|
1 /* -*- C++ -*- |
|
2 * |
|
3 * This file is a part of LEMON, a generic C++ optimization library |
|
4 * |
|
5 * Copyright (C) 2003-2010 |
|
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 * |
|
9 * Permission to use, modify and distribute this software is granted |
|
10 * provided that this copyright notice appears in all copies. For |
|
11 * precise terms see the accompanying LICENSE file. |
|
12 * |
|
13 * This software is provided "AS IS" with no warranty of any kind, |
|
14 * express or implied, and with no claim as to its suitability for any |
|
15 * purpose. |
|
16 * |
|
17 */ |
|
18 |
|
19 #ifndef LEMON_MAX_CARDINALITY_SEARCH_H |
|
20 #define LEMON_MAX_CARDINALITY_SEARCH_H |
|
21 |
|
22 |
|
23 /// \ingroup search |
|
24 /// \file |
|
25 /// \brief Maximum cardinality search in undirected digraphs. |
|
26 |
|
27 #include <lemon/bin_heap.h> |
|
28 #include <lemon/bucket_heap.h> |
|
29 |
|
30 #include <lemon/error.h> |
|
31 #include <lemon/maps.h> |
|
32 |
|
33 #include <functional> |
|
34 |
|
35 namespace lemon { |
|
36 |
|
37 /// \brief Default traits class of MaxCardinalitySearch class. |
|
38 /// |
|
39 /// Default traits class of MaxCardinalitySearch class. |
|
40 /// \param Digraph Digraph type. |
|
41 /// \param CapacityMap Type of capacity map. |
|
42 template <typename GR, typename CAP> |
|
43 struct MaxCardinalitySearchDefaultTraits { |
|
44 /// The digraph type the algorithm runs on. |
|
45 typedef GR Digraph; |
|
46 |
|
47 template <typename CM> |
|
48 struct CapMapSelector { |
|
49 |
|
50 typedef CM CapacityMap; |
|
51 |
|
52 static CapacityMap *createCapacityMap(const Digraph& g) { |
|
53 return new CapacityMap(g); |
|
54 } |
|
55 }; |
|
56 |
|
57 template <typename CM> |
|
58 struct CapMapSelector<ConstMap<CM, Const<int, 1> > > { |
|
59 |
|
60 typedef ConstMap<CM, Const<int, 1> > CapacityMap; |
|
61 |
|
62 static CapacityMap *createCapacityMap(const Digraph&) { |
|
63 return new CapacityMap; |
|
64 } |
|
65 }; |
|
66 |
|
67 /// \brief The type of the map that stores the arc capacities. |
|
68 /// |
|
69 /// The type of the map that stores the arc capacities. |
|
70 /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
71 typedef typename CapMapSelector<CAP>::CapacityMap CapacityMap; |
|
72 |
|
73 /// \brief The type of the capacity of the arcs. |
|
74 typedef typename CapacityMap::Value Value; |
|
75 |
|
76 /// \brief Instantiates a CapacityMap. |
|
77 /// |
|
78 /// This function instantiates a \ref CapacityMap. |
|
79 /// \param digraph is the digraph, to which we would like to define |
|
80 /// the CapacityMap. |
|
81 static CapacityMap *createCapacityMap(const Digraph& digraph) { |
|
82 return CapMapSelector<CapacityMap>::createCapacityMap(digraph); |
|
83 } |
|
84 |
|
85 /// \brief The cross reference type used by heap. |
|
86 /// |
|
87 /// The cross reference type used by heap. |
|
88 /// Usually it is \c Digraph::NodeMap<int>. |
|
89 typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
|
90 |
|
91 /// \brief Instantiates a HeapCrossRef. |
|
92 /// |
|
93 /// This function instantiates a \ref HeapCrossRef. |
|
94 /// \param digraph is the digraph, to which we would like to define the |
|
95 /// HeapCrossRef. |
|
96 static HeapCrossRef *createHeapCrossRef(const Digraph &digraph) { |
|
97 return new HeapCrossRef(digraph); |
|
98 } |
|
99 |
|
100 template <typename CapacityMap> |
|
101 struct HeapSelector { |
|
102 template <typename Value, typename Ref> |
|
103 struct Selector { |
|
104 typedef BinHeap<Value, Ref, std::greater<Value> > Heap; |
|
105 }; |
|
106 }; |
|
107 |
|
108 template <typename CapacityKey> |
|
109 struct HeapSelector<ConstMap<CapacityKey, Const<int, 1> > > { |
|
110 template <typename Value, typename Ref> |
|
111 struct Selector { |
|
112 typedef BucketHeap<Ref, false > Heap; |
|
113 }; |
|
114 }; |
|
115 |
|
116 /// \brief The heap type used by MaxCardinalitySearch algorithm. |
|
117 /// |
|
118 /// The heap type used by MaxCardinalitySearch algorithm. It should |
|
119 /// maximalize the priorities. The default heap type is |
|
120 /// the \ref BinHeap, but it is specialized when the |
|
121 /// CapacityMap is ConstMap<Digraph::Node, Const<int, 1> > |
|
122 /// to BucketHeap. |
|
123 /// |
|
124 /// \sa MaxCardinalitySearch |
|
125 typedef typename HeapSelector<CapacityMap> |
|
126 ::template Selector<Value, HeapCrossRef> |
|
127 ::Heap Heap; |
|
128 |
|
129 /// \brief Instantiates a Heap. |
|
130 /// |
|
131 /// This function instantiates a \ref Heap. |
|
132 /// \param crossref The cross reference of the heap. |
|
133 static Heap *createHeap(HeapCrossRef& crossref) { |
|
134 return new Heap(crossref); |
|
135 } |
|
136 |
|
137 /// \brief The type of the map that stores whether a node is processed. |
|
138 /// |
|
139 /// The type of the map that stores whether a node is processed. |
|
140 /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
141 /// By default it is a NullMap. |
|
142 typedef NullMap<typename Digraph::Node, bool> ProcessedMap; |
|
143 |
|
144 /// \brief Instantiates a ProcessedMap. |
|
145 /// |
|
146 /// This function instantiates a \ref ProcessedMap. |
|
147 /// \param digraph is the digraph, to which |
|
148 /// we would like to define the \ref ProcessedMap |
|
149 #ifdef DOXYGEN |
|
150 static ProcessedMap *createProcessedMap(const Digraph &digraph) |
|
151 #else |
|
152 static ProcessedMap *createProcessedMap(const Digraph &) |
|
153 #endif |
|
154 { |
|
155 return new ProcessedMap(); |
|
156 } |
|
157 |
|
158 /// \brief The type of the map that stores the cardinalities of the nodes. |
|
159 /// |
|
160 /// The type of the map that stores the cardinalities of the nodes. |
|
161 /// It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
162 typedef typename Digraph::template NodeMap<Value> CardinalityMap; |
|
163 |
|
164 /// \brief Instantiates a CardinalityMap. |
|
165 /// |
|
166 /// This function instantiates a \ref CardinalityMap. |
|
167 /// \param digraph is the digraph, to which we would like to define the \ref |
|
168 /// CardinalityMap |
|
169 static CardinalityMap *createCardinalityMap(const Digraph &digraph) { |
|
170 return new CardinalityMap(digraph); |
|
171 } |
|
172 |
|
173 |
|
174 }; |
|
175 |
|
176 /// \ingroup search |
|
177 /// |
|
178 /// \brief Maximum Cardinality Search algorithm class. |
|
179 /// |
|
180 /// This class provides an efficient implementation of Maximum Cardinality |
|
181 /// Search algorithm. The maximum cardinality search first chooses any |
|
182 /// node of the digraph. Then every time it chooses one unprocessed node |
|
183 /// with maximum cardinality, i.e the sum of capacities on out arcs to the nodes |
|
184 /// which were previusly processed. |
|
185 /// If there is a cut in the digraph the algorithm should choose |
|
186 /// again any unprocessed node of the digraph. |
|
187 |
|
188 /// The arc capacities are passed to the algorithm using a |
|
189 /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
190 /// kind of capacity. |
|
191 /// |
|
192 /// The type of the capacity is determined by the \ref |
|
193 /// concepts::ReadMap::Value "Value" of the capacity map. |
|
194 /// |
|
195 /// It is also possible to change the underlying priority heap. |
|
196 /// |
|
197 /// |
|
198 /// \param GR The digraph type the algorithm runs on. The value of |
|
199 /// Digraph is not used directly by the search algorithm, it |
|
200 /// is only passed to \ref MaxCardinalitySearchDefaultTraits. |
|
201 /// \param CAP This read-only ArcMap determines the capacities of |
|
202 /// the arcs. It is read once for each arc, so the map may involve in |
|
203 /// relatively time consuming process to compute the arc capacity if |
|
204 /// it is necessary. The default map type is \ref |
|
205 /// ConstMap "ConstMap<concepts::Digraph::Arc, Const<int,1> >". The value |
|
206 /// of CapacityMap is not used directly by search algorithm, it is only |
|
207 /// passed to \ref MaxCardinalitySearchDefaultTraits. |
|
208 /// \param TR Traits class to set various data types used by the |
|
209 /// algorithm. The default traits class is |
|
210 /// \ref MaxCardinalitySearchDefaultTraits |
|
211 /// "MaxCardinalitySearchDefaultTraits<GR, CAP>". |
|
212 /// See \ref MaxCardinalitySearchDefaultTraits |
|
213 /// for the documentation of a MaxCardinalitySearch traits class. |
|
214 |
|
215 #ifdef DOXYGEN |
|
216 template <typename GR, typename CAP, typename TR> |
|
217 #else |
|
218 template <typename GR, typename CAP = |
|
219 ConstMap<typename GR::Arc, Const<int,1> >, |
|
220 typename TR = |
|
221 MaxCardinalitySearchDefaultTraits<GR, CAP> > |
|
222 #endif |
|
223 class MaxCardinalitySearch { |
|
224 public: |
|
225 |
|
226 typedef TR Traits; |
|
227 ///The type of the underlying digraph. |
|
228 typedef typename Traits::Digraph Digraph; |
|
229 |
|
230 ///The type of the capacity of the arcs. |
|
231 typedef typename Traits::CapacityMap::Value Value; |
|
232 ///The type of the map that stores the arc capacities. |
|
233 typedef typename Traits::CapacityMap CapacityMap; |
|
234 ///The type of the map indicating if a node is processed. |
|
235 typedef typename Traits::ProcessedMap ProcessedMap; |
|
236 ///The type of the map that stores the cardinalities of the nodes. |
|
237 typedef typename Traits::CardinalityMap CardinalityMap; |
|
238 ///The cross reference type used for the current heap. |
|
239 typedef typename Traits::HeapCrossRef HeapCrossRef; |
|
240 ///The heap type used by the algorithm. It maximizes the priorities. |
|
241 typedef typename Traits::Heap Heap; |
|
242 private: |
|
243 // Pointer to the underlying digraph. |
|
244 const Digraph *_graph; |
|
245 // Pointer to the capacity map |
|
246 const CapacityMap *_capacity; |
|
247 // Indicates if \ref _capacity is locally allocated (\c true) or not. |
|
248 bool local_capacity; |
|
249 // Pointer to the map of cardinality. |
|
250 CardinalityMap *_cardinality; |
|
251 // Indicates if \ref _cardinality is locally allocated (\c true) or not. |
|
252 bool local_cardinality; |
|
253 // Pointer to the map of processed status of the nodes. |
|
254 ProcessedMap *_processed; |
|
255 // Indicates if \ref _processed is locally allocated (\c true) or not. |
|
256 bool local_processed; |
|
257 // Pointer to the heap cross references. |
|
258 HeapCrossRef *_heap_cross_ref; |
|
259 // Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not. |
|
260 bool local_heap_cross_ref; |
|
261 // Pointer to the heap. |
|
262 Heap *_heap; |
|
263 // Indicates if \ref _heap is locally allocated (\c true) or not. |
|
264 bool local_heap; |
|
265 |
|
266 public : |
|
267 |
|
268 typedef MaxCardinalitySearch Create; |
|
269 |
|
270 ///\name Named template parameters |
|
271 |
|
272 ///@{ |
|
273 |
|
274 template <class T> |
|
275 struct DefCapacityMapTraits : public Traits { |
|
276 typedef T CapacityMap; |
|
277 static CapacityMap *createCapacityMap(const Digraph &) { |
|
278 LEMON_ASSERT(false,"Uninitialized parameter."); |
|
279 return 0; |
|
280 } |
|
281 }; |
|
282 /// \brief \ref named-templ-param "Named parameter" for setting |
|
283 /// CapacityMap type |
|
284 /// |
|
285 /// \ref named-templ-param "Named parameter" for setting CapacityMap type |
|
286 /// for the algorithm. |
|
287 template <class T> |
|
288 struct SetCapacityMap |
|
289 : public MaxCardinalitySearch<Digraph, CapacityMap, |
|
290 DefCapacityMapTraits<T> > { |
|
291 typedef MaxCardinalitySearch<Digraph, CapacityMap, |
|
292 DefCapacityMapTraits<T> > Create; |
|
293 }; |
|
294 |
|
295 template <class T> |
|
296 struct DefCardinalityMapTraits : public Traits { |
|
297 typedef T CardinalityMap; |
|
298 static CardinalityMap *createCardinalityMap(const Digraph &) |
|
299 { |
|
300 LEMON_ASSERT(false,"Uninitialized parameter."); |
|
301 return 0; |
|
302 } |
|
303 }; |
|
304 /// \brief \ref named-templ-param "Named parameter" for setting |
|
305 /// CardinalityMap type |
|
306 /// |
|
307 /// \ref named-templ-param "Named parameter" for setting CardinalityMap |
|
308 /// type for the algorithm. |
|
309 template <class T> |
|
310 struct SetCardinalityMap |
|
311 : public MaxCardinalitySearch<Digraph, CapacityMap, |
|
312 DefCardinalityMapTraits<T> > { |
|
313 typedef MaxCardinalitySearch<Digraph, CapacityMap, |
|
314 DefCardinalityMapTraits<T> > Create; |
|
315 }; |
|
316 |
|
317 template <class T> |
|
318 struct DefProcessedMapTraits : public Traits { |
|
319 typedef T ProcessedMap; |
|
320 static ProcessedMap *createProcessedMap(const Digraph &) { |
|
321 LEMON_ASSERT(false,"Uninitialized parameter."); |
|
322 return 0; |
|
323 } |
|
324 }; |
|
325 /// \brief \ref named-templ-param "Named parameter" for setting |
|
326 /// ProcessedMap type |
|
327 /// |
|
328 /// \ref named-templ-param "Named parameter" for setting ProcessedMap type |
|
329 /// for the algorithm. |
|
330 template <class T> |
|
331 struct SetProcessedMap |
|
332 : public MaxCardinalitySearch<Digraph, CapacityMap, |
|
333 DefProcessedMapTraits<T> > { |
|
334 typedef MaxCardinalitySearch<Digraph, CapacityMap, |
|
335 DefProcessedMapTraits<T> > Create; |
|
336 }; |
|
337 |
|
338 template <class H, class CR> |
|
339 struct DefHeapTraits : public Traits { |
|
340 typedef CR HeapCrossRef; |
|
341 typedef H Heap; |
|
342 static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
|
343 LEMON_ASSERT(false,"Uninitialized parameter."); |
|
344 return 0; |
|
345 } |
|
346 static Heap *createHeap(HeapCrossRef &) { |
|
347 LEMON_ASSERT(false,"Uninitialized parameter."); |
|
348 return 0; |
|
349 } |
|
350 }; |
|
351 /// \brief \ref named-templ-param "Named parameter" for setting heap |
|
352 /// and cross reference type |
|
353 /// |
|
354 /// \ref named-templ-param "Named parameter" for setting heap and cross |
|
355 /// reference type for the algorithm. |
|
356 template <class H, class CR = typename Digraph::template NodeMap<int> > |
|
357 struct SetHeap |
|
358 : public MaxCardinalitySearch<Digraph, CapacityMap, |
|
359 DefHeapTraits<H, CR> > { |
|
360 typedef MaxCardinalitySearch< Digraph, CapacityMap, |
|
361 DefHeapTraits<H, CR> > Create; |
|
362 }; |
|
363 |
|
364 template <class H, class CR> |
|
365 struct DefStandardHeapTraits : public Traits { |
|
366 typedef CR HeapCrossRef; |
|
367 typedef H Heap; |
|
368 static HeapCrossRef *createHeapCrossRef(const Digraph &digraph) { |
|
369 return new HeapCrossRef(digraph); |
|
370 } |
|
371 static Heap *createHeap(HeapCrossRef &crossref) { |
|
372 return new Heap(crossref); |
|
373 } |
|
374 }; |
|
375 |
|
376 /// \brief \ref named-templ-param "Named parameter" for setting heap and |
|
377 /// cross reference type with automatic allocation |
|
378 /// |
|
379 /// \ref named-templ-param "Named parameter" for setting heap and cross |
|
380 /// reference type. It can allocate the heap and the cross reference |
|
381 /// object if the cross reference's constructor waits for the digraph as |
|
382 /// parameter and the heap's constructor waits for the cross reference. |
|
383 template <class H, class CR = typename Digraph::template NodeMap<int> > |
|
384 struct SetStandardHeap |
|
385 : public MaxCardinalitySearch<Digraph, CapacityMap, |
|
386 DefStandardHeapTraits<H, CR> > { |
|
387 typedef MaxCardinalitySearch<Digraph, CapacityMap, |
|
388 DefStandardHeapTraits<H, CR> > |
|
389 Create; |
|
390 }; |
|
391 |
|
392 ///@} |
|
393 |
|
394 |
|
395 protected: |
|
396 |
|
397 MaxCardinalitySearch() {} |
|
398 |
|
399 public: |
|
400 |
|
401 /// \brief Constructor. |
|
402 /// |
|
403 ///\param digraph the digraph the algorithm will run on. |
|
404 ///\param capacity the capacity map used by the algorithm. |
|
405 ///When no capacity map given, a constant 1 capacity map will |
|
406 ///be allocated. |
|
407 #ifdef DOXYGEN |
|
408 MaxCardinalitySearch(const Digraph& digraph, |
|
409 const CapacityMap& capacity=0 ) : |
|
410 #else |
|
411 MaxCardinalitySearch(const Digraph& digraph, |
|
412 const CapacityMap& capacity=*static_cast<const CapacityMap*>(0) ) : |
|
413 #endif |
|
414 _graph(&digraph), |
|
415 _capacity(&capacity), local_capacity(false), |
|
416 _cardinality(0), local_cardinality(false), |
|
417 _processed(0), local_processed(false), |
|
418 _heap_cross_ref(0), local_heap_cross_ref(false), |
|
419 _heap(0), local_heap(false) |
|
420 { } |
|
421 |
|
422 /// \brief Destructor. |
|
423 ~MaxCardinalitySearch() { |
|
424 if(local_capacity) delete _capacity; |
|
425 if(local_cardinality) delete _cardinality; |
|
426 if(local_processed) delete _processed; |
|
427 if(local_heap_cross_ref) delete _heap_cross_ref; |
|
428 if(local_heap) delete _heap; |
|
429 } |
|
430 |
|
431 /// \brief Sets the capacity map. |
|
432 /// |
|
433 /// Sets the capacity map. |
|
434 /// \return <tt> (*this) </tt> |
|
435 MaxCardinalitySearch &capacityMap(const CapacityMap &m) { |
|
436 if (local_capacity) { |
|
437 delete _capacity; |
|
438 local_capacity=false; |
|
439 } |
|
440 _capacity=&m; |
|
441 return *this; |
|
442 } |
|
443 |
|
444 /// \brief Returns a const reference to the capacity map. |
|
445 /// |
|
446 /// Returns a const reference to the capacity map used by |
|
447 /// the algorithm. |
|
448 const CapacityMap &capacityMap() const { |
|
449 return *_capacity; |
|
450 } |
|
451 |
|
452 /// \brief Sets the map storing the cardinalities calculated by the |
|
453 /// algorithm. |
|
454 /// |
|
455 /// Sets the map storing the cardinalities calculated by the algorithm. |
|
456 /// If you don't use this function before calling \ref run(), |
|
457 /// it will allocate one. The destuctor deallocates this |
|
458 /// automatically allocated map, of course. |
|
459 /// \return <tt> (*this) </tt> |
|
460 MaxCardinalitySearch &cardinalityMap(CardinalityMap &m) { |
|
461 if(local_cardinality) { |
|
462 delete _cardinality; |
|
463 local_cardinality=false; |
|
464 } |
|
465 _cardinality = &m; |
|
466 return *this; |
|
467 } |
|
468 |
|
469 /// \brief Sets the map storing the processed nodes. |
|
470 /// |
|
471 /// Sets the map storing the processed nodes. |
|
472 /// If you don't use this function before calling \ref run(), |
|
473 /// it will allocate one. The destuctor deallocates this |
|
474 /// automatically allocated map, of course. |
|
475 /// \return <tt> (*this) </tt> |
|
476 MaxCardinalitySearch &processedMap(ProcessedMap &m) |
|
477 { |
|
478 if(local_processed) { |
|
479 delete _processed; |
|
480 local_processed=false; |
|
481 } |
|
482 _processed = &m; |
|
483 return *this; |
|
484 } |
|
485 |
|
486 /// \brief Returns a const reference to the cardinality map. |
|
487 /// |
|
488 /// Returns a const reference to the cardinality map used by |
|
489 /// the algorithm. |
|
490 const ProcessedMap &processedMap() const { |
|
491 return *_processed; |
|
492 } |
|
493 |
|
494 /// \brief Sets the heap and the cross reference used by algorithm. |
|
495 /// |
|
496 /// Sets the heap and the cross reference used by algorithm. |
|
497 /// If you don't use this function before calling \ref run(), |
|
498 /// it will allocate one. The destuctor deallocates this |
|
499 /// automatically allocated map, of course. |
|
500 /// \return <tt> (*this) </tt> |
|
501 MaxCardinalitySearch &heap(Heap& hp, HeapCrossRef &cr) { |
|
502 if(local_heap_cross_ref) { |
|
503 delete _heap_cross_ref; |
|
504 local_heap_cross_ref = false; |
|
505 } |
|
506 _heap_cross_ref = &cr; |
|
507 if(local_heap) { |
|
508 delete _heap; |
|
509 local_heap = false; |
|
510 } |
|
511 _heap = &hp; |
|
512 return *this; |
|
513 } |
|
514 |
|
515 /// \brief Returns a const reference to the heap. |
|
516 /// |
|
517 /// Returns a const reference to the heap used by |
|
518 /// the algorithm. |
|
519 const Heap &heap() const { |
|
520 return *_heap; |
|
521 } |
|
522 |
|
523 /// \brief Returns a const reference to the cross reference. |
|
524 /// |
|
525 /// Returns a const reference to the cross reference |
|
526 /// of the heap. |
|
527 const HeapCrossRef &heapCrossRef() const { |
|
528 return *_heap_cross_ref; |
|
529 } |
|
530 |
|
531 private: |
|
532 |
|
533 typedef typename Digraph::Node Node; |
|
534 typedef typename Digraph::NodeIt NodeIt; |
|
535 typedef typename Digraph::Arc Arc; |
|
536 typedef typename Digraph::InArcIt InArcIt; |
|
537 |
|
538 void create_maps() { |
|
539 if(!_capacity) { |
|
540 local_capacity = true; |
|
541 _capacity = Traits::createCapacityMap(*_graph); |
|
542 } |
|
543 if(!_cardinality) { |
|
544 local_cardinality = true; |
|
545 _cardinality = Traits::createCardinalityMap(*_graph); |
|
546 } |
|
547 if(!_processed) { |
|
548 local_processed = true; |
|
549 _processed = Traits::createProcessedMap(*_graph); |
|
550 } |
|
551 if (!_heap_cross_ref) { |
|
552 local_heap_cross_ref = true; |
|
553 _heap_cross_ref = Traits::createHeapCrossRef(*_graph); |
|
554 } |
|
555 if (!_heap) { |
|
556 local_heap = true; |
|
557 _heap = Traits::createHeap(*_heap_cross_ref); |
|
558 } |
|
559 } |
|
560 |
|
561 void finalizeNodeData(Node node, Value capacity) { |
|
562 _processed->set(node, true); |
|
563 _cardinality->set(node, capacity); |
|
564 } |
|
565 |
|
566 public: |
|
567 /// \name Execution control |
|
568 /// The simplest way to execute the algorithm is to use |
|
569 /// one of the member functions called \ref run(). |
|
570 /// \n |
|
571 /// If you need more control on the execution, |
|
572 /// first you must call \ref init(), then you can add several source nodes |
|
573 /// with \ref addSource(). |
|
574 /// Finally \ref start() will perform the computation. |
|
575 |
|
576 ///@{ |
|
577 |
|
578 /// \brief Initializes the internal data structures. |
|
579 /// |
|
580 /// Initializes the internal data structures, and clears the heap. |
|
581 void init() { |
|
582 create_maps(); |
|
583 _heap->clear(); |
|
584 for (NodeIt it(*_graph) ; it != INVALID ; ++it) { |
|
585 _processed->set(it, false); |
|
586 _heap_cross_ref->set(it, Heap::PRE_HEAP); |
|
587 } |
|
588 } |
|
589 |
|
590 /// \brief Adds a new source node. |
|
591 /// |
|
592 /// Adds a new source node to the priority heap. |
|
593 /// |
|
594 /// It checks if the node has not yet been added to the heap. |
|
595 void addSource(Node source, Value capacity = 0) { |
|
596 if(_heap->state(source) == Heap::PRE_HEAP) { |
|
597 _heap->push(source, capacity); |
|
598 } |
|
599 } |
|
600 |
|
601 /// \brief Processes the next node in the priority heap |
|
602 /// |
|
603 /// Processes the next node in the priority heap. |
|
604 /// |
|
605 /// \return The processed node. |
|
606 /// |
|
607 /// \warning The priority heap must not be empty! |
|
608 Node processNextNode() { |
|
609 Node node = _heap->top(); |
|
610 finalizeNodeData(node, _heap->prio()); |
|
611 _heap->pop(); |
|
612 |
|
613 for (InArcIt it(*_graph, node); it != INVALID; ++it) { |
|
614 Node source = _graph->source(it); |
|
615 switch (_heap->state(source)) { |
|
616 case Heap::PRE_HEAP: |
|
617 _heap->push(source, (*_capacity)[it]); |
|
618 break; |
|
619 case Heap::IN_HEAP: |
|
620 _heap->decrease(source, (*_heap)[source] + (*_capacity)[it]); |
|
621 break; |
|
622 case Heap::POST_HEAP: |
|
623 break; |
|
624 } |
|
625 } |
|
626 return node; |
|
627 } |
|
628 |
|
629 /// \brief Next node to be processed. |
|
630 /// |
|
631 /// Next node to be processed. |
|
632 /// |
|
633 /// \return The next node to be processed or INVALID if the |
|
634 /// priority heap is empty. |
|
635 Node nextNode() { |
|
636 return !_heap->empty() ? _heap->top() : INVALID; |
|
637 } |
|
638 |
|
639 /// \brief Returns \c false if there are nodes |
|
640 /// to be processed in the priority heap |
|
641 /// |
|
642 /// Returns \c false if there are nodes |
|
643 /// to be processed in the priority heap |
|
644 bool emptyQueue() { return _heap->empty(); } |
|
645 /// \brief Returns the number of the nodes to be processed |
|
646 /// in the priority heap |
|
647 /// |
|
648 /// Returns the number of the nodes to be processed in the priority heap |
|
649 int emptySize() { return _heap->size(); } |
|
650 |
|
651 /// \brief Executes the algorithm. |
|
652 /// |
|
653 /// Executes the algorithm. |
|
654 /// |
|
655 ///\pre init() must be called and at least one node should be added |
|
656 /// with addSource() before using this function. |
|
657 /// |
|
658 /// This method runs the Maximum Cardinality Search algorithm from the |
|
659 /// source node(s). |
|
660 void start() { |
|
661 while ( !_heap->empty() ) processNextNode(); |
|
662 } |
|
663 |
|
664 /// \brief Executes the algorithm until \c dest is reached. |
|
665 /// |
|
666 /// Executes the algorithm until \c dest is reached. |
|
667 /// |
|
668 /// \pre init() must be called and at least one node should be added |
|
669 /// with addSource() before using this function. |
|
670 /// |
|
671 /// This method runs the %MaxCardinalitySearch algorithm from the source |
|
672 /// nodes. |
|
673 void start(Node dest) { |
|
674 while ( !_heap->empty() && _heap->top()!=dest ) processNextNode(); |
|
675 if ( !_heap->empty() ) finalizeNodeData(_heap->top(), _heap->prio()); |
|
676 } |
|
677 |
|
678 /// \brief Executes the algorithm until a condition is met. |
|
679 /// |
|
680 /// Executes the algorithm until a condition is met. |
|
681 /// |
|
682 /// \pre init() must be called and at least one node should be added |
|
683 /// with addSource() before using this function. |
|
684 /// |
|
685 /// \param nm must be a bool (or convertible) node map. The algorithm |
|
686 /// will stop when it reaches a node \c v with <tt>nm[v]==true</tt>. |
|
687 template <typename NodeBoolMap> |
|
688 void start(const NodeBoolMap &nm) { |
|
689 while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
|
690 if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio()); |
|
691 } |
|
692 |
|
693 /// \brief Runs the maximum cardinality search algorithm from node \c s. |
|
694 /// |
|
695 /// This method runs the %MaxCardinalitySearch algorithm from a root |
|
696 /// node \c s. |
|
697 /// |
|
698 ///\note d.run(s) is just a shortcut of the following code. |
|
699 ///\code |
|
700 /// d.init(); |
|
701 /// d.addSource(s); |
|
702 /// d.start(); |
|
703 ///\endcode |
|
704 void run(Node s) { |
|
705 init(); |
|
706 addSource(s); |
|
707 start(); |
|
708 } |
|
709 |
|
710 /// \brief Runs the maximum cardinality search algorithm for the |
|
711 /// whole digraph. |
|
712 /// |
|
713 /// This method runs the %MaxCardinalitySearch algorithm from all |
|
714 /// unprocessed node of the digraph. |
|
715 /// |
|
716 ///\note d.run(s) is just a shortcut of the following code. |
|
717 ///\code |
|
718 /// d.init(); |
|
719 /// for (NodeIt it(digraph); it != INVALID; ++it) { |
|
720 /// if (!d.reached(it)) { |
|
721 /// d.addSource(s); |
|
722 /// d.start(); |
|
723 /// } |
|
724 /// } |
|
725 ///\endcode |
|
726 void run() { |
|
727 init(); |
|
728 for (NodeIt it(*_graph); it != INVALID; ++it) { |
|
729 if (!reached(it)) { |
|
730 addSource(it); |
|
731 start(); |
|
732 } |
|
733 } |
|
734 } |
|
735 |
|
736 ///@} |
|
737 |
|
738 /// \name Query Functions |
|
739 /// The results of the maximum cardinality search algorithm can be |
|
740 /// obtained using these functions. |
|
741 /// \n |
|
742 /// Before the use of these functions, either run() or start() must be |
|
743 /// called. |
|
744 |
|
745 ///@{ |
|
746 |
|
747 /// \brief The cardinality of a node. |
|
748 /// |
|
749 /// Returns the cardinality of a node. |
|
750 /// \pre \ref run() must be called before using this function. |
|
751 /// \warning If node \c v in unreachable from the root the return value |
|
752 /// of this funcion is undefined. |
|
753 Value cardinality(Node node) const { return (*_cardinality)[node]; } |
|
754 |
|
755 /// \brief The current cardinality of a node. |
|
756 /// |
|
757 /// Returns the current cardinality of a node. |
|
758 /// \pre the given node should be reached but not processed |
|
759 Value currentCardinality(Node node) const { return (*_heap)[node]; } |
|
760 |
|
761 /// \brief Returns a reference to the NodeMap of cardinalities. |
|
762 /// |
|
763 /// Returns a reference to the NodeMap of cardinalities. \pre \ref run() |
|
764 /// must be called before using this function. |
|
765 const CardinalityMap &cardinalityMap() const { return *_cardinality;} |
|
766 |
|
767 /// \brief Checks if a node is reachable from the root. |
|
768 /// |
|
769 /// Returns \c true if \c v is reachable from the root. |
|
770 /// \warning The source nodes are initated as unreached. |
|
771 /// \pre \ref run() must be called before using this function. |
|
772 bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; } |
|
773 |
|
774 /// \brief Checks if a node is processed. |
|
775 /// |
|
776 /// Returns \c true if \c v is processed, i.e. the shortest |
|
777 /// path to \c v has already found. |
|
778 /// \pre \ref run() must be called before using this function. |
|
779 bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; } |
|
780 |
|
781 ///@} |
|
782 }; |
|
783 |
|
784 } |
|
785 |
|
786 #endif |