lemon/hartmann_orlin.h
changeset 864 d3ea191c3412
parent 841 aa8c9008b3de
equal deleted inserted replaced
9:56f00b0ea52c -1:000000000000
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2008
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_HARTMANN_ORLIN_H
       
    20 #define LEMON_HARTMANN_ORLIN_H
       
    21 
       
    22 /// \ingroup min_mean_cycle
       
    23 ///
       
    24 /// \file
       
    25 /// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle.
       
    26 
       
    27 #include <vector>
       
    28 #include <limits>
       
    29 #include <lemon/core.h>
       
    30 #include <lemon/path.h>
       
    31 #include <lemon/tolerance.h>
       
    32 #include <lemon/connectivity.h>
       
    33 
       
    34 namespace lemon {
       
    35 
       
    36   /// \brief Default traits class of HartmannOrlin algorithm.
       
    37   ///
       
    38   /// Default traits class of HartmannOrlin algorithm.
       
    39   /// \tparam GR The type of the digraph.
       
    40   /// \tparam LEN The type of the length map.
       
    41   /// It must conform to the \ref concepts::Rea_data "Rea_data" concept.
       
    42 #ifdef DOXYGEN
       
    43   template <typename GR, typename LEN>
       
    44 #else
       
    45   template <typename GR, typename LEN,
       
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
       
    47 #endif
       
    48   struct HartmannOrlinDefaultTraits
       
    49   {
       
    50     /// The type of the digraph
       
    51     typedef GR Digraph;
       
    52     /// The type of the length map
       
    53     typedef LEN LengthMap;
       
    54     /// The type of the arc lengths
       
    55     typedef typename LengthMap::Value Value;
       
    56 
       
    57     /// \brief The large value type used for internal computations
       
    58     ///
       
    59     /// The large value type used for internal computations.
       
    60     /// It is \c long \c long if the \c Value type is integer,
       
    61     /// otherwise it is \c double.
       
    62     /// \c Value must be convertible to \c LargeValue.
       
    63     typedef double LargeValue;
       
    64 
       
    65     /// The tolerance type used for internal computations
       
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
       
    67 
       
    68     /// \brief The path type of the found cycles
       
    69     ///
       
    70     /// The path type of the found cycles.
       
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
       
    72     /// and it must have an \c addFront() function.
       
    73     typedef lemon::Path<Digraph> Path;
       
    74   };
       
    75 
       
    76   // Default traits class for integer value types
       
    77   template <typename GR, typename LEN>
       
    78   struct HartmannOrlinDefaultTraits<GR, LEN, true>
       
    79   {
       
    80     typedef GR Digraph;
       
    81     typedef LEN LengthMap;
       
    82     typedef typename LengthMap::Value Value;
       
    83 #ifdef LEMON_HAVE_LONG_LONG
       
    84     typedef long long LargeValue;
       
    85 #else
       
    86     typedef long LargeValue;
       
    87 #endif
       
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
       
    89     typedef lemon::Path<Digraph> Path;
       
    90   };
       
    91 
       
    92 
       
    93   /// \addtogroup min_mean_cycle
       
    94   /// @{
       
    95 
       
    96   /// \brief Implementation of the Hartmann-Orlin algorithm for finding
       
    97   /// a minimum mean cycle.
       
    98   ///
       
    99   /// This class implements the Hartmann-Orlin algorithm for finding
       
   100   /// a directed cycle of minimum mean length (cost) in a digraph
       
   101   /// \ref amo93networkflows, \ref dasdan98minmeancycle.
       
   102   /// It is an improved version of \ref Karp "Karp"'s original algorithm,
       
   103   /// it applies an efficient early termination scheme.
       
   104   /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
       
   105   ///
       
   106   /// \tparam GR The type of the digraph the algorithm runs on.
       
   107   /// \tparam LEN The type of the length map. The default
       
   108   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
       
   109   /// \tparam TR The traits class that defines various types used by the
       
   110   /// algorithm. By default, it is \ref HartmannOrlinDefaultTraits
       
   111   /// "HartmannOrlinDefaultTraits<GR, LEN>".
       
   112   /// In most cases, this parameter should not be set directly,
       
   113   /// consider to use the named template parameters instead.
       
   114 #ifdef DOXYGEN
       
   115   template <typename GR, typename LEN, typename TR>
       
   116 #else
       
   117   template < typename GR,
       
   118              typename LEN = typename GR::template ArcMap<int>,
       
   119              typename TR = HartmannOrlinDefaultTraits<GR, LEN> >
       
   120 #endif
       
   121   class HartmannOrlin
       
   122   {
       
   123   public:
       
   124 
       
   125     /// The type of the digraph
       
   126     typedef typename TR::Digraph Digraph;
       
   127     /// The type of the length map
       
   128     typedef typename TR::LengthMap LengthMap;
       
   129     /// The type of the arc lengths
       
   130     typedef typename TR::Value Value;
       
   131 
       
   132     /// \brief The large value type
       
   133     ///
       
   134     /// The large value type used for internal computations.
       
   135     /// By default, it is \c long \c long if the \c Value type is integer,
       
   136     /// otherwise it is \c double.
       
   137     typedef typename TR::LargeValue LargeValue;
       
   138 
       
   139     /// The tolerance type
       
   140     typedef typename TR::Tolerance Tolerance;
       
   141 
       
   142     /// \brief The path type of the found cycles
       
   143     ///
       
   144     /// The path type of the found cycles.
       
   145     /// Using the \ref HartmannOrlinDefaultTraits "default traits class",
       
   146     /// it is \ref lemon::Path "Path<Digraph>".
       
   147     typedef typename TR::Path Path;
       
   148 
       
   149     /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm
       
   150     typedef TR Traits;
       
   151 
       
   152   private:
       
   153 
       
   154     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
       
   155 
       
   156     // Data sturcture for path data
       
   157     struct PathData
       
   158     {
       
   159       LargeValue dist;
       
   160       Arc pred;
       
   161       PathData(LargeValue d, Arc p = INVALID) :
       
   162         dist(d), pred(p) {}
       
   163     };
       
   164 
       
   165     typedef typename Digraph::template NodeMap<std::vector<PathData> >
       
   166       PathDataNodeMap;
       
   167 
       
   168   private:
       
   169 
       
   170     // The digraph the algorithm runs on
       
   171     const Digraph &_gr;
       
   172     // The length of the arcs
       
   173     const LengthMap &_length;
       
   174 
       
   175     // Data for storing the strongly connected components
       
   176     int _comp_num;
       
   177     typename Digraph::template NodeMap<int> _comp;
       
   178     std::vector<std::vector<Node> > _comp_nodes;
       
   179     std::vector<Node>* _nodes;
       
   180     typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
       
   181 
       
   182     // Data for the found cycles
       
   183     bool _curr_found, _best_found;
       
   184     LargeValue _curr_length, _best_length;
       
   185     int _curr_size, _best_size;
       
   186     Node _curr_node, _best_node;
       
   187     int _curr_level, _best_level;
       
   188 
       
   189     Path *_cycle_path;
       
   190     bool _local_path;
       
   191 
       
   192     // Node map for storing path data
       
   193     PathDataNodeMap _data;
       
   194     // The processed nodes in the last round
       
   195     std::vector<Node> _process;
       
   196 
       
   197     Tolerance _tolerance;
       
   198 
       
   199     // Infinite constant
       
   200     const LargeValue INF;
       
   201 
       
   202   public:
       
   203 
       
   204     /// \name Named Template Parameters
       
   205     /// @{
       
   206 
       
   207     template <typename T>
       
   208     struct SetLargeValueTraits : public Traits {
       
   209       typedef T LargeValue;
       
   210       typedef lemon::Tolerance<T> Tolerance;
       
   211     };
       
   212 
       
   213     /// \brief \ref named-templ-param "Named parameter" for setting
       
   214     /// \c LargeValue type.
       
   215     ///
       
   216     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
       
   217     /// type. It is used for internal computations in the algorithm.
       
   218     template <typename T>
       
   219     struct SetLargeValue
       
   220       : public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
       
   221       typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create;
       
   222     };
       
   223 
       
   224     template <typename T>
       
   225     struct SetPathTraits : public Traits {
       
   226       typedef T Path;
       
   227     };
       
   228 
       
   229     /// \brief \ref named-templ-param "Named parameter" for setting
       
   230     /// \c %Path type.
       
   231     ///
       
   232     /// \ref named-templ-param "Named parameter" for setting the \c %Path
       
   233     /// type of the found cycles.
       
   234     /// It must conform to the \ref lemon::concepts::Path "Path" concept
       
   235     /// and it must have an \c addFront() function.
       
   236     template <typename T>
       
   237     struct SetPath
       
   238       : public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
       
   239       typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create;
       
   240     };
       
   241 
       
   242     /// @}
       
   243 
       
   244   protected:
       
   245 
       
   246     HartmannOrlin() {}
       
   247 
       
   248   public:
       
   249 
       
   250     /// \brief Constructor.
       
   251     ///
       
   252     /// The constructor of the class.
       
   253     ///
       
   254     /// \param digraph The digraph the algorithm runs on.
       
   255     /// \param length The lengths (costs) of the arcs.
       
   256     HartmannOrlin( const Digraph &digraph,
       
   257                    const LengthMap &length ) :
       
   258       _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph),
       
   259       _best_found(false), _best_length(0), _best_size(1),
       
   260       _cycle_path(NULL), _local_path(false), _data(digraph),
       
   261       INF(std::numeric_limits<LargeValue>::has_infinity ?
       
   262           std::numeric_limits<LargeValue>::infinity() :
       
   263           std::numeric_limits<LargeValue>::max())
       
   264     {}
       
   265 
       
   266     /// Destructor.
       
   267     ~HartmannOrlin() {
       
   268       if (_local_path) delete _cycle_path;
       
   269     }
       
   270 
       
   271     /// \brief Set the path structure for storing the found cycle.
       
   272     ///
       
   273     /// This function sets an external path structure for storing the
       
   274     /// found cycle.
       
   275     ///
       
   276     /// If you don't call this function before calling \ref run() or
       
   277     /// \ref findMinMean(), it will allocate a local \ref Path "path"
       
   278     /// structure. The destuctor deallocates this automatically
       
   279     /// allocated object, of course.
       
   280     ///
       
   281     /// \note The algorithm calls only the \ref lemon::Path::addFront()
       
   282     /// "addFront()" function of the given path structure.
       
   283     ///
       
   284     /// \return <tt>(*this)</tt>
       
   285     HartmannOrlin& cycle(Path &path) {
       
   286       if (_local_path) {
       
   287         delete _cycle_path;
       
   288         _local_path = false;
       
   289       }
       
   290       _cycle_path = &path;
       
   291       return *this;
       
   292     }
       
   293 
       
   294     /// \brief Set the tolerance used by the algorithm.
       
   295     ///
       
   296     /// This function sets the tolerance object used by the algorithm.
       
   297     ///
       
   298     /// \return <tt>(*this)</tt>
       
   299     HartmannOrlin& tolerance(const Tolerance& tolerance) {
       
   300       _tolerance = tolerance;
       
   301       return *this;
       
   302     }
       
   303 
       
   304     /// \brief Return a const reference to the tolerance.
       
   305     ///
       
   306     /// This function returns a const reference to the tolerance object
       
   307     /// used by the algorithm.
       
   308     const Tolerance& tolerance() const {
       
   309       return _tolerance;
       
   310     }
       
   311 
       
   312     /// \name Execution control
       
   313     /// The simplest way to execute the algorithm is to call the \ref run()
       
   314     /// function.\n
       
   315     /// If you only need the minimum mean length, you may call
       
   316     /// \ref findMinMean().
       
   317 
       
   318     /// @{
       
   319 
       
   320     /// \brief Run the algorithm.
       
   321     ///
       
   322     /// This function runs the algorithm.
       
   323     /// It can be called more than once (e.g. if the underlying digraph
       
   324     /// and/or the arc lengths have been modified).
       
   325     ///
       
   326     /// \return \c true if a directed cycle exists in the digraph.
       
   327     ///
       
   328     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
       
   329     /// \code
       
   330     ///   return mmc.findMinMean() && mmc.findCycle();
       
   331     /// \endcode
       
   332     bool run() {
       
   333       return findMinMean() && findCycle();
       
   334     }
       
   335 
       
   336     /// \brief Find the minimum cycle mean.
       
   337     ///
       
   338     /// This function finds the minimum mean length of the directed
       
   339     /// cycles in the digraph.
       
   340     ///
       
   341     /// \return \c true if a directed cycle exists in the digraph.
       
   342     bool findMinMean() {
       
   343       // Initialization and find strongly connected components
       
   344       init();
       
   345       findComponents();
       
   346       
       
   347       // Find the minimum cycle mean in the components
       
   348       for (int comp = 0; comp < _comp_num; ++comp) {
       
   349         if (!initComponent(comp)) continue;
       
   350         processRounds();
       
   351         
       
   352         // Update the best cycle (global minimum mean cycle)
       
   353         if ( _curr_found && (!_best_found || 
       
   354              _curr_length * _best_size < _best_length * _curr_size) ) {
       
   355           _best_found = true;
       
   356           _best_length = _curr_length;
       
   357           _best_size = _curr_size;
       
   358           _best_node = _curr_node;
       
   359           _best_level = _curr_level;
       
   360         }
       
   361       }
       
   362       return _best_found;
       
   363     }
       
   364 
       
   365     /// \brief Find a minimum mean directed cycle.
       
   366     ///
       
   367     /// This function finds a directed cycle of minimum mean length
       
   368     /// in the digraph using the data computed by findMinMean().
       
   369     ///
       
   370     /// \return \c true if a directed cycle exists in the digraph.
       
   371     ///
       
   372     /// \pre \ref findMinMean() must be called before using this function.
       
   373     bool findCycle() {
       
   374       if (!_best_found) return false;
       
   375       IntNodeMap reached(_gr, -1);
       
   376       int r = _best_level + 1;
       
   377       Node u = _best_node;
       
   378       while (reached[u] < 0) {
       
   379         reached[u] = --r;
       
   380         u = _gr.source(_data[u][r].pred);
       
   381       }
       
   382       r = reached[u];
       
   383       Arc e = _data[u][r].pred;
       
   384       _cycle_path->addFront(e);
       
   385       _best_length = _length[e];
       
   386       _best_size = 1;
       
   387       Node v;
       
   388       while ((v = _gr.source(e)) != u) {
       
   389         e = _data[v][--r].pred;
       
   390         _cycle_path->addFront(e);
       
   391         _best_length += _length[e];
       
   392         ++_best_size;
       
   393       }
       
   394       return true;
       
   395     }
       
   396 
       
   397     /// @}
       
   398 
       
   399     /// \name Query Functions
       
   400     /// The results of the algorithm can be obtained using these
       
   401     /// functions.\n
       
   402     /// The algorithm should be executed before using them.
       
   403 
       
   404     /// @{
       
   405 
       
   406     /// \brief Return the total length of the found cycle.
       
   407     ///
       
   408     /// This function returns the total length of the found cycle.
       
   409     ///
       
   410     /// \pre \ref run() or \ref findMinMean() must be called before
       
   411     /// using this function.
       
   412     Value cycleLength() const {
       
   413       return static_cast<Value>(_best_length);
       
   414     }
       
   415 
       
   416     /// \brief Return the number of arcs on the found cycle.
       
   417     ///
       
   418     /// This function returns the number of arcs on the found cycle.
       
   419     ///
       
   420     /// \pre \ref run() or \ref findMinMean() must be called before
       
   421     /// using this function.
       
   422     int cycleArcNum() const {
       
   423       return _best_size;
       
   424     }
       
   425 
       
   426     /// \brief Return the mean length of the found cycle.
       
   427     ///
       
   428     /// This function returns the mean length of the found cycle.
       
   429     ///
       
   430     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
       
   431     /// following code.
       
   432     /// \code
       
   433     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
       
   434     /// \endcode
       
   435     ///
       
   436     /// \pre \ref run() or \ref findMinMean() must be called before
       
   437     /// using this function.
       
   438     double cycleMean() const {
       
   439       return static_cast<double>(_best_length) / _best_size;
       
   440     }
       
   441 
       
   442     /// \brief Return the found cycle.
       
   443     ///
       
   444     /// This function returns a const reference to the path structure
       
   445     /// storing the found cycle.
       
   446     ///
       
   447     /// \pre \ref run() or \ref findCycle() must be called before using
       
   448     /// this function.
       
   449     const Path& cycle() const {
       
   450       return *_cycle_path;
       
   451     }
       
   452 
       
   453     ///@}
       
   454 
       
   455   private:
       
   456 
       
   457     // Initialization
       
   458     void init() {
       
   459       if (!_cycle_path) {
       
   460         _local_path = true;
       
   461         _cycle_path = new Path;
       
   462       }
       
   463       _cycle_path->clear();
       
   464       _best_found = false;
       
   465       _best_length = 0;
       
   466       _best_size = 1;
       
   467       _cycle_path->clear();
       
   468       for (NodeIt u(_gr); u != INVALID; ++u)
       
   469         _data[u].clear();
       
   470     }
       
   471 
       
   472     // Find strongly connected components and initialize _comp_nodes
       
   473     // and _out_arcs
       
   474     void findComponents() {
       
   475       _comp_num = stronglyConnectedComponents(_gr, _comp);
       
   476       _comp_nodes.resize(_comp_num);
       
   477       if (_comp_num == 1) {
       
   478         _comp_nodes[0].clear();
       
   479         for (NodeIt n(_gr); n != INVALID; ++n) {
       
   480           _comp_nodes[0].push_back(n);
       
   481           _out_arcs[n].clear();
       
   482           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
       
   483             _out_arcs[n].push_back(a);
       
   484           }
       
   485         }
       
   486       } else {
       
   487         for (int i = 0; i < _comp_num; ++i)
       
   488           _comp_nodes[i].clear();
       
   489         for (NodeIt n(_gr); n != INVALID; ++n) {
       
   490           int k = _comp[n];
       
   491           _comp_nodes[k].push_back(n);
       
   492           _out_arcs[n].clear();
       
   493           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
       
   494             if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
       
   495           }
       
   496         }
       
   497       }
       
   498     }
       
   499 
       
   500     // Initialize path data for the current component
       
   501     bool initComponent(int comp) {
       
   502       _nodes = &(_comp_nodes[comp]);
       
   503       int n = _nodes->size();
       
   504       if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
       
   505         return false;
       
   506       }      
       
   507       for (int i = 0; i < n; ++i) {
       
   508         _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
       
   509       }
       
   510       return true;
       
   511     }
       
   512 
       
   513     // Process all rounds of computing path data for the current component.
       
   514     // _data[v][k] is the length of a shortest directed walk from the root
       
   515     // node to node v containing exactly k arcs.
       
   516     void processRounds() {
       
   517       Node start = (*_nodes)[0];
       
   518       _data[start][0] = PathData(0);
       
   519       _process.clear();
       
   520       _process.push_back(start);
       
   521 
       
   522       int k, n = _nodes->size();
       
   523       int next_check = 4;
       
   524       bool terminate = false;
       
   525       for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
       
   526         processNextBuildRound(k);
       
   527         if (k == next_check || k == n) {
       
   528           terminate = checkTermination(k);
       
   529           next_check = next_check * 3 / 2;
       
   530         }
       
   531       }
       
   532       for ( ; k <= n && !terminate; ++k) {
       
   533         processNextFullRound(k);
       
   534         if (k == next_check || k == n) {
       
   535           terminate = checkTermination(k);
       
   536           next_check = next_check * 3 / 2;
       
   537         }
       
   538       }
       
   539     }
       
   540 
       
   541     // Process one round and rebuild _process
       
   542     void processNextBuildRound(int k) {
       
   543       std::vector<Node> next;
       
   544       Node u, v;
       
   545       Arc e;
       
   546       LargeValue d;
       
   547       for (int i = 0; i < int(_process.size()); ++i) {
       
   548         u = _process[i];
       
   549         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
       
   550           e = _out_arcs[u][j];
       
   551           v = _gr.target(e);
       
   552           d = _data[u][k-1].dist + _length[e];
       
   553           if (_tolerance.less(d, _data[v][k].dist)) {
       
   554             if (_data[v][k].dist == INF) next.push_back(v);
       
   555             _data[v][k] = PathData(d, e);
       
   556           }
       
   557         }
       
   558       }
       
   559       _process.swap(next);
       
   560     }
       
   561 
       
   562     // Process one round using _nodes instead of _process
       
   563     void processNextFullRound(int k) {
       
   564       Node u, v;
       
   565       Arc e;
       
   566       LargeValue d;
       
   567       for (int i = 0; i < int(_nodes->size()); ++i) {
       
   568         u = (*_nodes)[i];
       
   569         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
       
   570           e = _out_arcs[u][j];
       
   571           v = _gr.target(e);
       
   572           d = _data[u][k-1].dist + _length[e];
       
   573           if (_tolerance.less(d, _data[v][k].dist)) {
       
   574             _data[v][k] = PathData(d, e);
       
   575           }
       
   576         }
       
   577       }
       
   578     }
       
   579     
       
   580     // Check early termination
       
   581     bool checkTermination(int k) {
       
   582       typedef std::pair<int, int> Pair;
       
   583       typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
       
   584       typename GR::template NodeMap<LargeValue> pi(_gr);
       
   585       int n = _nodes->size();
       
   586       LargeValue length;
       
   587       int size;
       
   588       Node u;
       
   589       
       
   590       // Search for cycles that are already found
       
   591       _curr_found = false;
       
   592       for (int i = 0; i < n; ++i) {
       
   593         u = (*_nodes)[i];
       
   594         if (_data[u][k].dist == INF) continue;
       
   595         for (int j = k; j >= 0; --j) {
       
   596           if (level[u].first == i && level[u].second > 0) {
       
   597             // A cycle is found
       
   598             length = _data[u][level[u].second].dist - _data[u][j].dist;
       
   599             size = level[u].second - j;
       
   600             if (!_curr_found || length * _curr_size < _curr_length * size) {
       
   601               _curr_length = length;
       
   602               _curr_size = size;
       
   603               _curr_node = u;
       
   604               _curr_level = level[u].second;
       
   605               _curr_found = true;
       
   606             }
       
   607           }
       
   608           level[u] = Pair(i, j);
       
   609           if (j != 0) {
       
   610 	    u = _gr.source(_data[u][j].pred);
       
   611 	  }
       
   612         }
       
   613       }
       
   614 
       
   615       // If at least one cycle is found, check the optimality condition
       
   616       LargeValue d;
       
   617       if (_curr_found && k < n) {
       
   618         // Find node potentials
       
   619         for (int i = 0; i < n; ++i) {
       
   620           u = (*_nodes)[i];
       
   621           pi[u] = INF;
       
   622           for (int j = 0; j <= k; ++j) {
       
   623             if (_data[u][j].dist < INF) {
       
   624               d = _data[u][j].dist * _curr_size - j * _curr_length;
       
   625               if (_tolerance.less(d, pi[u])) pi[u] = d;
       
   626             }
       
   627           }
       
   628         }
       
   629 
       
   630         // Check the optimality condition for all arcs
       
   631         bool done = true;
       
   632         for (ArcIt a(_gr); a != INVALID; ++a) {
       
   633           if (_tolerance.less(_length[a] * _curr_size - _curr_length,
       
   634                               pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
       
   635             done = false;
       
   636             break;
       
   637           }
       
   638         }
       
   639         return done;
       
   640       }
       
   641       return (k == n);
       
   642     }
       
   643 
       
   644   }; //class HartmannOrlin
       
   645 
       
   646   ///@}
       
   647 
       
   648 } //namespace lemon
       
   649 
       
   650 #endif //LEMON_HARTMANN_ORLIN_H