |
|
kpeter@808
|
660 |
/// \name Query Functions
|
kpeter@809
|
661 |
/// The results of the algorithm can be obtained using these
|
kpeter@808
|
662 |
/// functions.\n
|
kpeter@809
|
663 |
/// The \ref run() function must be called before using them.
|
kpeter@808
|
664 |
|
kpeter@808
|
665 |
/// @{
|
kpeter@808
|
666 |
|
kpeter@809
|
667 |
/// \brief Return the total cost of the found flow.
|
kpeter@808
|
668 |
///
|
kpeter@809
|
669 |
/// This function returns the total cost of the found flow.
|
kpeter@809
|
670 |
/// Its complexity is O(e).
|
kpeter@809
|
671 |
///
|
kpeter@809
|
672 |
/// \note The return type of the function can be specified as a
|
kpeter@809
|
673 |
/// template parameter. For example,
|
kpeter@809
|
674 |
/// \code
|
kpeter@809
|
675 |
/// cs.totalCost<double>();
|
kpeter@809
|
676 |
/// \endcode
|
kpeter@809
|
677 |
/// It is useful if the total cost cannot be stored in the \c Cost
|
kpeter@809
|
678 |
/// type of the algorithm, which is the default return type of the
|
kpeter@809
|
679 |
/// function.
|
kpeter@808
|
680 |
///
|
kpeter@808
|
681 |
/// \pre \ref run() must be called before using this function.
|
kpeter@809
|
682 |
template <typename Number>
|
kpeter@809
|
683 |
Number totalCost() const {
|
kpeter@809
|
684 |
Number c = 0;
|
kpeter@809
|
685 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
686 |
int i = _arc_idb[a];
|
kpeter@809
|
687 |
c += static_cast<Number>(_res_cap[i]) *
|
kpeter@809
|
688 |
(-static_cast<Number>(_scost[i]));
|
kpeter@809
|
689 |
}
|
kpeter@809
|
690 |
return c;
|
kpeter@808
|
691 |
}
|
kpeter@808
|
692 |
|
kpeter@809
|
693 |
#ifndef DOXYGEN
|
kpeter@809
|
694 |
Cost totalCost() const {
|
kpeter@809
|
695 |
return totalCost<Cost>();
|
kpeter@808
|
696 |
}
|
kpeter@809
|
697 |
#endif
|
kpeter@808
|
698 |
|
kpeter@808
|
699 |
/// \brief Return the flow on the given arc.
|
kpeter@808
|
700 |
///
|
kpeter@809
|
701 |
/// This function returns the flow on the given arc.
|
kpeter@808
|
702 |
///
|
kpeter@808
|
703 |
/// \pre \ref run() must be called before using this function.
|
kpeter@809
|
704 |
Value flow(const Arc& a) const {
|
kpeter@809
|
705 |
return _res_cap[_arc_idb[a]];
|
kpeter@808
|
706 |
}
|
kpeter@808
|
707 |
|
kpeter@1003
|
708 |
/// \brief Copy the flow values (the primal solution) into the
|
kpeter@1003
|
709 |
/// given map.
|
kpeter@808
|
710 |
///
|
kpeter@809
|
711 |
/// This function copies the flow value on each arc into the given
|
kpeter@809
|
712 |
/// map. The \c Value type of the algorithm must be convertible to
|
kpeter@809
|
713 |
/// the \c Value type of the map.
|
kpeter@808
|
714 |
///
|
kpeter@808
|
715 |
/// \pre \ref run() must be called before using this function.
|
kpeter@809
|
716 |
template <typename FlowMap>
|
kpeter@809
|
717 |
void flowMap(FlowMap &map) const {
|
kpeter@809
|
718 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
719 |
map.set(a, _res_cap[_arc_idb[a]]);
|
kpeter@809
|
720 |
}
|
kpeter@808
|
721 |
}
|
kpeter@808
|
722 |
|
kpeter@809
|
723 |
/// \brief Return the potential (dual value) of the given node.
|
kpeter@808
|
724 |
///
|
kpeter@809
|
725 |
/// This function returns the potential (dual value) of the
|
kpeter@809
|
726 |
/// given node.
|
kpeter@808
|
727 |
///
|
kpeter@808
|
728 |
/// \pre \ref run() must be called before using this function.
|
kpeter@809
|
729 |
Cost potential(const Node& n) const {
|
kpeter@809
|
730 |
return static_cast<Cost>(_pi[_node_id[n]]);
|
kpeter@809
|
731 |
}
|
kpeter@809
|
732 |
|
kpeter@1003
|
733 |
/// \brief Copy the potential values (the dual solution) into the
|
kpeter@1003
|
734 |
/// given map.
|
kpeter@809
|
735 |
///
|
kpeter@809
|
736 |
/// This function copies the potential (dual value) of each node
|
kpeter@809
|
737 |
/// into the given map.
|
kpeter@809
|
738 |
/// The \c Cost type of the algorithm must be convertible to the
|
kpeter@809
|
739 |
/// \c Value type of the map.
|
kpeter@809
|
740 |
///
|
kpeter@809
|
741 |
/// \pre \ref run() must be called before using this function.
|
kpeter@809
|
742 |
template <typename PotentialMap>
|
kpeter@809
|
743 |
void potentialMap(PotentialMap &map) const {
|
kpeter@809
|
744 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@809
|
745 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
|
kpeter@809
|
746 |
}
|
kpeter@808
|
747 |
}
|
kpeter@808
|
748 |
|
kpeter@808
|
749 |
/// @}
|
kpeter@808
|
750 |
|
kpeter@808
|
751 |
private:
|
kpeter@808
|
752 |
|
kpeter@809
|
753 |
// Initialize the algorithm
|
kpeter@809
|
754 |
ProblemType init() {
|
kpeter@821
|
755 |
if (_res_node_num <= 1) return INFEASIBLE;
|
kpeter@809
|
756 |
|
kpeter@809
|
757 |
// Check the sum of supply values
|
kpeter@809
|
758 |
_sum_supply = 0;
|
kpeter@809
|
759 |
for (int i = 0; i != _root; ++i) {
|
kpeter@809
|
760 |
_sum_supply += _supply[i];
|
kpeter@808
|
761 |
}
|
kpeter@809
|
762 |
if (_sum_supply > 0) return INFEASIBLE;
|
alpar@877
|
763 |
|
kpeter@809
|
764 |
|
kpeter@809
|
765 |
// Initialize vectors
|
kpeter@809
|
766 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@809
|
767 |
_pi[i] = 0;
|
kpeter@809
|
768 |
_excess[i] = _supply[i];
|
kpeter@809
|
769 |
}
|
alpar@877
|
770 |
|
kpeter@809
|
771 |
// Remove infinite upper bounds and check negative arcs
|
kpeter@809
|
772 |
const Value MAX = std::numeric_limits<Value>::max();
|
kpeter@809
|
773 |
int last_out;
|
kpeter@809
|
774 |
if (_have_lower) {
|
kpeter@809
|
775 |
for (int i = 0; i != _root; ++i) {
|
kpeter@809
|
776 |
last_out = _first_out[i+1];
|
kpeter@809
|
777 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
kpeter@809
|
778 |
if (_forward[j]) {
|
kpeter@809
|
779 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
|
kpeter@809
|
780 |
if (c >= MAX) return UNBOUNDED;
|
kpeter@809
|
781 |
_excess[i] -= c;
|
kpeter@809
|
782 |
_excess[_target[j]] += c;
|
kpeter@809
|
783 |
}
|
kpeter@809
|
784 |
}
|
kpeter@809
|
785 |
}
|
kpeter@809
|
786 |
} else {
|
kpeter@809
|
787 |
for (int i = 0; i != _root; ++i) {
|
kpeter@809
|
788 |
last_out = _first_out[i+1];
|
kpeter@809
|
789 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
kpeter@809
|
790 |
if (_forward[j] && _scost[j] < 0) {
|
kpeter@809
|
791 |
Value c = _upper[j];
|
kpeter@809
|
792 |
if (c >= MAX) return UNBOUNDED;
|
kpeter@809
|
793 |
_excess[i] -= c;
|
kpeter@809
|
794 |
_excess[_target[j]] += c;
|
kpeter@809
|
795 |
}
|
kpeter@809
|
796 |
}
|
kpeter@809
|
797 |
}
|
kpeter@809
|
798 |
}
|
kpeter@809
|
799 |
Value ex, max_cap = 0;
|
kpeter@809
|
800 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@809
|
801 |
ex = _excess[i];
|
kpeter@809
|
802 |
_excess[i] = 0;
|
kpeter@809
|
803 |
if (ex < 0) max_cap -= ex;
|
kpeter@809
|
804 |
}
|
kpeter@809
|
805 |
for (int j = 0; j != _res_arc_num; ++j) {
|
kpeter@809
|
806 |
if (_upper[j] >= MAX) _upper[j] = max_cap;
|
kpeter@808
|
807 |
}
|
kpeter@808
|
808 |
|
kpeter@809
|
809 |
// Initialize the large cost vector and the epsilon parameter
|
kpeter@809
|
810 |
_epsilon = 0;
|
kpeter@809
|
811 |
LargeCost lc;
|
kpeter@809
|
812 |
for (int i = 0; i != _root; ++i) {
|
kpeter@809
|
813 |
last_out = _first_out[i+1];
|
kpeter@809
|
814 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
kpeter@809
|
815 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
|
kpeter@809
|
816 |
_cost[j] = lc;
|
kpeter@809
|
817 |
if (lc > _epsilon) _epsilon = lc;
|
kpeter@809
|
818 |
}
|
kpeter@809
|
819 |
}
|
kpeter@809
|
820 |
_epsilon /= _alpha;
|
kpeter@808
|
821 |
|
kpeter@809
|
822 |
// Initialize maps for Circulation and remove non-zero lower bounds
|
kpeter@809
|
823 |
ConstMap<Arc, Value> low(0);
|
kpeter@809
|
824 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap;
|
kpeter@809
|
825 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
|
kpeter@809
|
826 |
ValueArcMap cap(_graph), flow(_graph);
|
kpeter@809
|
827 |
ValueNodeMap sup(_graph);
|
kpeter@809
|
828 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@809
|
829 |
sup[n] = _supply[_node_id[n]];
|
kpeter@808
|
830 |
}
|
kpeter@809
|
831 |
if (_have_lower) {
|
kpeter@809
|
832 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
833 |
int j = _arc_idf[a];
|
kpeter@809
|
834 |
Value c = _lower[j];
|
kpeter@809
|
835 |
cap[a] = _upper[j] - c;
|
kpeter@809
|
836 |
sup[_graph.source(a)] -= c;
|
kpeter@809
|
837 |
sup[_graph.target(a)] += c;
|
kpeter@809
|
838 |
}
|
kpeter@809
|
839 |
} else {
|
kpeter@809
|
840 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
841 |
cap[a] = _upper[_arc_idf[a]];
|
kpeter@809
|
842 |
}
|
kpeter@809
|
843 |
}
|
kpeter@808
|
844 |
|
kpeter@839
|
845 |
_sup_node_num = 0;
|
kpeter@839
|
846 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@839
|
847 |
if (sup[n] > 0) ++_sup_node_num;
|
kpeter@839
|
848 |
}
|
kpeter@839
|
849 |
|
kpeter@808
|
850 |
// Find a feasible flow using Circulation
|
kpeter@809
|
851 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
|
kpeter@809
|
852 |
circ(_graph, low, cap, sup);
|
kpeter@809
|
853 |
if (!circ.flowMap(flow).run()) return INFEASIBLE;
|
kpeter@809
|
854 |
|
kpeter@809
|
855 |
// Set residual capacities and handle GEQ supply type
|
kpeter@809
|
856 |
if (_sum_supply < 0) {
|
kpeter@809
|
857 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
858 |
Value fa = flow[a];
|
kpeter@809
|
859 |
_res_cap[_arc_idf[a]] = cap[a] - fa;
|
kpeter@809
|
860 |
_res_cap[_arc_idb[a]] = fa;
|
kpeter@809
|
861 |
sup[_graph.source(a)] -= fa;
|
kpeter@809
|
862 |
sup[_graph.target(a)] += fa;
|
kpeter@809
|
863 |
}
|
kpeter@809
|
864 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
kpeter@809
|
865 |
_excess[_node_id[n]] = sup[n];
|
kpeter@809
|
866 |
}
|
kpeter@809
|
867 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
kpeter@809
|
868 |
int u = _target[a];
|
kpeter@809
|
869 |
int ra = _reverse[a];
|
kpeter@809
|
870 |
_res_cap[a] = -_sum_supply + 1;
|
kpeter@809
|
871 |
_res_cap[ra] = -_excess[u];
|
kpeter@809
|
872 |
_cost[a] = 0;
|
kpeter@809
|
873 |
_cost[ra] = 0;
|
kpeter@809
|
874 |
_excess[u] = 0;
|
kpeter@809
|
875 |
}
|
kpeter@809
|
876 |
} else {
|
kpeter@809
|
877 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
kpeter@809
|
878 |
Value fa = flow[a];
|
kpeter@809
|
879 |
_res_cap[_arc_idf[a]] = cap[a] - fa;
|
kpeter@809
|
880 |
_res_cap[_arc_idb[a]] = fa;
|
kpeter@809
|
881 |
}
|
kpeter@809
|
882 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
|
kpeter@809
|
883 |
int ra = _reverse[a];
|
kpeter@839
|
884 |
_res_cap[a] = 0;
|
kpeter@809
|
885 |
_res_cap[ra] = 0;
|
kpeter@809
|
886 |
_cost[a] = 0;
|
kpeter@809
|
887 |
_cost[ra] = 0;
|
kpeter@809
|
888 |
}
|
kpeter@809
|
889 |
}
|
alpar@877
|
890 |
|
alpar@877
|
891 |
// Initialize data structures for buckets
|
kpeter@839
|
892 |
_max_rank = _alpha * _res_node_num;
|
kpeter@839
|
893 |
_buckets.resize(_max_rank);
|
kpeter@839
|
894 |
_bucket_next.resize(_res_node_num + 1);
|
kpeter@839
|
895 |
_bucket_prev.resize(_res_node_num + 1);
|
kpeter@839
|
896 |
_rank.resize(_res_node_num + 1);
|
alpar@877
|
897 |
|
kpeter@934
|
898 |
return OPTIMAL;
|
kpeter@934
|
899 |
}
|
kpeter@934
|
900 |
|
kpeter@934
|
901 |
// Execute the algorithm and transform the results
|
kpeter@934
|
902 |
void start(Method method) {
|
kpeter@934
|
903 |
const int MAX_PARTIAL_PATH_LENGTH = 4;
|
kpeter@934
|
904 |
|
kpeter@810
|
905 |
switch (method) {
|
kpeter@810
|
906 |
case PUSH:
|
kpeter@810
|
907 |
startPush();
|
kpeter@810
|
908 |
break;
|
kpeter@810
|
909 |
case AUGMENT:
|
kpeter@931
|
910 |
startAugment(_res_node_num - 1);
|
kpeter@810
|
911 |
break;
|
kpeter@810
|
912 |
case PARTIAL_AUGMENT:
|
kpeter@934
|
913 |
startAugment(MAX_PARTIAL_PATH_LENGTH);
|
kpeter@810
|
914 |
break;
|
kpeter@809
|
915 |
}
|
kpeter@809
|
916 |
|
kpeter@937
|
917 |
// Compute node potentials (dual solution)
|
kpeter@937
|
918 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@937
|
919 |
_pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
|
kpeter@937
|
920 |
}
|
kpeter@937
|
921 |
bool optimal = true;
|
kpeter@937
|
922 |
for (int i = 0; optimal && i != _res_node_num; ++i) {
|
kpeter@937
|
923 |
LargeCost pi_i = _pi[i];
|
kpeter@937
|
924 |
int last_out = _first_out[i+1];
|
kpeter@937
|
925 |
for (int j = _first_out[i]; j != last_out; ++j) {
|
kpeter@937
|
926 |
if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
|
kpeter@937
|
927 |
optimal = false;
|
kpeter@937
|
928 |
break;
|
kpeter@937
|
929 |
}
|
kpeter@809
|
930 |
}
|
kpeter@809
|
931 |
}
|
kpeter@809
|
932 |
|
kpeter@937
|
933 |
if (!optimal) {
|
kpeter@937
|
934 |
// Compute node potentials for the original costs with BellmanFord
|
kpeter@937
|
935 |
// (if it is necessary)
|
kpeter@937
|
936 |
typedef std::pair<int, int> IntPair;
|
kpeter@937
|
937 |
StaticDigraph sgr;
|
kpeter@937
|
938 |
std::vector<IntPair> arc_vec;
|
kpeter@937
|
939 |
std::vector<LargeCost> cost_vec;
|
kpeter@937
|
940 |
LargeCostArcMap cost_map(cost_vec);
|
kpeter@937
|
941 |
|
kpeter@937
|
942 |
arc_vec.clear();
|
kpeter@937
|
943 |
cost_vec.clear();
|
kpeter@937
|
944 |
for (int j = 0; j != _res_arc_num; ++j) {
|
kpeter@937
|
945 |
if (_res_cap[j] > 0) {
|
kpeter@937
|
946 |
int u = _source[j], v = _target[j];
|
kpeter@937
|
947 |
arc_vec.push_back(IntPair(u, v));
|
kpeter@937
|
948 |
cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
|
kpeter@937
|
949 |
}
|
kpeter@937
|
950 |
}
|
kpeter@937
|
951 |
sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());
|
kpeter@937
|
952 |
|
kpeter@937
|
953 |
typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
|
kpeter@937
|
954 |
bf(sgr, cost_map);
|
kpeter@937
|
955 |
bf.init(0);
|
kpeter@937
|
956 |
bf.start();
|
kpeter@937
|
957 |
|
kpeter@937
|
958 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@937
|
959 |
_pi[i] += bf.dist(sgr.node(i));
|
kpeter@937
|
960 |
}
|
kpeter@937
|
961 |
}
|
kpeter@937
|
962 |
|
kpeter@937
|
963 |
// Shift potentials to meet the requirements of the GEQ type
|
kpeter@937
|
964 |
// optimality conditions
|
kpeter@937
|
965 |
LargeCost max_pot = _pi[_root];
|
kpeter@937
|
966 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@937
|
967 |
if (_pi[i] > max_pot) max_pot = _pi[i];
|
kpeter@937
|
968 |
}
|
kpeter@937
|
969 |
if (max_pot != 0) {
|
kpeter@937
|
970 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@937
|
971 |
_pi[i] -= max_pot;
|
kpeter@937
|
972 |
}
|
kpeter@937
|
973 |
}
|
kpeter@809
|
974 |
|
kpeter@809
|
975 |
// Handle non-zero lower bounds
|
kpeter@809
|
976 |
if (_have_lower) {
|
kpeter@809
|
977 |
int limit = _first_out[_root];
|
kpeter@809
|
978 |
for (int j = 0; j != limit; ++j) {
|
kpeter@809
|
979 |
if (!_forward[j]) _res_cap[j] += _lower[j];
|
kpeter@809
|
980 |
}
|
kpeter@809
|
981 |
}
|
kpeter@808
|
982 |
}
|
alpar@877
|
983 |
|
kpeter@839
|
984 |
// Initialize a cost scaling phase
|
kpeter@839
|
985 |
void initPhase() {
|
kpeter@839
|
986 |
// Saturate arcs not satisfying the optimality condition
|
kpeter@839
|
987 |
for (int u = 0; u != _res_node_num; ++u) {
|
kpeter@839
|
988 |
int last_out = _first_out[u+1];
|
kpeter@839
|
989 |
LargeCost pi_u = _pi[u];
|
kpeter@839
|
990 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
kpeter@934
|
991 |
Value delta = _res_cap[a];
|
kpeter@934
|
992 |
if (delta > 0) {
|
kpeter@934
|
993 |
int v = _target[a];
|
kpeter@934
|
994 |
if (_cost[a] + pi_u - _pi[v] < 0) {
|
kpeter@934
|
995 |
_excess[u] -= delta;
|
kpeter@934
|
996 |
_excess[v] += delta;
|
kpeter@934
|
997 |
_res_cap[a] = 0;
|
kpeter@934
|
998 |
_res_cap[_reverse[a]] += delta;
|
kpeter@934
|
999 |
}
|
kpeter@839
|
1000 |
}
|
kpeter@839
|
1001 |
}
|
kpeter@839
|
1002 |
}
|
alpar@877
|
1003 |
|
kpeter@839
|
1004 |
// Find active nodes (i.e. nodes with positive excess)
|
kpeter@839
|
1005 |
for (int u = 0; u != _res_node_num; ++u) {
|
kpeter@839
|
1006 |
if (_excess[u] > 0) _active_nodes.push_back(u);
|
kpeter@839
|
1007 |
}
|
kpeter@839
|
1008 |
|
kpeter@839
|
1009 |
// Initialize the next arcs
|
kpeter@839
|
1010 |
for (int u = 0; u != _res_node_num; ++u) {
|
kpeter@839
|
1011 |
_next_out[u] = _first_out[u];
|
kpeter@839
|
1012 |
}
|
kpeter@839
|
1013 |
}
|
alpar@877
|
1014 |
|
kpeter@936
|
1015 |
// Price (potential) refinement heuristic
|
kpeter@936
|
1016 |
bool priceRefinement() {
|
kpeter@839
|
1017 |
|
kpeter@936
|
1018 |
// Stack for stroing the topological order
|
kpeter@936
|
1019 |
IntVector stack(_res_node_num);
|
kpeter@936
|
1020 |
int stack_top;
|
kpeter@936
|
1021 |
|
kpeter@936
|
1022 |
// Perform phases
|
kpeter@936
|
1023 |
while (topologicalSort(stack, stack_top)) {
|
kpeter@936
|
1024 |
|
kpeter@936
|
1025 |
// Compute node ranks in the acyclic admissible network and
|
kpeter@936
|
1026 |
// store the nodes in buckets
|
kpeter@936
|
1027 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@936
|
1028 |
_rank[i] = 0;
|
kpeter@839
|
1029 |
}
|
kpeter@936
|
1030 |
const int bucket_end = _root + 1;
|
kpeter@936
|
1031 |
for (int r = 0; r != _max_rank; ++r) {
|
kpeter@936
|
1032 |
_buckets[r] = bucket_end;
|
kpeter@936
|
1033 |
}
|
kpeter@936
|
1034 |
int top_rank = 0;
|
kpeter@936
|
1035 |
for ( ; stack_top >= 0; --stack_top) {
|
kpeter@936
|
1036 |
int u = stack[stack_top], v;
|
kpeter@936
|
1037 |
int rank_u = _rank[u];
|
kpeter@936
|
1038 |
|
kpeter@936
|
1039 |
LargeCost rc, pi_u = _pi[u];
|
kpeter@936
|
1040 |
int last_out = _first_out[u+1];
|
kpeter@936
|
1041 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
kpeter@936
|
1042 |
if (_res_cap[a] > 0) {
|
kpeter@936
|
1043 |
v = _target[a];
|
kpeter@936
|
1044 |
rc = _cost[a] + pi_u - _pi[v];
|
kpeter@936
|
1045 |
if (rc < 0) {
|
kpeter@936
|
1046 |
LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
|
kpeter@936
|
1047 |
if (nrc < LargeCost(_max_rank)) {
|
kpeter@936
|
1048 |
int new_rank_v = rank_u + static_cast<int>(nrc);
|
kpeter@936
|
1049 |
if (new_rank_v > _rank[v]) {
|
kpeter@936
|
1050 |
_rank[v] = new_rank_v;
|
kpeter@936
|
1051 |
}
|
kpeter@936
|
1052 |
}
|
kpeter@936
|
1053 |
}
|
kpeter@936
|
1054 |
}
|
kpeter@936
|
1055 |
}
|
kpeter@936
|
1056 |
|
kpeter@936
|
1057 |
if (rank_u > 0) {
|
kpeter@936
|
1058 |
top_rank = std::max(top_rank, rank_u);
|
kpeter@936
|
1059 |
int bfirst = _buckets[rank_u];
|
kpeter@936
|
1060 |
_bucket_next[u] = bfirst;
|
kpeter@936
|
1061 |
_bucket_prev[bfirst] = u;
|
kpeter@936
|
1062 |
_buckets[rank_u] = u;
|
kpeter@936
|
1063 |
}
|
kpeter@936
|
1064 |
}
|
kpeter@936
|
1065 |
|
kpeter@936
|
1066 |
// Check if the current flow is epsilon-optimal
|
kpeter@936
|
1067 |
if (top_rank == 0) {
|
kpeter@936
|
1068 |
return true;
|
kpeter@936
|
1069 |
}
|
kpeter@936
|
1070 |
|
kpeter@936
|
1071 |
// Process buckets in top-down order
|
kpeter@936
|
1072 |
for (int rank = top_rank; rank > 0; --rank) {
|
kpeter@936
|
1073 |
while (_buckets[rank] != bucket_end) {
|
kpeter@936
|
1074 |
// Remove the first node from the current bucket
|
kpeter@936
|
1075 |
int u = _buckets[rank];
|
kpeter@936
|
1076 |
_buckets[rank] = _bucket_next[u];
|
kpeter@936
|
1077 |
|
kpeter@936
|
1078 |
// Search the outgoing arcs of u
|
kpeter@936
|
1079 |
LargeCost rc, pi_u = _pi[u];
|
kpeter@936
|
1080 |
int last_out = _first_out[u+1];
|
kpeter@936
|
1081 |
int v, old_rank_v, new_rank_v;
|
kpeter@936
|
1082 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
kpeter@936
|
1083 |
if (_res_cap[a] > 0) {
|
kpeter@936
|
1084 |
v = _target[a];
|
kpeter@936
|
1085 |
old_rank_v = _rank[v];
|
kpeter@936
|
1086 |
|
kpeter@936
|
1087 |
if (old_rank_v < rank) {
|
kpeter@936
|
1088 |
|
kpeter@936
|
1089 |
// Compute the new rank of node v
|
kpeter@936
|
1090 |
rc = _cost[a] + pi_u - _pi[v];
|
kpeter@936
|
1091 |
if (rc < 0) {
|
kpeter@936
|
1092 |
new_rank_v = rank;
|
kpeter@936
|
1093 |
} else {
|
kpeter@936
|
1094 |
LargeCost nrc = rc / _epsilon;
|
kpeter@936
|
1095 |
new_rank_v = 0;
|
kpeter@936
|
1096 |
if (nrc < LargeCost(_max_rank)) {
|
kpeter@936
|
1097 |
new_rank_v = rank - 1 - static_cast<int>(nrc);
|
kpeter@936
|
1098 |
}
|
kpeter@936
|
1099 |
}
|
kpeter@936
|
1100 |
|
kpeter@936
|
1101 |
// Change the rank of node v
|
kpeter@936
|
1102 |
if (new_rank_v > old_rank_v) {
|
kpeter@936
|
1103 |
_rank[v] = new_rank_v;
|
kpeter@936
|
1104 |
|
kpeter@936
|
1105 |
// Remove v from its old bucket
|
kpeter@936
|
1106 |
if (old_rank_v > 0) {
|
kpeter@936
|
1107 |
if (_buckets[old_rank_v] == v) {
|
kpeter@936
|
1108 |
_buckets[old_rank_v] = _bucket_next[v];
|
kpeter@936
|
1109 |
} else {
|
kpeter@936
|
1110 |
int pv = _bucket_prev[v], nv = _bucket_next[v];
|
kpeter@936
|
1111 |
_bucket_next[pv] = nv;
|
kpeter@936
|
1112 |
_bucket_prev[nv] = pv;
|
kpeter@936
|
1113 |
}
|
kpeter@936
|
1114 |
}
|
kpeter@936
|
1115 |
|
kpeter@936
|
1116 |
// Insert v into its new bucket
|
kpeter@936
|
1117 |
int nv = _buckets[new_rank_v];
|
kpeter@936
|
1118 |
_bucket_next[v] = nv;
|
kpeter@936
|
1119 |
_bucket_prev[nv] = v;
|
kpeter@936
|
1120 |
_buckets[new_rank_v] = v;
|
kpeter@936
|
1121 |
}
|
kpeter@936
|
1122 |
}
|
kpeter@936
|
1123 |
}
|
kpeter@936
|
1124 |
}
|
kpeter@936
|
1125 |
|
kpeter@936
|
1126 |
// Refine potential of node u
|
kpeter@936
|
1127 |
_pi[u] -= rank * _epsilon;
|
kpeter@936
|
1128 |
}
|
kpeter@936
|
1129 |
}
|
kpeter@936
|
1130 |
|
kpeter@839
|
1131 |
}
|
kpeter@839
|
1132 |
|
kpeter@936
|
1133 |
return false;
|
kpeter@936
|
1134 |
}
|
kpeter@936
|
1135 |
|
kpeter@936
|
1136 |
// Find and cancel cycles in the admissible network and
|
kpeter@936
|
1137 |
// determine topological order using DFS
|
kpeter@936
|
1138 |
bool topologicalSort(IntVector &stack, int &stack_top) {
|
kpeter@936
|
1139 |
const int MAX_CYCLE_CANCEL = 1;
|
kpeter@936
|
1140 |
|
kpeter@936
|
1141 |
BoolVector reached(_res_node_num, false);
|
kpeter@936
|
1142 |
BoolVector processed(_res_node_num, false);
|
kpeter@936
|
1143 |
IntVector pred(_res_node_num);
|
kpeter@936
|
1144 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@936
|
1145 |
_next_out[i] = _first_out[i];
|
kpeter@839
|
1146 |
}
|
kpeter@936
|
1147 |
stack_top = -1;
|
kpeter@936
|
1148 |
|
kpeter@936
|
1149 |
int cycle_cnt = 0;
|
kpeter@936
|
1150 |
for (int start = 0; start != _res_node_num; ++start) {
|
kpeter@936
|
1151 |
if (reached[start]) continue;
|
kpeter@936
|
1152 |
|
kpeter@936
|
1153 |
// Start DFS search from this start node
|
kpeter@936
|
1154 |
pred[start] = -1;
|
kpeter@936
|
1155 |
int tip = start, v;
|
kpeter@936
|
1156 |
while (true) {
|
kpeter@936
|
1157 |
// Check the outgoing arcs of the current tip node
|
kpeter@936
|
1158 |
reached[tip] = true;
|
kpeter@936
|
1159 |
LargeCost pi_tip = _pi[tip];
|
kpeter@936
|
1160 |
int a, last_out = _first_out[tip+1];
|
kpeter@936
|
1161 |
for (a = _next_out[tip]; a != last_out; ++a) {
|
kpeter@936
|
1162 |
if (_res_cap[a] > 0) {
|
kpeter@936
|
1163 |
v = _target[a];
|
kpeter@936
|
1164 |
if (_cost[a] + pi_tip - _pi[v] < 0) {
|
kpeter@936
|
1165 |
if (!reached[v]) {
|
kpeter@936
|
1166 |
// A new node is reached
|
kpeter@936
|
1167 |
reached[v] = true;
|
kpeter@936
|
1168 |
pred[v] = tip;
|
kpeter@936
|
1169 |
_next_out[tip] = a;
|
kpeter@936
|
1170 |
tip = v;
|
kpeter@936
|
1171 |
a = _next_out[tip];
|
kpeter@936
|
1172 |
last_out = _first_out[tip+1];
|
kpeter@936
|
1173 |
break;
|
kpeter@936
|
1174 |
}
|
kpeter@936
|
1175 |
else if (!processed[v]) {
|
kpeter@936
|
1176 |
// A cycle is found
|
kpeter@936
|
1177 |
++cycle_cnt;
|
kpeter@936
|
1178 |
_next_out[tip] = a;
|
kpeter@936
|
1179 |
|
kpeter@936
|
1180 |
// Find the minimum residual capacity along the cycle
|
kpeter@936
|
1181 |
Value d, delta = _res_cap[a];
|
kpeter@936
|
1182 |
int u, delta_node = tip;
|
kpeter@936
|
1183 |
for (u = tip; u != v; ) {
|
kpeter@936
|
1184 |
u = pred[u];
|
kpeter@936
|
1185 |
d = _res_cap[_next_out[u]];
|
kpeter@936
|
1186 |
if (d <= delta) {
|
kpeter@936
|
1187 |
delta = d;
|
kpeter@936
|
1188 |
delta_node = u;
|
kpeter@936
|
1189 |
}
|
kpeter@936
|
1190 |
}
|
kpeter@936
|
1191 |
|
kpeter@936
|
1192 |
// Augment along the cycle
|
kpeter@936
|
1193 |
_res_cap[a] -= delta;
|
kpeter@936
|
1194 |
_res_cap[_reverse[a]] += delta;
|
kpeter@936
|
1195 |
for (u = tip; u != v; ) {
|
kpeter@936
|
1196 |
u = pred[u];
|
kpeter@936
|
1197 |
int ca = _next_out[u];
|
kpeter@936
|
1198 |
_res_cap[ca] -= delta;
|
kpeter@936
|
1199 |
_res_cap[_reverse[ca]] += delta;
|
kpeter@936
|
1200 |
}
|
kpeter@936
|
1201 |
|
kpeter@936
|
1202 |
// Check the maximum number of cycle canceling
|
kpeter@936
|
1203 |
if (cycle_cnt >= MAX_CYCLE_CANCEL) {
|
kpeter@936
|
1204 |
return false;
|
kpeter@936
|
1205 |
}
|
kpeter@936
|
1206 |
|
kpeter@936
|
1207 |
// Roll back search to delta_node
|
kpeter@936
|
1208 |
if (delta_node != tip) {
|
kpeter@936
|
1209 |
for (u = tip; u != delta_node; u = pred[u]) {
|
kpeter@936
|
1210 |
reached[u] = false;
|
kpeter@936
|
1211 |
}
|
kpeter@936
|
1212 |
tip = delta_node;
|
kpeter@936
|
1213 |
a = _next_out[tip] + 1;
|
kpeter@936
|
1214 |
last_out = _first_out[tip+1];
|
kpeter@936
|
1215 |
break;
|
kpeter@936
|
1216 |
}
|
kpeter@936
|
1217 |
}
|
kpeter@936
|
1218 |
}
|
kpeter@936
|
1219 |
}
|
kpeter@936
|
1220 |
}
|
kpeter@936
|
1221 |
|
kpeter@936
|
1222 |
// Step back to the previous node
|
kpeter@936
|
1223 |
if (a == last_out) {
|
kpeter@936
|
1224 |
processed[tip] = true;
|
kpeter@936
|
1225 |
stack[++stack_top] = tip;
|
kpeter@936
|
1226 |
tip = pred[tip];
|
kpeter@936
|
1227 |
if (tip < 0) {
|
kpeter@936
|
1228 |
// Finish DFS from the current start node
|
kpeter@936
|
1229 |
break;
|
kpeter@936
|
1230 |
}
|
kpeter@936
|
1231 |
++_next_out[tip];
|
kpeter@936
|
1232 |
}
|
kpeter@936
|
1233 |
}
|
kpeter@936
|
1234 |
|
kpeter@936
|
1235 |
}
|
kpeter@936
|
1236 |
|
kpeter@936
|
1237 |
return (cycle_cnt == 0);
|
kpeter@839
|
1238 |
}
|
kpeter@839
|
1239 |
|
kpeter@839
|
1240 |
// Global potential update heuristic
|
kpeter@839
|
1241 |
void globalUpdate() {
|
kpeter@934
|
1242 |
const int bucket_end = _root + 1;
|
alpar@877
|
1243 |
|
kpeter@839
|
1244 |
// Initialize buckets
|
kpeter@839
|
1245 |
for (int r = 0; r != _max_rank; ++r) {
|
kpeter@839
|
1246 |
_buckets[r] = bucket_end;
|
kpeter@839
|
1247 |
}
|
kpeter@839
|
1248 |
Value total_excess = 0;
|
kpeter@934
|
1249 |
int b0 = bucket_end;
|
kpeter@839
|
1250 |
for (int i = 0; i != _res_node_num; ++i) {
|
kpeter@839
|
1251 |
if (_excess[i] < 0) {
|
kpeter@839
|
1252 |
_rank[i] = 0;
|
kpeter@934
|
1253 |
_bucket_next[i] = b0;
|
kpeter@934
|
1254 |
_bucket_prev[b0] = i;
|
kpeter@934
|
1255 |
b0 = i;
|
kpeter@839
|
1256 |
} else {
|
kpeter@839
|
1257 |
total_excess += _excess[i];
|
kpeter@839
|
1258 |
_rank[i] = _max_rank;
|
kpeter@839
|
1259 |
}
|
kpeter@839
|
1260 |
}
|
kpeter@839
|
1261 |
if (total_excess == 0) return;
|
kpeter@934
|
1262 |
_buckets[0] = b0;
|
kpeter@839
|
1263 |
|
kpeter@839
|
1264 |
// Search the buckets
|
kpeter@839
|
1265 |
int r = 0;
|
kpeter@839
|
1266 |
for ( ; r != _max_rank; ++r) {
|
kpeter@839
|
1267 |
while (_buckets[r] != bucket_end) {
|
kpeter@839
|
1268 |
// Remove the first node from the current bucket
|
kpeter@839
|
1269 |
int u = _buckets[r];
|
kpeter@839
|
1270 |
_buckets[r] = _bucket_next[u];
|
alpar@877
|
1271 |
|
kpeter@839
|
1272 |
// Search the incomming arcs of u
|
kpeter@839
|
1273 |
LargeCost pi_u = _pi[u];
|
kpeter@839
|
1274 |
int last_out = _first_out[u+1];
|
kpeter@839
|
1275 |
for (int a = _first_out[u]; a != last_out; ++a) {
|
kpeter@839
|
1276 |
int ra = _reverse[a];
|
kpeter@839
|
1277 |
if (_res_cap[ra] > 0) {
|
kpeter@839
|
1278 |
int v = _source[ra];
|
kpeter@839
|
1279 |
int old_rank_v = _rank[v];
|
kpeter@839
|
1280 |
if (r < old_rank_v) {
|
kpeter@839
|
1281 |
// Compute the new rank of v
|
kpeter@839
|
1282 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
|
kpeter@839
|
1283 |
int new_rank_v = old_rank_v;
|
kpeter@934
|
1284 |
if (nrc < LargeCost(_max_rank)) {
|
kpeter@934
|
1285 |
new_rank_v = r + 1 + static_cast<int>(nrc);
|
kpeter@934
|
1286 |
}
|
alpar@877
|
1287 |
|
kpeter@839
|
1288 |
// Change the rank of v
|
kpeter@839
|
1289 |
if (new_rank_v < old_rank_v) {
|
kpeter@839
|
1290 |
_rank[v] = new_rank_v;
|
kpeter@839
|
1291 |
_next_out[v] = _first_out[v];
|
alpar@877
|
1292 |
|
kpeter@839
|
1293 |
// Remove v from its old bucket
|
kpeter@839
|
1294 |
if (old_rank_v < _max_rank) {
|
kpeter@839
|
1295 |
if (_buckets[old_rank_v] == v) {
|
kpeter@839
|
1296 |
_buckets[old_rank_v] = _bucket_next[v];
|
kpeter@839
|
1297 |
} else {
|
kpeter@934
|
1298 |
int pv = _bucket_prev[v], nv = _bucket_next[v];
|
kpeter@934
|
1299 |
_bucket_next[pv] = nv;
|
kpeter@934
|
1300 |
_bucket_prev[nv] = pv;
|
kpeter@839
|
1301 |
}
|
kpeter@839
|
1302 |
}
|
alpar@877
|
1303 |
|
kpeter@934
|
1304 |
// Insert v into its new bucket
|
kpeter@934
|
1305 |
int nv = _buckets[new_rank_v];
|
kpeter@934
|
1306 |
_bucket_next[v] = nv;
|
kpeter@934
|
1307 |
_bucket_prev[nv] = v;
|
kpeter@839
|
1308 |
_buckets[new_rank_v] = v;
|
kpeter@839
|
1309 |
}
|
kpeter@839
|
1310 |
}
|
kpeter@839
|
1311 |
}
|
kpeter@839
|
1312 |
}
|
kpeter@839
|
1313 |
|
kpeter@839
|
1314 |
// Finish search if there are no more active nodes
|
kpeter@839
|
1315 |
if (_excess[u] > 0) {
|
kpeter@839
|
1316 |
total_excess -= _excess[u];
|
kpeter@839
|
1317 |
if (total_excess <= 0) break;
|
kpeter@839
|
1318 |
}
|
kpeter@839
|
1319 |
}
|
kpeter@839
|
1320 |
if (total_excess <= 0) break;
|
kpeter@839
|
1321 |
}
|
alpar@877
|
1322 |
|
kpeter@839
|
1323 |
// Relabel nodes
|
kpeter@839
|
1324 |
for (int u = 0; u != _res_node_num; ++u) {
|
kpeter@839
|
1325 |
int k = std::min(_rank[u], r);
|
kpeter@839
|
1326 |
if (k > 0) {
|
kpeter@839
|
1327 |
_pi[u] -= _epsilon * k;
|
kpeter@839
|
1328 |
_next_out[u] = _first_out[u];
|
kpeter@839
|
1329 |
}
|
kpeter@839
|
1330 |
}
|
kpeter@839
|
1331 |
}
|
kpeter@808
|
1332 |
|
kpeter@810
|
1333 |
/// Execute the algorithm performing augment and relabel operations
|
kpeter@931
|
1334 |
void startAugment(int max_length) {
|
kpeter@808
|
1335 |
// Paramters for heuristics
|
kpeter@936
|
1336 |
const int PRICE_REFINEMENT_LIMIT = 2;
|
kpeter@935
|
1337 |
const double GLOBAL_UPDATE_FACTOR = 1.0;
|
kpeter@935
|
1338 |
const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
|
kpeter@839
|
1339 |
(_res_node_num + _sup_node_num * _sup_node_num));
|
kpeter@935
|
1340 |
int next_global_update_limit = global_update_skip;
|
alpar@877
|
1341 |
|
kpeter@809
|
1342 |
// Perform cost scaling phases
|
kpeter@935
|
1343 |
IntVector path;
|
kpeter@935
|
1344 |
BoolVector path_arc(_res_arc_num, false);
|
kpeter@935
|
1345 |
int relabel_cnt = 0;
|
kpeter@936
|
1346 |
int eps_phase_cnt = 0;
|
kpeter@808
|
1347 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
|
kpeter@808
|
1348 |
1 : _epsilon / _alpha )
|
kpeter@808
|
1349 |
{
|
kpeter@936
|
1350 |
++eps_phase_cnt;
|
kpeter@936
|
1351 |
|
kpeter@936
|
1352 |
// Price refinement heuristic
|
kpeter@936
|
1353 |
if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
|
kpeter@936
|
1354 |
if (priceRefinement()) continue;
|
kpeter@808
|
1355 |
}
|
alpar@877
|
1356 |
|
kpeter@839
|
1357 |
// Initialize current phase
|
kpeter@839
|
1358 |
initPhase();
|
alpar@877
|
1359 |
|
kpeter@808
|
1360 |
// Perform partial augment and relabel operations
|
kpeter@809
|
1361 |
while (true) {
|
kpeter@808
|
1362 |
// Select an active node (FIFO selection)
|
kpeter@809
|
1363 |
while (_active_nodes.size() > 0 &&
|
kpeter@809
|
1364 |
_excess[_active_nodes.front()] <= 0) {
|
kpeter@809
|
1365 |
_active_nodes.pop_front();
|
kpeter@808
|
1366 |
}
|
kpeter@809
|
1367 |
if (_active_nodes.size() == 0) break;
|
kpeter@809
|
1368 |
int start = _active_nodes.front();
|
kpeter@808
|
1369 |
|
kpeter@808
|
1370 |
// Find an augmenting path from the start node
|
kpeter@809
|
1371 |
int tip = start;
|
kpeter@935
|
1372 |
while (int(path.size()) < max_length && _excess[tip] >= 0) {
|
kpeter@809
|
1373 |
int u;
|
kpeter@935
|
1374 |
LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
|
kpeter@935
|
1375 |
LargeCost pi_tip = _pi[tip];
|
kpeter@839
|
1376 |
int last_out = _first_out[tip+1];
|
kpeter@809
|
1377 |
for (int a = _next_out[tip]; a != last_out; ++a) {
|
kpeter@935
|
1378 |
if (_res_cap[a] > 0) {
|
kpeter@935
|
1379 |
u = _target[a];
|
kpeter@935
|
1380 |
rc = _cost[a] + pi_tip - _pi[u];
|
kpeter@935
|
1381 |
if (rc < 0) {
|
kpeter@935
|
1382 |
path.push_back(a);
|
kpeter@935
|
1383 |
_next_out[tip] = a;
|
kpeter@935
|
1384 |
if (path_arc[a]) {
|
kpeter@935
|
1385 |
goto augment; // a cycle is found, stop path search
|
kpeter@935
|
1386 |
}
|
kpeter@935
|
1387 |
tip = u;
|
kpeter@935
|
1388 |
path_arc[a] = true;
|
kpeter@935
|
1389 |
goto next_step;
|
kpeter@935
|
1390 |
}
|
kpeter@935
|
1391 |
else if (rc < min_red_cost) {
|
kpeter@935
|
1392 |
min_red_cost = rc;
|
kpeter@935
|
1393 |
}
|
kpeter@808
|
1394 |
}
|
kpeter@808
|
1395 |
}
|
kpeter@808
|
1396 |
|
kpeter@808
|
1397 |
// Relabel tip node
|
kpeter@839
|
1398 |
if (tip != start) {
|
kpeter@839
|
1399 |
int ra = _reverse[path.back()];
|
kpeter@935
|
1400 |
min_red_cost =
|
kpeter@935
|
1401 |
std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
|
kpeter@839
|
1402 |
}
|
kpeter@935
|
1403 |
last_out = _next_out[tip];
|
kpeter@809
|
1404 |
for (int a = _first_out[tip]; a != last_out; ++a) {
|
kpeter@935
|
1405 |
if (_res_cap[a] > 0) {
|
kpeter@935
|
1406 |
rc = _cost[a] + pi_tip - _pi[_target[a]];
|
kpeter@935
|
1407 |
if (rc < min_red_cost) {
|
kpeter@935
|
1408 |
min_red_cost = rc;
|
kpeter@935
|
1409 |
}
|
kpeter@809
|
1410 |
}
|
kpeter@808
|
1411 |
}
|
kpeter@809
|
1412 |
_pi[tip] -= min_red_cost + _epsilon;
|
kpeter@809
|
1413 |
_next_out[tip] = _first_out[tip];
|
kpeter@839
|
1414 |
++relabel_cnt;
|
kpeter@808
|
1415 |
|
kpeter@808
|
1416 |
// Step back
|
kpeter@808
|
1417 |
if (tip != start) {
|
kpeter@935
|
1418 |
int pa = path.back();
|
kpeter@935
|
1419 |
path_arc[pa] = false;
|
kpeter@935
|
1420 |
tip = _source[pa];
|
kpeter@839
|
1421 |
path.pop_back();
|
kpeter@808
|
1422 |
}
|
kpeter@808
|
1423 |
|
kpeter@809
|
1424 |
next_step: ;
|
kpeter@808
|
1425 |
}
|
kpeter@808
|
1426 |
|
kpeter@808
|
1427 |
// Augment along the found path (as much flow as possible)
|
kpeter@935
|
1428 |
augment:
|
kpeter@809
|
1429 |
Value delta;
|
kpeter@839
|
1430 |
int pa, u, v = start;
|
kpeter@839
|
1431 |
for (int i = 0; i != int(path.size()); ++i) {
|
kpeter@839
|
1432 |
pa = path[i];
|
kpeter@809
|
1433 |
u = v;
|
kpeter@839
|
1434 |
v = _target[pa];
|
kpeter@935
|
1435 |
path_arc[pa] = false;
|
kpeter@809
|
1436 |
delta = std::min(_res_cap[pa], _excess[u]);
|
kpeter@809
|
1437 |
_res_cap[pa] -= delta;
|
kpeter@809
|
1438 |
_res_cap[_reverse[pa]] += delta;
|
kpeter@809
|
1439 |
_excess[u] -= delta;
|
kpeter@809
|
1440 |
_excess[v] += delta;
|
kpeter@935
|
1441 |
if (_excess[v] > 0 && _excess[v] <= delta) {
|
kpeter@809
|
1442 |
_active_nodes.push_back(v);
|
kpeter@935
|
1443 |
}
|
kpeter@808
|
1444 |
}
|
kpeter@935
|
1445 |
path.clear();
|
kpeter@839
|
1446 |
|
kpeter@839
|
1447 |
// Global update heuristic
|
kpeter@935
|
1448 |
if (relabel_cnt >= next_global_update_limit) {
|
kpeter@839
|
1449 |
globalUpdate();
|
kpeter@935
|
1450 |
next_global_update_limit += global_update_skip;
|
kpeter@839
|
1451 |
}
|
kpeter@808
|
1452 |
}
|
kpeter@935
|
1453 |
|
kpeter@808
|
1454 |
}
|
kpeter@935
|
1455 |
|
kpeter@808
|
1456 |
}
|
kpeter@808
|
1457 |
|
kpeter@809
|
1458 |
/// Execute the algorithm performing push and relabel operations
|
kpeter@810
|
1459 |
void startPush() {
|
kpeter@808
|
1460 |
// Paramters for heuristics
|
kpeter@936
|
1461 |
const int PRICE_REFINEMENT_LIMIT = 2;
|
kpeter@839
|
1462 |
const double GLOBAL_UPDATE_FACTOR = 2.0;
|
kpeter@808
|
1463 |
|
kpeter@935
|
1464 |
const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
|
kpeter@839
|
1465 |
(_res_node_num + _sup_node_num * _sup_node_num));
|
kpeter@935
|
1466 |
int next_global_update_limit = global_update_skip;
|
alpar@877
|
1467 |
|
kpeter@809
|
1468 |
// Perform cost scaling phases
|
kpeter@809
|
1469 |
BoolVector hyper(_res_node_num, false);
|
kpeter@839
|
1470 |
LargeCostVector hyper_cost(_res_node_num);
|
kpeter@935
|
1471 |
int relabel_cnt = 0;
|
kpeter@936
|
1472 |
int eps_phase_cnt = 0;
|
kpeter@808
|
1473 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
|
kpeter@808
|
1474 |
1 : _epsilon / _alpha )
|
kpeter@808
|
1475 |
{
|
kpeter@936
|
1476 |
++eps_phase_cnt;
|
kpeter@936
|
1477 |
|
kpeter@936
|
1478 |
// Price refinement heuristic
|
kpeter@936
|
1479 |
if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
|
kpeter@936
|
1480 |
if (priceRefinement()) continue;
|
kpeter@808
|
1481 |
}
|
alpar@877
|
1482 |
|
kpeter@839
|
1483 |
// Initialize current phase
|
kpeter@839
|
1484 |
initPhase();
|
kpeter@808
|
1485 |
|
kpeter@808
|
1486 |
// Perform push and relabel operations
|
kpeter@809
|
1487 |
while (_active_nodes.size() > 0) {
|
kpeter@839
|
1488 |
LargeCost min_red_cost, rc, pi_n;
|
kpeter@809
|
1489 |
Value delta;
|
kpeter@809
|
1490 |
int n, t, a, last_out = _res_arc_num;
|
kpeter@809
|
1491 |
|
kpeter@839
|
1492 |
next_node:
|
kpeter@808
|
1493 |
// Select an active node (FIFO selection)
|
kpeter@809
|
1494 |
n = _active_nodes.front();
|
kpeter@839
|
1495 |
last_out = _first_out[n+1];
|
kpeter@839
|
1496 |
pi_n = _pi[n];
|
alpar@877
|
1497 |
|
kpeter@808
|
1498 |
// Perform push operations if there are admissible arcs
|
kpeter@809
|
1499 |
if (_excess[n] > 0) {
|
kpeter@809
|
1500 |
for (a = _next_out[n]; a != last_out; ++a) {
|
kpeter@809
|
1501 |
if (_res_cap[a] > 0 &&
|
kpeter@839
|
1502 |
_cost[a] + pi_n - _pi[_target[a]] < 0) {
|
kpeter@809
|
1503 |
delta = std::min(_res_cap[a], _excess[n]);
|
kpeter@809
|
1504 |
t = _target[a];
|
kpeter@808
|
1505 |
|
kpeter@808
|
1506 |
// Push-look-ahead heuristic
|
kpeter@809
|
1507 |
Value ahead = -_excess[t];
|
kpeter@839
|
1508 |
int last_out_t = _first_out[t+1];
|
kpeter@839
|
1509 |
LargeCost pi_t = _pi[t];
|
kpeter@809
|
1510 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
|
alpar@877
|
1511 |
if (_res_cap[ta] > 0 &&
|
kpeter@839
|
1512 |
_cost[ta] + pi_t - _pi[_target[ta]] < 0)
|
kpeter@809
|
1513 |
ahead += _res_cap[ta];
|
kpeter@809
|
1514 |
if (ahead >= delta) break;
|
kpeter@808
|
1515 |
}
|
kpeter@808
|
1516 |
if (ahead < 0) ahead = 0;
|
kpeter@808
|
1517 |
|
kpeter@808
|
1518 |
// Push flow along the arc
|
kpeter@839
|
1519 |
if (ahead < delta && !hyper[t]) {
|
kpeter@809
|
1520 |
_res_cap[a] -= ahead;
|
kpeter@809
|
1521 |
_res_cap[_reverse[a]] += ahead;
|
kpeter@808
|
1522 |
_excess[n] -= ahead;
|
kpeter@808
|
1523 |
_excess[t] += ahead;
|
kpeter@809
|
1524 |
_active_nodes.push_front(t);
|
kpeter@808
|
1525 |
hyper[t] = true;
|
kpeter@839
|
1526 |
hyper_cost[t] = _cost[a] + pi_n - pi_t;
|
kpeter@809
|
1527 |
_next_out[n] = a;
|
kpeter@809
|
1528 |
goto next_node;
|
kpeter@808
|
1529 |
} else {
|
kpeter@809
|
1530 |
_res_cap[a] -= delta;
|
kpeter@809
|
1531 |
_res_cap[_reverse[a]] += delta;
|
kpeter@808
|
1532 |
_excess[n] -= delta;
|
kpeter@808
|
1533 |
_excess[t] += delta;
|
kpeter@808
|
1534 |
if (_excess[t] > 0 && _excess[t] <= delta)
|
kpeter@809
|
1535 |
_active_nodes.push_back(t);
|
kpeter@808
|
1536 |
}
|
kpeter@808
|
1537 |
|
kpeter@809
|
1538 |
if (_excess[n] == 0) {
|
kpeter@809
|
1539 |
_next_out[n] = a;
|
kpeter@809
|
1540 |
goto remove_nodes;
|
kpeter@809
|
1541 |
}
|
kpeter@808
|
1542 |
}
|
kpeter@808
|
1543 |
}
|
kpeter@809
|
1544 |
_next_out[n] = a;
|
kpeter@808
|
1545 |
}
|
kpeter@808
|
1546 |
|
kpeter@808
|
1547 |
// Relabel the node if it is still active (or hyper)
|
kpeter@809
|
1548 |
if (_excess[n] > 0 || hyper[n]) {
|
kpeter@839
|
1549 |
min_red_cost = hyper[n] ? -hyper_cost[n] :
|
kpeter@839
|
1550 |
std::numeric_limits<LargeCost>::max();
|
kpeter@809
|
1551 |
for (int a = _first_out[n]; a != last_out; ++a) {
|
kpeter@935
|
1552 |
if (_res_cap[a] > 0) {
|
kpeter@935
|
1553 |
rc = _cost[a] + pi_n - _pi[_target[a]];
|
kpeter@935
|
1554 |
if (rc < min_red_cost) {
|
kpeter@935
|
1555 |
min_red_cost = rc;
|
kpeter@935
|
1556 |
}
|
kpeter@809
|
1557 |
}
|
kpeter@808
|
1558 |
}
|
kpeter@809
|
1559 |
_pi[n] -= min_red_cost + _epsilon;
|
kpeter@839
|
1560 |
_next_out[n] = _first_out[n];
|
kpeter@808
|
1561 |
hyper[n] = false;
|
kpeter@839
|
1562 |
++relabel_cnt;
|
kpeter@808
|
1563 |
}
|
alpar@877
|
1564 |
|
kpeter@808
|
1565 |
// Remove nodes that are not active nor hyper
|
kpeter@809
|
1566 |
remove_nodes:
|
kpeter@809
|
1567 |
while ( _active_nodes.size() > 0 &&
|
kpeter@809
|
1568 |
_excess[_active_nodes.front()] <= 0 &&
|
kpeter@809
|
1569 |
!hyper[_active_nodes.front()] ) {
|
kpeter@809
|
1570 |
_active_nodes.pop_front();
|
kpeter@808
|
1571 |
}
|
alpar@877
|
1572 |
|
kpeter@839
|
1573 |
// Global update heuristic
|
kpeter@935
|
1574 |
if (relabel_cnt >= next_global_update_limit) {
|
kpeter@839
|
1575 |
globalUpdate();
|
kpeter@839
|
1576 |
for (int u = 0; u != _res_node_num; ++u)
|
kpeter@839
|
1577 |
hyper[u] = false;
|
kpeter@935
|
1578 |
next_global_update_limit += global_update_skip;
|
kpeter@839
|
1579 |
}
|
kpeter@808
|
1580 |
}
|
kpeter@808
|
1581 |
}
|
kpeter@808
|
1582 |
}
|
kpeter@808
|
1583 |
|
kpeter@808
|
1584 |
}; //class CostScaling
|
kpeter@808
|
1585 |
|
kpeter@808
|
1586 |
///@}
|
kpeter@808
|
1587 |
|
kpeter@808
|
1588 |
} //namespace lemon
|
kpeter@808
|
1589 |
|
kpeter@808
|
1590 |
#endif //LEMON_COST_SCALING_H
|