lemon/howard.h
changeset 864 d3ea191c3412
parent 841 aa8c9008b3de
equal deleted inserted replaced
7:4481e7a992f3 -1:000000000000
     1 /* -*- C++ -*-
       
     2  *
       
     3  * This file is a part of LEMON, a generic C++ optimization library
       
     4  *
       
     5  * Copyright (C) 2003-2008
       
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
       
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
       
     8  *
       
     9  * Permission to use, modify and distribute this software is granted
       
    10  * provided that this copyright notice appears in all copies. For
       
    11  * precise terms see the accompanying LICENSE file.
       
    12  *
       
    13  * This software is provided "AS IS" with no warranty of any kind,
       
    14  * express or implied, and with no claim as to its suitability for any
       
    15  * purpose.
       
    16  *
       
    17  */
       
    18 
       
    19 #ifndef LEMON_HOWARD_H
       
    20 #define LEMON_HOWARD_H
       
    21 
       
    22 /// \ingroup min_mean_cycle
       
    23 ///
       
    24 /// \file
       
    25 /// \brief Howard's algorithm for finding a minimum mean cycle.
       
    26 
       
    27 #include <vector>
       
    28 #include <limits>
       
    29 #include <lemon/core.h>
       
    30 #include <lemon/path.h>
       
    31 #include <lemon/tolerance.h>
       
    32 #include <lemon/connectivity.h>
       
    33 
       
    34 namespace lemon {
       
    35 
       
    36   /// \brief Default traits class of Howard class.
       
    37   ///
       
    38   /// Default traits class of Howard class.
       
    39   /// \tparam GR The type of the digraph.
       
    40   /// \tparam LEN The type of the length map.
       
    41   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
       
    42 #ifdef DOXYGEN
       
    43   template <typename GR, typename LEN>
       
    44 #else
       
    45   template <typename GR, typename LEN,
       
    46     bool integer = std::numeric_limits<typename LEN::Value>::is_integer>
       
    47 #endif
       
    48   struct HowardDefaultTraits
       
    49   {
       
    50     /// The type of the digraph
       
    51     typedef GR Digraph;
       
    52     /// The type of the length map
       
    53     typedef LEN LengthMap;
       
    54     /// The type of the arc lengths
       
    55     typedef typename LengthMap::Value Value;
       
    56 
       
    57     /// \brief The large value type used for internal computations
       
    58     ///
       
    59     /// The large value type used for internal computations.
       
    60     /// It is \c long \c long if the \c Value type is integer,
       
    61     /// otherwise it is \c double.
       
    62     /// \c Value must be convertible to \c LargeValue.
       
    63     typedef double LargeValue;
       
    64 
       
    65     /// The tolerance type used for internal computations
       
    66     typedef lemon::Tolerance<LargeValue> Tolerance;
       
    67 
       
    68     /// \brief The path type of the found cycles
       
    69     ///
       
    70     /// The path type of the found cycles.
       
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
       
    72     /// and it must have an \c addBack() function.
       
    73     typedef lemon::Path<Digraph> Path;
       
    74   };
       
    75 
       
    76   // Default traits class for integer value types
       
    77   template <typename GR, typename LEN>
       
    78   struct HowardDefaultTraits<GR, LEN, true>
       
    79   {
       
    80     typedef GR Digraph;
       
    81     typedef LEN LengthMap;
       
    82     typedef typename LengthMap::Value Value;
       
    83 #ifdef LEMON_HAVE_LONG_LONG
       
    84     typedef long long LargeValue;
       
    85 #else
       
    86     typedef long LargeValue;
       
    87 #endif
       
    88     typedef lemon::Tolerance<LargeValue> Tolerance;
       
    89     typedef lemon::Path<Digraph> Path;
       
    90   };
       
    91 
       
    92 
       
    93   /// \addtogroup min_mean_cycle
       
    94   /// @{
       
    95 
       
    96   /// \brief Implementation of Howard's algorithm for finding a minimum
       
    97   /// mean cycle.
       
    98   ///
       
    99   /// This class implements Howard's policy iteration algorithm for finding
       
   100   /// a directed cycle of minimum mean length (cost) in a digraph
       
   101   /// \ref amo93networkflows, \ref dasdan98minmeancycle.
       
   102   /// This class provides the most efficient algorithm for the
       
   103   /// minimum mean cycle problem, though the best known theoretical
       
   104   /// bound on its running time is exponential.
       
   105   ///
       
   106   /// \tparam GR The type of the digraph the algorithm runs on.
       
   107   /// \tparam LEN The type of the length map. The default
       
   108   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
       
   109   /// \tparam TR The traits class that defines various types used by the
       
   110   /// algorithm. By default, it is \ref HowardDefaultTraits
       
   111   /// "HowardDefaultTraits<GR, LEN>".
       
   112   /// In most cases, this parameter should not be set directly,
       
   113   /// consider to use the named template parameters instead.
       
   114 #ifdef DOXYGEN
       
   115   template <typename GR, typename LEN, typename TR>
       
   116 #else
       
   117   template < typename GR,
       
   118              typename LEN = typename GR::template ArcMap<int>,
       
   119              typename TR = HowardDefaultTraits<GR, LEN> >
       
   120 #endif
       
   121   class Howard
       
   122   {
       
   123   public:
       
   124   
       
   125     /// The type of the digraph
       
   126     typedef typename TR::Digraph Digraph;
       
   127     /// The type of the length map
       
   128     typedef typename TR::LengthMap LengthMap;
       
   129     /// The type of the arc lengths
       
   130     typedef typename TR::Value Value;
       
   131 
       
   132     /// \brief The large value type
       
   133     ///
       
   134     /// The large value type used for internal computations.
       
   135     /// By default, it is \c long \c long if the \c Value type is integer,
       
   136     /// otherwise it is \c double.
       
   137     typedef typename TR::LargeValue LargeValue;
       
   138 
       
   139     /// The tolerance type
       
   140     typedef typename TR::Tolerance Tolerance;
       
   141 
       
   142     /// \brief The path type of the found cycles
       
   143     ///
       
   144     /// The path type of the found cycles.
       
   145     /// Using the \ref HowardDefaultTraits "default traits class",
       
   146     /// it is \ref lemon::Path "Path<Digraph>".
       
   147     typedef typename TR::Path Path;
       
   148 
       
   149     /// The \ref HowardDefaultTraits "traits class" of the algorithm
       
   150     typedef TR Traits;
       
   151 
       
   152   private:
       
   153 
       
   154     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
       
   155   
       
   156     // The digraph the algorithm runs on
       
   157     const Digraph &_gr;
       
   158     // The length of the arcs
       
   159     const LengthMap &_length;
       
   160 
       
   161     // Data for the found cycles
       
   162     bool _curr_found, _best_found;
       
   163     LargeValue _curr_length, _best_length;
       
   164     int _curr_size, _best_size;
       
   165     Node _curr_node, _best_node;
       
   166 
       
   167     Path *_cycle_path;
       
   168     bool _local_path;
       
   169 
       
   170     // Internal data used by the algorithm
       
   171     typename Digraph::template NodeMap<Arc> _policy;
       
   172     typename Digraph::template NodeMap<bool> _reached;
       
   173     typename Digraph::template NodeMap<int> _level;
       
   174     typename Digraph::template NodeMap<LargeValue> _dist;
       
   175 
       
   176     // Data for storing the strongly connected components
       
   177     int _comp_num;
       
   178     typename Digraph::template NodeMap<int> _comp;
       
   179     std::vector<std::vector<Node> > _comp_nodes;
       
   180     std::vector<Node>* _nodes;
       
   181     typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
       
   182     
       
   183     // Queue used for BFS search
       
   184     std::vector<Node> _queue;
       
   185     int _qfront, _qback;
       
   186 
       
   187     Tolerance _tolerance;
       
   188   
       
   189     // Infinite constant
       
   190     const LargeValue INF;
       
   191 
       
   192   public:
       
   193   
       
   194     /// \name Named Template Parameters
       
   195     /// @{
       
   196 
       
   197     template <typename T>
       
   198     struct SetLargeValueTraits : public Traits {
       
   199       typedef T LargeValue;
       
   200       typedef lemon::Tolerance<T> Tolerance;
       
   201     };
       
   202 
       
   203     /// \brief \ref named-templ-param "Named parameter" for setting
       
   204     /// \c LargeValue type.
       
   205     ///
       
   206     /// \ref named-templ-param "Named parameter" for setting \c LargeValue
       
   207     /// type. It is used for internal computations in the algorithm.
       
   208     template <typename T>
       
   209     struct SetLargeValue
       
   210       : public Howard<GR, LEN, SetLargeValueTraits<T> > {
       
   211       typedef Howard<GR, LEN, SetLargeValueTraits<T> > Create;
       
   212     };
       
   213 
       
   214     template <typename T>
       
   215     struct SetPathTraits : public Traits {
       
   216       typedef T Path;
       
   217     };
       
   218 
       
   219     /// \brief \ref named-templ-param "Named parameter" for setting
       
   220     /// \c %Path type.
       
   221     ///
       
   222     /// \ref named-templ-param "Named parameter" for setting the \c %Path
       
   223     /// type of the found cycles.
       
   224     /// It must conform to the \ref lemon::concepts::Path "Path" concept
       
   225     /// and it must have an \c addBack() function.
       
   226     template <typename T>
       
   227     struct SetPath
       
   228       : public Howard<GR, LEN, SetPathTraits<T> > {
       
   229       typedef Howard<GR, LEN, SetPathTraits<T> > Create;
       
   230     };
       
   231     
       
   232     /// @}
       
   233 
       
   234   protected:
       
   235 
       
   236     Howard() {}
       
   237 
       
   238   public:
       
   239 
       
   240     /// \brief Constructor.
       
   241     ///
       
   242     /// The constructor of the class.
       
   243     ///
       
   244     /// \param digraph The digraph the algorithm runs on.
       
   245     /// \param length The lengths (costs) of the arcs.
       
   246     Howard( const Digraph &digraph,
       
   247             const LengthMap &length ) :
       
   248       _gr(digraph), _length(length), _best_found(false),
       
   249       _best_length(0), _best_size(1), _cycle_path(NULL), _local_path(false),
       
   250       _policy(digraph), _reached(digraph), _level(digraph), _dist(digraph),
       
   251       _comp(digraph), _in_arcs(digraph),
       
   252       INF(std::numeric_limits<LargeValue>::has_infinity ?
       
   253           std::numeric_limits<LargeValue>::infinity() :
       
   254           std::numeric_limits<LargeValue>::max())
       
   255     {}
       
   256 
       
   257     /// Destructor.
       
   258     ~Howard() {
       
   259       if (_local_path) delete _cycle_path;
       
   260     }
       
   261 
       
   262     /// \brief Set the path structure for storing the found cycle.
       
   263     ///
       
   264     /// This function sets an external path structure for storing the
       
   265     /// found cycle.
       
   266     ///
       
   267     /// If you don't call this function before calling \ref run() or
       
   268     /// \ref findMinMean(), it will allocate a local \ref Path "path"
       
   269     /// structure. The destuctor deallocates this automatically
       
   270     /// allocated object, of course.
       
   271     ///
       
   272     /// \note The algorithm calls only the \ref lemon::Path::addBack()
       
   273     /// "addBack()" function of the given path structure.
       
   274     ///
       
   275     /// \return <tt>(*this)</tt>
       
   276     Howard& cycle(Path &path) {
       
   277       if (_local_path) {
       
   278         delete _cycle_path;
       
   279         _local_path = false;
       
   280       }
       
   281       _cycle_path = &path;
       
   282       return *this;
       
   283     }
       
   284 
       
   285     /// \brief Set the tolerance used by the algorithm.
       
   286     ///
       
   287     /// This function sets the tolerance object used by the algorithm.
       
   288     ///
       
   289     /// \return <tt>(*this)</tt>
       
   290     Howard& tolerance(const Tolerance& tolerance) {
       
   291       _tolerance = tolerance;
       
   292       return *this;
       
   293     }
       
   294 
       
   295     /// \brief Return a const reference to the tolerance.
       
   296     ///
       
   297     /// This function returns a const reference to the tolerance object
       
   298     /// used by the algorithm.
       
   299     const Tolerance& tolerance() const {
       
   300       return _tolerance;
       
   301     }
       
   302 
       
   303     /// \name Execution control
       
   304     /// The simplest way to execute the algorithm is to call the \ref run()
       
   305     /// function.\n
       
   306     /// If you only need the minimum mean length, you may call
       
   307     /// \ref findMinMean().
       
   308 
       
   309     /// @{
       
   310 
       
   311     /// \brief Run the algorithm.
       
   312     ///
       
   313     /// This function runs the algorithm.
       
   314     /// It can be called more than once (e.g. if the underlying digraph
       
   315     /// and/or the arc lengths have been modified).
       
   316     ///
       
   317     /// \return \c true if a directed cycle exists in the digraph.
       
   318     ///
       
   319     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
       
   320     /// \code
       
   321     ///   return mmc.findMinMean() && mmc.findCycle();
       
   322     /// \endcode
       
   323     bool run() {
       
   324       return findMinMean() && findCycle();
       
   325     }
       
   326 
       
   327     /// \brief Find the minimum cycle mean.
       
   328     ///
       
   329     /// This function finds the minimum mean length of the directed
       
   330     /// cycles in the digraph.
       
   331     ///
       
   332     /// \return \c true if a directed cycle exists in the digraph.
       
   333     bool findMinMean() {
       
   334       // Initialize and find strongly connected components
       
   335       init();
       
   336       findComponents();
       
   337       
       
   338       // Find the minimum cycle mean in the components
       
   339       for (int comp = 0; comp < _comp_num; ++comp) {
       
   340         // Find the minimum mean cycle in the current component
       
   341         if (!buildPolicyGraph(comp)) continue;
       
   342         while (true) {
       
   343           findPolicyCycle();
       
   344           if (!computeNodeDistances()) break;
       
   345         }
       
   346         // Update the best cycle (global minimum mean cycle)
       
   347         if ( _curr_found && (!_best_found ||
       
   348              _curr_length * _best_size < _best_length * _curr_size) ) {
       
   349           _best_found = true;
       
   350           _best_length = _curr_length;
       
   351           _best_size = _curr_size;
       
   352           _best_node = _curr_node;
       
   353         }
       
   354       }
       
   355       return _best_found;
       
   356     }
       
   357 
       
   358     /// \brief Find a minimum mean directed cycle.
       
   359     ///
       
   360     /// This function finds a directed cycle of minimum mean length
       
   361     /// in the digraph using the data computed by findMinMean().
       
   362     ///
       
   363     /// \return \c true if a directed cycle exists in the digraph.
       
   364     ///
       
   365     /// \pre \ref findMinMean() must be called before using this function.
       
   366     bool findCycle() {
       
   367       if (!_best_found) return false;
       
   368       _cycle_path->addBack(_policy[_best_node]);
       
   369       for ( Node v = _best_node;
       
   370             (v = _gr.target(_policy[v])) != _best_node; ) {
       
   371         _cycle_path->addBack(_policy[v]);
       
   372       }
       
   373       return true;
       
   374     }
       
   375 
       
   376     /// @}
       
   377 
       
   378     /// \name Query Functions
       
   379     /// The results of the algorithm can be obtained using these
       
   380     /// functions.\n
       
   381     /// The algorithm should be executed before using them.
       
   382 
       
   383     /// @{
       
   384 
       
   385     /// \brief Return the total length of the found cycle.
       
   386     ///
       
   387     /// This function returns the total length of the found cycle.
       
   388     ///
       
   389     /// \pre \ref run() or \ref findMinMean() must be called before
       
   390     /// using this function.
       
   391     Value cycleLength() const {
       
   392       return static_cast<Value>(_best_length);
       
   393     }
       
   394 
       
   395     /// \brief Return the number of arcs on the found cycle.
       
   396     ///
       
   397     /// This function returns the number of arcs on the found cycle.
       
   398     ///
       
   399     /// \pre \ref run() or \ref findMinMean() must be called before
       
   400     /// using this function.
       
   401     int cycleArcNum() const {
       
   402       return _best_size;
       
   403     }
       
   404 
       
   405     /// \brief Return the mean length of the found cycle.
       
   406     ///
       
   407     /// This function returns the mean length of the found cycle.
       
   408     ///
       
   409     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
       
   410     /// following code.
       
   411     /// \code
       
   412     ///   return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum();
       
   413     /// \endcode
       
   414     ///
       
   415     /// \pre \ref run() or \ref findMinMean() must be called before
       
   416     /// using this function.
       
   417     double cycleMean() const {
       
   418       return static_cast<double>(_best_length) / _best_size;
       
   419     }
       
   420 
       
   421     /// \brief Return the found cycle.
       
   422     ///
       
   423     /// This function returns a const reference to the path structure
       
   424     /// storing the found cycle.
       
   425     ///
       
   426     /// \pre \ref run() or \ref findCycle() must be called before using
       
   427     /// this function.
       
   428     const Path& cycle() const {
       
   429       return *_cycle_path;
       
   430     }
       
   431 
       
   432     ///@}
       
   433 
       
   434   private:
       
   435 
       
   436     // Initialize
       
   437     void init() {
       
   438       if (!_cycle_path) {
       
   439         _local_path = true;
       
   440         _cycle_path = new Path;
       
   441       }
       
   442       _queue.resize(countNodes(_gr));
       
   443       _best_found = false;
       
   444       _best_length = 0;
       
   445       _best_size = 1;
       
   446       _cycle_path->clear();
       
   447     }
       
   448     
       
   449     // Find strongly connected components and initialize _comp_nodes
       
   450     // and _in_arcs
       
   451     void findComponents() {
       
   452       _comp_num = stronglyConnectedComponents(_gr, _comp);
       
   453       _comp_nodes.resize(_comp_num);
       
   454       if (_comp_num == 1) {
       
   455         _comp_nodes[0].clear();
       
   456         for (NodeIt n(_gr); n != INVALID; ++n) {
       
   457           _comp_nodes[0].push_back(n);
       
   458           _in_arcs[n].clear();
       
   459           for (InArcIt a(_gr, n); a != INVALID; ++a) {
       
   460             _in_arcs[n].push_back(a);
       
   461           }
       
   462         }
       
   463       } else {
       
   464         for (int i = 0; i < _comp_num; ++i)
       
   465           _comp_nodes[i].clear();
       
   466         for (NodeIt n(_gr); n != INVALID; ++n) {
       
   467           int k = _comp[n];
       
   468           _comp_nodes[k].push_back(n);
       
   469           _in_arcs[n].clear();
       
   470           for (InArcIt a(_gr, n); a != INVALID; ++a) {
       
   471             if (_comp[_gr.source(a)] == k) _in_arcs[n].push_back(a);
       
   472           }
       
   473         }
       
   474       }
       
   475     }
       
   476 
       
   477     // Build the policy graph in the given strongly connected component
       
   478     // (the out-degree of every node is 1)
       
   479     bool buildPolicyGraph(int comp) {
       
   480       _nodes = &(_comp_nodes[comp]);
       
   481       if (_nodes->size() < 1 ||
       
   482           (_nodes->size() == 1 && _in_arcs[(*_nodes)[0]].size() == 0)) {
       
   483         return false;
       
   484       }
       
   485       for (int i = 0; i < int(_nodes->size()); ++i) {
       
   486         _dist[(*_nodes)[i]] = INF;
       
   487       }
       
   488       Node u, v;
       
   489       Arc e;
       
   490       for (int i = 0; i < int(_nodes->size()); ++i) {
       
   491         v = (*_nodes)[i];
       
   492         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
       
   493           e = _in_arcs[v][j];
       
   494           u = _gr.source(e);
       
   495           if (_length[e] < _dist[u]) {
       
   496             _dist[u] = _length[e];
       
   497             _policy[u] = e;
       
   498           }
       
   499         }
       
   500       }
       
   501       return true;
       
   502     }
       
   503 
       
   504     // Find the minimum mean cycle in the policy graph
       
   505     void findPolicyCycle() {
       
   506       for (int i = 0; i < int(_nodes->size()); ++i) {
       
   507         _level[(*_nodes)[i]] = -1;
       
   508       }
       
   509       LargeValue clength;
       
   510       int csize;
       
   511       Node u, v;
       
   512       _curr_found = false;
       
   513       for (int i = 0; i < int(_nodes->size()); ++i) {
       
   514         u = (*_nodes)[i];
       
   515         if (_level[u] >= 0) continue;
       
   516         for (; _level[u] < 0; u = _gr.target(_policy[u])) {
       
   517           _level[u] = i;
       
   518         }
       
   519         if (_level[u] == i) {
       
   520           // A cycle is found
       
   521           clength = _length[_policy[u]];
       
   522           csize = 1;
       
   523           for (v = u; (v = _gr.target(_policy[v])) != u; ) {
       
   524             clength += _length[_policy[v]];
       
   525             ++csize;
       
   526           }
       
   527           if ( !_curr_found ||
       
   528                (clength * _curr_size < _curr_length * csize) ) {
       
   529             _curr_found = true;
       
   530             _curr_length = clength;
       
   531             _curr_size = csize;
       
   532             _curr_node = u;
       
   533           }
       
   534         }
       
   535       }
       
   536     }
       
   537 
       
   538     // Contract the policy graph and compute node distances
       
   539     bool computeNodeDistances() {
       
   540       // Find the component of the main cycle and compute node distances
       
   541       // using reverse BFS
       
   542       for (int i = 0; i < int(_nodes->size()); ++i) {
       
   543         _reached[(*_nodes)[i]] = false;
       
   544       }
       
   545       _qfront = _qback = 0;
       
   546       _queue[0] = _curr_node;
       
   547       _reached[_curr_node] = true;
       
   548       _dist[_curr_node] = 0;
       
   549       Node u, v;
       
   550       Arc e;
       
   551       while (_qfront <= _qback) {
       
   552         v = _queue[_qfront++];
       
   553         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
       
   554           e = _in_arcs[v][j];
       
   555           u = _gr.source(e);
       
   556           if (_policy[u] == e && !_reached[u]) {
       
   557             _reached[u] = true;
       
   558             _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
       
   559             _queue[++_qback] = u;
       
   560           }
       
   561         }
       
   562       }
       
   563 
       
   564       // Connect all other nodes to this component and compute node
       
   565       // distances using reverse BFS
       
   566       _qfront = 0;
       
   567       while (_qback < int(_nodes->size())-1) {
       
   568         v = _queue[_qfront++];
       
   569         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
       
   570           e = _in_arcs[v][j];
       
   571           u = _gr.source(e);
       
   572           if (!_reached[u]) {
       
   573             _reached[u] = true;
       
   574             _policy[u] = e;
       
   575             _dist[u] = _dist[v] + _length[e] * _curr_size - _curr_length;
       
   576             _queue[++_qback] = u;
       
   577           }
       
   578         }
       
   579       }
       
   580 
       
   581       // Improve node distances
       
   582       bool improved = false;
       
   583       for (int i = 0; i < int(_nodes->size()); ++i) {
       
   584         v = (*_nodes)[i];
       
   585         for (int j = 0; j < int(_in_arcs[v].size()); ++j) {
       
   586           e = _in_arcs[v][j];
       
   587           u = _gr.source(e);
       
   588           LargeValue delta = _dist[v] + _length[e] * _curr_size - _curr_length;
       
   589           if (_tolerance.less(delta, _dist[u])) {
       
   590             _dist[u] = delta;
       
   591             _policy[u] = e;
       
   592             improved = true;
       
   593           }
       
   594         }
       
   595       }
       
   596       return improved;
       
   597     }
       
   598 
       
   599   }; //class Howard
       
   600 
       
   601   ///@}
       
   602 
       
   603 } //namespace lemon
       
   604 
       
   605 #endif //LEMON_HOWARD_H