1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
3 * This file is a part of LEMON, a generic C++ optimization library.
5 * Copyright (C) 2003-2009
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_NETWORK_SIMPLEX_H
20 #define LEMON_NETWORK_SIMPLEX_H
22 /// \ingroup min_cost_flow_algs
25 /// \brief Network Simplex algorithm for finding a minimum cost flow.
31 #include <lemon/core.h>
32 #include <lemon/math.h>
36 /// \addtogroup min_cost_flow_algs
39 /// \brief Implementation of the primal Network Simplex algorithm
40 /// for finding a \ref min_cost_flow "minimum cost flow".
42 /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43 /// for finding a \ref min_cost_flow "minimum cost flow".
44 /// This algorithm is a specialized version of the linear programming
45 /// simplex method directly for the minimum cost flow problem.
46 /// It is one of the most efficient solution methods.
48 /// In general this class is the fastest implementation available
49 /// in LEMON for the minimum cost flow problem.
50 /// Moreover it supports both directions of the supply/demand inequality
51 /// constraints. For more information see \ref SupplyType.
53 /// Most of the parameters of the problem (except for the digraph)
54 /// can be given using separate functions, and the algorithm can be
55 /// executed using the \ref run() function. If some parameters are not
56 /// specified, then default values will be used.
58 /// \tparam GR The digraph type the algorithm runs on.
59 /// \tparam V The value type used for flow amounts, capacity bounds
60 /// and supply values in the algorithm. By default it is \c int.
61 /// \tparam C The value type used for costs and potentials in the
62 /// algorithm. By default it is the same as \c V.
64 /// \warning Both value types must be signed and all input data must
67 /// \note %NetworkSimplex provides five different pivot rule
68 /// implementations, from which the most efficient one is used
69 /// by default. For more information see \ref PivotRule.
70 template <typename GR, typename V = int, typename C = V>
75 /// The type of the flow amounts, capacity bounds and supply values
77 /// The type of the arc costs
82 /// \brief Problem type constants for the \c run() function.
84 /// Enum type containing the problem type constants that can be
85 /// returned by the \ref run() function of the algorithm.
87 /// The problem has no feasible solution (flow).
89 /// The problem has optimal solution (i.e. it is feasible and
90 /// bounded), and the algorithm has found optimal flow and node
91 /// potentials (primal and dual solutions).
93 /// The objective function of the problem is unbounded, i.e.
94 /// there is a directed cycle having negative total cost and
95 /// infinite upper bound.
99 /// \brief Constants for selecting the type of the supply constraints.
101 /// Enum type containing constants for selecting the supply type,
102 /// i.e. the direction of the inequalities in the supply/demand
103 /// constraints of the \ref min_cost_flow "minimum cost flow problem".
105 /// The default supply type is \c GEQ, the \c LEQ type can be
106 /// selected using \ref supplyType().
107 /// The equality form is a special case of both supply types.
109 /// This option means that there are <em>"greater or equal"</em>
110 /// supply/demand constraints in the definition of the problem.
112 /// This option means that there are <em>"less or equal"</em>
113 /// supply/demand constraints in the definition of the problem.
117 /// \brief Constants for selecting the pivot rule.
119 /// Enum type containing constants for selecting the pivot rule for
120 /// the \ref run() function.
122 /// \ref NetworkSimplex provides five different pivot rule
123 /// implementations that significantly affect the running time
124 /// of the algorithm.
125 /// By default \ref BLOCK_SEARCH "Block Search" is used, which
126 /// proved to be the most efficient and the most robust on various
127 /// test inputs according to our benchmark tests.
128 /// However another pivot rule can be selected using the \ref run()
129 /// function with the proper parameter.
132 /// The First Eligible pivot rule.
133 /// The next eligible arc is selected in a wraparound fashion
134 /// in every iteration.
137 /// The Best Eligible pivot rule.
138 /// The best eligible arc is selected in every iteration.
141 /// The Block Search pivot rule.
142 /// A specified number of arcs are examined in every iteration
143 /// in a wraparound fashion and the best eligible arc is selected
147 /// The Candidate List pivot rule.
148 /// In a major iteration a candidate list is built from eligible arcs
149 /// in a wraparound fashion and in the following minor iterations
150 /// the best eligible arc is selected from this list.
153 /// The Altering Candidate List pivot rule.
154 /// It is a modified version of the Candidate List method.
155 /// It keeps only the several best eligible arcs from the former
156 /// candidate list and extends this list in every iteration.
162 TEMPLATE_DIGRAPH_TYPEDEFS(GR);
164 typedef std::vector<int> IntVector;
165 typedef std::vector<bool> BoolVector;
166 typedef std::vector<Value> ValueVector;
167 typedef std::vector<Cost> CostVector;
169 // State constants for arcs
178 // Data related to the underlying digraph
185 // Parameters of the problem
190 // Data structures for storing the digraph
205 // Data for storing the spanning tree structure
209 IntVector _rev_thread;
211 IntVector _last_succ;
212 IntVector _dirty_revs;
217 // Temporary data used in the current pivot iteration
218 int in_arc, join, u_in, v_in, u_out, v_out;
219 int first, second, right, last;
220 int stem, par_stem, new_stem;
225 /// \brief Constant for infinite upper bounds (capacities).
227 /// Constant for infinite upper bounds (capacities).
228 /// It is \c std::numeric_limits<Value>::infinity() if available,
229 /// \c std::numeric_limits<Value>::max() otherwise.
234 // Implementation of the First Eligible pivot rule
235 class FirstEligiblePivotRule
239 // References to the NetworkSimplex class
240 const IntVector &_source;
241 const IntVector &_target;
242 const CostVector &_cost;
243 const IntVector &_state;
244 const CostVector &_pi;
254 FirstEligiblePivotRule(NetworkSimplex &ns) :
255 _source(ns._source), _target(ns._target),
256 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
257 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
261 // Find next entering arc
262 bool findEnteringArc() {
264 for (int e = _next_arc; e < _search_arc_num; ++e) {
265 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
272 for (int e = 0; e < _next_arc; ++e) {
273 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
283 }; //class FirstEligiblePivotRule
286 // Implementation of the Best Eligible pivot rule
287 class BestEligiblePivotRule
291 // References to the NetworkSimplex class
292 const IntVector &_source;
293 const IntVector &_target;
294 const CostVector &_cost;
295 const IntVector &_state;
296 const CostVector &_pi;
303 BestEligiblePivotRule(NetworkSimplex &ns) :
304 _source(ns._source), _target(ns._target),
305 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
306 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
309 // Find next entering arc
310 bool findEnteringArc() {
312 for (int e = 0; e < _search_arc_num; ++e) {
313 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
322 }; //class BestEligiblePivotRule
325 // Implementation of the Block Search pivot rule
326 class BlockSearchPivotRule
330 // References to the NetworkSimplex class
331 const IntVector &_source;
332 const IntVector &_target;
333 const CostVector &_cost;
334 const IntVector &_state;
335 const CostVector &_pi;
346 BlockSearchPivotRule(NetworkSimplex &ns) :
347 _source(ns._source), _target(ns._target),
348 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
349 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
352 // The main parameters of the pivot rule
353 const double BLOCK_SIZE_FACTOR = 0.5;
354 const int MIN_BLOCK_SIZE = 10;
356 _block_size = std::max( int(BLOCK_SIZE_FACTOR *
357 std::sqrt(double(_search_arc_num))),
361 // Find next entering arc
362 bool findEnteringArc() {
364 int cnt = _block_size;
366 for (e = _next_arc; e < _search_arc_num; ++e) {
367 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
373 if (min < 0) goto search_end;
377 for (e = 0; e < _next_arc; ++e) {
378 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
384 if (min < 0) goto search_end;
388 if (min >= 0) return false;
395 }; //class BlockSearchPivotRule
398 // Implementation of the Candidate List pivot rule
399 class CandidateListPivotRule
403 // References to the NetworkSimplex class
404 const IntVector &_source;
405 const IntVector &_target;
406 const CostVector &_cost;
407 const IntVector &_state;
408 const CostVector &_pi;
413 IntVector _candidates;
414 int _list_length, _minor_limit;
415 int _curr_length, _minor_count;
421 CandidateListPivotRule(NetworkSimplex &ns) :
422 _source(ns._source), _target(ns._target),
423 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
424 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
427 // The main parameters of the pivot rule
428 const double LIST_LENGTH_FACTOR = 0.25;
429 const int MIN_LIST_LENGTH = 10;
430 const double MINOR_LIMIT_FACTOR = 0.1;
431 const int MIN_MINOR_LIMIT = 3;
433 _list_length = std::max( int(LIST_LENGTH_FACTOR *
434 std::sqrt(double(_search_arc_num))),
436 _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
438 _curr_length = _minor_count = 0;
439 _candidates.resize(_list_length);
442 /// Find next entering arc
443 bool findEnteringArc() {
446 if (_curr_length > 0 && _minor_count < _minor_limit) {
447 // Minor iteration: select the best eligible arc from the
448 // current candidate list
451 for (int i = 0; i < _curr_length; ++i) {
453 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
459 _candidates[i--] = _candidates[--_curr_length];
462 if (min < 0) return true;
465 // Major iteration: build a new candidate list
468 for (e = _next_arc; e < _search_arc_num; ++e) {
469 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
471 _candidates[_curr_length++] = e;
476 if (_curr_length == _list_length) goto search_end;
479 for (e = 0; e < _next_arc; ++e) {
480 c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
482 _candidates[_curr_length++] = e;
487 if (_curr_length == _list_length) goto search_end;
490 if (_curr_length == 0) return false;
498 }; //class CandidateListPivotRule
501 // Implementation of the Altering Candidate List pivot rule
502 class AlteringListPivotRule
506 // References to the NetworkSimplex class
507 const IntVector &_source;
508 const IntVector &_target;
509 const CostVector &_cost;
510 const IntVector &_state;
511 const CostVector &_pi;
516 int _block_size, _head_length, _curr_length;
518 IntVector _candidates;
519 CostVector _cand_cost;
521 // Functor class to compare arcs during sort of the candidate list
525 const CostVector &_map;
527 SortFunc(const CostVector &map) : _map(map) {}
528 bool operator()(int left, int right) {
529 return _map[left] > _map[right];
538 AlteringListPivotRule(NetworkSimplex &ns) :
539 _source(ns._source), _target(ns._target),
540 _cost(ns._cost), _state(ns._state), _pi(ns._pi),
541 _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
542 _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
544 // The main parameters of the pivot rule
545 const double BLOCK_SIZE_FACTOR = 1.0;
546 const int MIN_BLOCK_SIZE = 10;
547 const double HEAD_LENGTH_FACTOR = 0.1;
548 const int MIN_HEAD_LENGTH = 3;
550 _block_size = std::max( int(BLOCK_SIZE_FACTOR *
551 std::sqrt(double(_search_arc_num))),
553 _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
555 _candidates.resize(_head_length + _block_size);
559 // Find next entering arc
560 bool findEnteringArc() {
561 // Check the current candidate list
563 for (int i = 0; i < _curr_length; ++i) {
565 _cand_cost[e] = _state[e] *
566 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
567 if (_cand_cost[e] >= 0) {
568 _candidates[i--] = _candidates[--_curr_length];
573 int cnt = _block_size;
574 int limit = _head_length;
576 for (e = _next_arc; e < _search_arc_num; ++e) {
577 _cand_cost[e] = _state[e] *
578 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
579 if (_cand_cost[e] < 0) {
580 _candidates[_curr_length++] = e;
583 if (_curr_length > limit) goto search_end;
588 for (e = 0; e < _next_arc; ++e) {
589 _cand_cost[e] = _state[e] *
590 (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
591 if (_cand_cost[e] < 0) {
592 _candidates[_curr_length++] = e;
595 if (_curr_length > limit) goto search_end;
600 if (_curr_length == 0) return false;
604 // Make heap of the candidate list (approximating a partial sort)
605 make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
608 // Pop the first element of the heap
609 _in_arc = _candidates[0];
611 pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
613 _curr_length = std::min(_head_length, _curr_length - 1);
617 }; //class AlteringListPivotRule
621 /// \brief Constructor.
623 /// The constructor of the class.
625 /// \param graph The digraph the algorithm runs on.
626 /// \param arc_mixing Indicate if the arcs have to be stored in a
627 /// mixed order in the internal data structure.
628 /// In special cases, it could lead to better overall performance,
629 /// but it is usually slower. Therefore it is disabled by default.
630 NetworkSimplex(const GR& graph, bool arc_mixing = false) :
631 _graph(graph), _node_id(graph), _arc_id(graph),
632 INF(std::numeric_limits<Value>::has_infinity ?
633 std::numeric_limits<Value>::infinity() :
634 std::numeric_limits<Value>::max())
636 // Check the value types
637 LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
638 "The flow type of NetworkSimplex must be signed");
639 LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
640 "The cost type of NetworkSimplex must be signed");
643 _node_num = countNodes(_graph);
644 _arc_num = countArcs(_graph);
645 int all_node_num = _node_num + 1;
646 int max_arc_num = _arc_num + 2 * _node_num;
648 _source.resize(max_arc_num);
649 _target.resize(max_arc_num);
651 _lower.resize(_arc_num);
652 _upper.resize(_arc_num);
653 _cap.resize(max_arc_num);
654 _cost.resize(max_arc_num);
655 _supply.resize(all_node_num);
656 _flow.resize(max_arc_num);
657 _pi.resize(all_node_num);
659 _parent.resize(all_node_num);
660 _pred.resize(all_node_num);
661 _forward.resize(all_node_num);
662 _thread.resize(all_node_num);
663 _rev_thread.resize(all_node_num);
664 _succ_num.resize(all_node_num);
665 _last_succ.resize(all_node_num);
666 _state.resize(max_arc_num);
670 for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
674 // Store the arcs in a mixed order
675 int k = std::max(int(std::sqrt(double(_arc_num))), 10);
677 for (ArcIt a(_graph); a != INVALID; ++a) {
679 _source[i] = _node_id[_graph.source(a)];
680 _target[i] = _node_id[_graph.target(a)];
681 if ((i += k) >= _arc_num) i = ++j;
684 // Store the arcs in the original order
686 for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
688 _source[i] = _node_id[_graph.source(a)];
689 _target[i] = _node_id[_graph.target(a)];
698 /// The parameters of the algorithm can be specified using these
703 /// \brief Set the lower bounds on the arcs.
705 /// This function sets the lower bounds on the arcs.
706 /// If it is not used before calling \ref run(), the lower bounds
707 /// will be set to zero on all arcs.
709 /// \param map An arc map storing the lower bounds.
710 /// Its \c Value type must be convertible to the \c Value type
711 /// of the algorithm.
713 /// \return <tt>(*this)</tt>
714 template <typename LowerMap>
715 NetworkSimplex& lowerMap(const LowerMap& map) {
717 for (ArcIt a(_graph); a != INVALID; ++a) {
718 _lower[_arc_id[a]] = map[a];
723 /// \brief Set the upper bounds (capacities) on the arcs.
725 /// This function sets the upper bounds (capacities) on the arcs.
726 /// If it is not used before calling \ref run(), the upper bounds
727 /// will be set to \ref INF on all arcs (i.e. the flow value will be
728 /// unbounded from above on each arc).
730 /// \param map An arc map storing the upper bounds.
731 /// Its \c Value type must be convertible to the \c Value type
732 /// of the algorithm.
734 /// \return <tt>(*this)</tt>
735 template<typename UpperMap>
736 NetworkSimplex& upperMap(const UpperMap& map) {
737 for (ArcIt a(_graph); a != INVALID; ++a) {
738 _upper[_arc_id[a]] = map[a];
743 /// \brief Set the costs of the arcs.
745 /// This function sets the costs of the arcs.
746 /// If it is not used before calling \ref run(), the costs
747 /// will be set to \c 1 on all arcs.
749 /// \param map An arc map storing the costs.
750 /// Its \c Value type must be convertible to the \c Cost type
751 /// of the algorithm.
753 /// \return <tt>(*this)</tt>
754 template<typename CostMap>
755 NetworkSimplex& costMap(const CostMap& map) {
756 for (ArcIt a(_graph); a != INVALID; ++a) {
757 _cost[_arc_id[a]] = map[a];
762 /// \brief Set the supply values of the nodes.
764 /// This function sets the supply values of the nodes.
765 /// If neither this function nor \ref stSupply() is used before
766 /// calling \ref run(), the supply of each node will be set to zero.
768 /// \param map A node map storing the supply values.
769 /// Its \c Value type must be convertible to the \c Value type
770 /// of the algorithm.
772 /// \return <tt>(*this)</tt>
773 template<typename SupplyMap>
774 NetworkSimplex& supplyMap(const SupplyMap& map) {
775 for (NodeIt n(_graph); n != INVALID; ++n) {
776 _supply[_node_id[n]] = map[n];
781 /// \brief Set single source and target nodes and a supply value.
783 /// This function sets a single source node and a single target node
784 /// and the required flow value.
785 /// If neither this function nor \ref supplyMap() is used before
786 /// calling \ref run(), the supply of each node will be set to zero.
788 /// Using this function has the same effect as using \ref supplyMap()
789 /// with such a map in which \c k is assigned to \c s, \c -k is
790 /// assigned to \c t and all other nodes have zero supply value.
792 /// \param s The source node.
793 /// \param t The target node.
794 /// \param k The required amount of flow from node \c s to node \c t
795 /// (i.e. the supply of \c s and the demand of \c t).
797 /// \return <tt>(*this)</tt>
798 NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
799 for (int i = 0; i != _node_num; ++i) {
802 _supply[_node_id[s]] = k;
803 _supply[_node_id[t]] = -k;
807 /// \brief Set the type of the supply constraints.
809 /// This function sets the type of the supply/demand constraints.
810 /// If it is not used before calling \ref run(), the \ref GEQ supply
811 /// type will be used.
813 /// For more information see \ref SupplyType.
815 /// \return <tt>(*this)</tt>
816 NetworkSimplex& supplyType(SupplyType supply_type) {
817 _stype = supply_type;
823 /// \name Execution Control
824 /// The algorithm can be executed using \ref run().
828 /// \brief Run the algorithm.
830 /// This function runs the algorithm.
831 /// The paramters can be specified using functions \ref lowerMap(),
832 /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
833 /// \ref supplyType().
836 /// NetworkSimplex<ListDigraph> ns(graph);
837 /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
838 /// .supplyMap(sup).run();
841 /// This function can be called more than once. All the parameters
842 /// that have been given are kept for the next call, unless
843 /// \ref reset() is called, thus only the modified parameters
844 /// have to be set again. See \ref reset() for examples.
845 /// However the underlying digraph must not be modified after this
846 /// class have been constructed, since it copies and extends the graph.
848 /// \param pivot_rule The pivot rule that will be used during the
849 /// algorithm. For more information see \ref PivotRule.
851 /// \return \c INFEASIBLE if no feasible flow exists,
852 /// \n \c OPTIMAL if the problem has optimal solution
853 /// (i.e. it is feasible and bounded), and the algorithm has found
854 /// optimal flow and node potentials (primal and dual solutions),
855 /// \n \c UNBOUNDED if the objective function of the problem is
856 /// unbounded, i.e. there is a directed cycle having negative total
857 /// cost and infinite upper bound.
859 /// \see ProblemType, PivotRule
860 ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
861 if (!init()) return INFEASIBLE;
862 return start(pivot_rule);
865 /// \brief Reset all the parameters that have been given before.
867 /// This function resets all the paramaters that have been given
868 /// before using functions \ref lowerMap(), \ref upperMap(),
869 /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
871 /// It is useful for multiple run() calls. If this function is not
872 /// used, all the parameters given before are kept for the next
874 /// However the underlying digraph must not be modified after this
875 /// class have been constructed, since it copies and extends the graph.
879 /// NetworkSimplex<ListDigraph> ns(graph);
882 /// ns.lowerMap(lower).upperMap(upper).costMap(cost)
883 /// .supplyMap(sup).run();
885 /// // Run again with modified cost map (reset() is not called,
886 /// // so only the cost map have to be set again)
888 /// ns.costMap(cost).run();
890 /// // Run again from scratch using reset()
891 /// // (the lower bounds will be set to zero on all arcs)
893 /// ns.upperMap(capacity).costMap(cost)
894 /// .supplyMap(sup).run();
897 /// \return <tt>(*this)</tt>
898 NetworkSimplex& reset() {
899 for (int i = 0; i != _node_num; ++i) {
902 for (int i = 0; i != _arc_num; ++i) {
914 /// \name Query Functions
915 /// The results of the algorithm can be obtained using these
917 /// The \ref run() function must be called before using them.
921 /// \brief Return the total cost of the found flow.
923 /// This function returns the total cost of the found flow.
924 /// Its complexity is O(e).
926 /// \note The return type of the function can be specified as a
927 /// template parameter. For example,
929 /// ns.totalCost<double>();
931 /// It is useful if the total cost cannot be stored in the \c Cost
932 /// type of the algorithm, which is the default return type of the
935 /// \pre \ref run() must be called before using this function.
936 template <typename Number>
937 Number totalCost() const {
939 for (ArcIt a(_graph); a != INVALID; ++a) {
941 c += Number(_flow[i]) * Number(_cost[i]);
947 Cost totalCost() const {
948 return totalCost<Cost>();
952 /// \brief Return the flow on the given arc.
954 /// This function returns the flow on the given arc.
956 /// \pre \ref run() must be called before using this function.
957 Value flow(const Arc& a) const {
958 return _flow[_arc_id[a]];
961 /// \brief Return the flow map (the primal solution).
963 /// This function copies the flow value on each arc into the given
964 /// map. The \c Value type of the algorithm must be convertible to
965 /// the \c Value type of the map.
967 /// \pre \ref run() must be called before using this function.
968 template <typename FlowMap>
969 void flowMap(FlowMap &map) const {
970 for (ArcIt a(_graph); a != INVALID; ++a) {
971 map.set(a, _flow[_arc_id[a]]);
975 /// \brief Return the potential (dual value) of the given node.
977 /// This function returns the potential (dual value) of the
980 /// \pre \ref run() must be called before using this function.
981 Cost potential(const Node& n) const {
982 return _pi[_node_id[n]];
985 /// \brief Return the potential map (the dual solution).
987 /// This function copies the potential (dual value) of each node
988 /// into the given map.
989 /// The \c Cost type of the algorithm must be convertible to the
990 /// \c Value type of the map.
992 /// \pre \ref run() must be called before using this function.
993 template <typename PotentialMap>
994 void potentialMap(PotentialMap &map) const {
995 for (NodeIt n(_graph); n != INVALID; ++n) {
996 map.set(n, _pi[_node_id[n]]);
1004 // Initialize internal data structures
1006 if (_node_num == 0) return false;
1008 // Check the sum of supply values
1010 for (int i = 0; i != _node_num; ++i) {
1011 _sum_supply += _supply[i];
1013 if ( !((_stype == GEQ && _sum_supply <= 0) ||
1014 (_stype == LEQ && _sum_supply >= 0)) ) return false;
1016 // Remove non-zero lower bounds
1018 for (int i = 0; i != _arc_num; ++i) {
1019 Value c = _lower[i];
1021 _cap[i] = _upper[i] < INF ? _upper[i] - c : INF;
1023 _cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF;
1025 _supply[_source[i]] -= c;
1026 _supply[_target[i]] += c;
1029 for (int i = 0; i != _arc_num; ++i) {
1030 _cap[i] = _upper[i];
1034 // Initialize artifical cost
1036 if (std::numeric_limits<Cost>::is_exact) {
1037 ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
1039 ART_COST = std::numeric_limits<Cost>::min();
1040 for (int i = 0; i != _arc_num; ++i) {
1041 if (_cost[i] > ART_COST) ART_COST = _cost[i];
1043 ART_COST = (ART_COST + 1) * _node_num;
1046 // Initialize arc maps
1047 for (int i = 0; i != _arc_num; ++i) {
1049 _state[i] = STATE_LOWER;
1052 // Set data for the artificial root node
1054 _parent[_root] = -1;
1057 _rev_thread[0] = _root;
1058 _succ_num[_root] = _node_num + 1;
1059 _last_succ[_root] = _root - 1;
1060 _supply[_root] = -_sum_supply;
1063 // Add artificial arcs and initialize the spanning tree data structure
1064 if (_sum_supply == 0) {
1065 // EQ supply constraints
1066 _search_arc_num = _arc_num;
1067 _all_arc_num = _arc_num + _node_num;
1068 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1072 _rev_thread[u + 1] = u;
1076 _state[e] = STATE_TREE;
1077 if (_supply[u] >= 0) {
1082 _flow[e] = _supply[u];
1085 _forward[u] = false;
1089 _flow[e] = -_supply[u];
1090 _cost[e] = ART_COST;
1094 else if (_sum_supply > 0) {
1095 // LEQ supply constraints
1096 _search_arc_num = _arc_num + _node_num;
1097 int f = _arc_num + _node_num;
1098 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1101 _rev_thread[u + 1] = u;
1104 if (_supply[u] >= 0) {
1111 _flow[e] = _supply[u];
1113 _state[e] = STATE_TREE;
1115 _forward[u] = false;
1121 _flow[f] = -_supply[u];
1122 _cost[f] = ART_COST;
1123 _state[f] = STATE_TREE;
1129 _state[e] = STATE_LOWER;
1136 // GEQ supply constraints
1137 _search_arc_num = _arc_num + _node_num;
1138 int f = _arc_num + _node_num;
1139 for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1142 _rev_thread[u + 1] = u;
1145 if (_supply[u] <= 0) {
1146 _forward[u] = false;
1152 _flow[e] = -_supply[u];
1154 _state[e] = STATE_TREE;
1162 _flow[f] = _supply[u];
1163 _state[f] = STATE_TREE;
1164 _cost[f] = ART_COST;
1170 _state[e] = STATE_LOWER;
1180 // Find the join node
1181 void findJoinNode() {
1182 int u = _source[in_arc];
1183 int v = _target[in_arc];
1185 if (_succ_num[u] < _succ_num[v]) {
1194 // Find the leaving arc of the cycle and returns true if the
1195 // leaving arc is not the same as the entering arc
1196 bool findLeavingArc() {
1197 // Initialize first and second nodes according to the direction
1199 if (_state[in_arc] == STATE_LOWER) {
1200 first = _source[in_arc];
1201 second = _target[in_arc];
1203 first = _target[in_arc];
1204 second = _source[in_arc];
1206 delta = _cap[in_arc];
1211 // Search the cycle along the path form the first node to the root
1212 for (int u = first; u != join; u = _parent[u]) {
1215 _flow[e] : (_cap[e] == INF ? INF : _cap[e] - _flow[e]);
1222 // Search the cycle along the path form the second node to the root
1223 for (int u = second; u != join; u = _parent[u]) {
1226 (_cap[e] == INF ? INF : _cap[e] - _flow[e]) : _flow[e];
1244 // Change _flow and _state vectors
1245 void changeFlow(bool change) {
1246 // Augment along the cycle
1248 Value val = _state[in_arc] * delta;
1249 _flow[in_arc] += val;
1250 for (int u = _source[in_arc]; u != join; u = _parent[u]) {
1251 _flow[_pred[u]] += _forward[u] ? -val : val;
1253 for (int u = _target[in_arc]; u != join; u = _parent[u]) {
1254 _flow[_pred[u]] += _forward[u] ? val : -val;
1257 // Update the state of the entering and leaving arcs
1259 _state[in_arc] = STATE_TREE;
1260 _state[_pred[u_out]] =
1261 (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
1263 _state[in_arc] = -_state[in_arc];
1267 // Update the tree structure
1268 void updateTreeStructure() {
1270 int old_rev_thread = _rev_thread[u_out];
1271 int old_succ_num = _succ_num[u_out];
1272 int old_last_succ = _last_succ[u_out];
1273 v_out = _parent[u_out];
1275 u = _last_succ[u_in]; // the last successor of u_in
1276 right = _thread[u]; // the node after it
1278 // Handle the case when old_rev_thread equals to v_in
1279 // (it also means that join and v_out coincide)
1280 if (old_rev_thread == v_in) {
1281 last = _thread[_last_succ[u_out]];
1283 last = _thread[v_in];
1286 // Update _thread and _parent along the stem nodes (i.e. the nodes
1287 // between u_in and u_out, whose parent have to be changed)
1288 _thread[v_in] = stem = u_in;
1289 _dirty_revs.clear();
1290 _dirty_revs.push_back(v_in);
1292 while (stem != u_out) {
1293 // Insert the next stem node into the thread list
1294 new_stem = _parent[stem];
1295 _thread[u] = new_stem;
1296 _dirty_revs.push_back(u);
1298 // Remove the subtree of stem from the thread list
1299 w = _rev_thread[stem];
1301 _rev_thread[right] = w;
1303 // Change the parent node and shift stem nodes
1304 _parent[stem] = par_stem;
1308 // Update u and right
1309 u = _last_succ[stem] == _last_succ[par_stem] ?
1310 _rev_thread[par_stem] : _last_succ[stem];
1313 _parent[u_out] = par_stem;
1315 _rev_thread[last] = u;
1316 _last_succ[u_out] = u;
1318 // Remove the subtree of u_out from the thread list except for
1319 // the case when old_rev_thread equals to v_in
1320 // (it also means that join and v_out coincide)
1321 if (old_rev_thread != v_in) {
1322 _thread[old_rev_thread] = right;
1323 _rev_thread[right] = old_rev_thread;
1326 // Update _rev_thread using the new _thread values
1327 for (int i = 0; i < int(_dirty_revs.size()); ++i) {
1329 _rev_thread[_thread[u]] = u;
1332 // Update _pred, _forward, _last_succ and _succ_num for the
1333 // stem nodes from u_out to u_in
1334 int tmp_sc = 0, tmp_ls = _last_succ[u_out];
1338 _pred[u] = _pred[w];
1339 _forward[u] = !_forward[w];
1340 tmp_sc += _succ_num[u] - _succ_num[w];
1341 _succ_num[u] = tmp_sc;
1342 _last_succ[w] = tmp_ls;
1345 _pred[u_in] = in_arc;
1346 _forward[u_in] = (u_in == _source[in_arc]);
1347 _succ_num[u_in] = old_succ_num;
1349 // Set limits for updating _last_succ form v_in and v_out
1351 int up_limit_in = -1;
1352 int up_limit_out = -1;
1353 if (_last_succ[join] == v_in) {
1354 up_limit_out = join;
1359 // Update _last_succ from v_in towards the root
1360 for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
1362 _last_succ[u] = _last_succ[u_out];
1364 // Update _last_succ from v_out towards the root
1365 if (join != old_rev_thread && v_in != old_rev_thread) {
1366 for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1368 _last_succ[u] = old_rev_thread;
1371 for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1373 _last_succ[u] = _last_succ[u_out];
1377 // Update _succ_num from v_in to join
1378 for (u = v_in; u != join; u = _parent[u]) {
1379 _succ_num[u] += old_succ_num;
1381 // Update _succ_num from v_out to join
1382 for (u = v_out; u != join; u = _parent[u]) {
1383 _succ_num[u] -= old_succ_num;
1387 // Update potentials
1388 void updatePotential() {
1389 Cost sigma = _forward[u_in] ?
1390 _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
1391 _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
1392 // Update potentials in the subtree, which has been moved
1393 int end = _thread[_last_succ[u_in]];
1394 for (int u = u_in; u != end; u = _thread[u]) {
1399 // Execute the algorithm
1400 ProblemType start(PivotRule pivot_rule) {
1401 // Select the pivot rule implementation
1402 switch (pivot_rule) {
1403 case FIRST_ELIGIBLE:
1404 return start<FirstEligiblePivotRule>();
1406 return start<BestEligiblePivotRule>();
1408 return start<BlockSearchPivotRule>();
1409 case CANDIDATE_LIST:
1410 return start<CandidateListPivotRule>();
1412 return start<AlteringListPivotRule>();
1414 return INFEASIBLE; // avoid warning
1417 template <typename PivotRuleImpl>
1418 ProblemType start() {
1419 PivotRuleImpl pivot(*this);
1421 // Execute the Network Simplex algorithm
1422 while (pivot.findEnteringArc()) {
1424 bool change = findLeavingArc();
1425 if (delta >= INF) return UNBOUNDED;
1428 updateTreeStructure();
1433 // Check feasibility
1434 for (int e = _search_arc_num; e != _all_arc_num; ++e) {
1435 if (_flow[e] != 0) return INFEASIBLE;
1438 // Transform the solution and the supply map to the original form
1440 for (int i = 0; i != _arc_num; ++i) {
1441 Value c = _lower[i];
1444 _supply[_source[i]] += c;
1445 _supply[_target[i]] -= c;
1450 // Shift potentials to meet the requirements of the GEQ/LEQ type
1451 // optimality conditions
1452 if (_sum_supply == 0) {
1453 if (_stype == GEQ) {
1454 Cost max_pot = std::numeric_limits<Cost>::min();
1455 for (int i = 0; i != _node_num; ++i) {
1456 if (_pi[i] > max_pot) max_pot = _pi[i];
1459 for (int i = 0; i != _node_num; ++i)
1463 Cost min_pot = std::numeric_limits<Cost>::max();
1464 for (int i = 0; i != _node_num; ++i) {
1465 if (_pi[i] < min_pot) min_pot = _pi[i];
1468 for (int i = 0; i != _node_num; ++i)
1477 }; //class NetworkSimplex
1483 #endif //LEMON_NETWORK_SIMPLEX_H