lemon/karp_mmc.h
author Balazs Dezso <deba@inf.elte.hu>
Sun, 14 Nov 2010 16:35:31 +0100
changeset 1018 2e959a5a0c2d
parent 877 141f9c0db4a3
child 1049 7bf489cf624e
permissions -rw-r--r--
Add bipartite graph concepts (#69)
     1 /* -*- mode: C++; indent-tabs-mode: nil; -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library.
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_KARP_MMC_H
    20 #define LEMON_KARP_MMC_H
    21 
    22 /// \ingroup min_mean_cycle
    23 ///
    24 /// \file
    25 /// \brief Karp's algorithm for finding a minimum mean cycle.
    26 
    27 #include <vector>
    28 #include <limits>
    29 #include <lemon/core.h>
    30 #include <lemon/path.h>
    31 #include <lemon/tolerance.h>
    32 #include <lemon/connectivity.h>
    33 
    34 namespace lemon {
    35 
    36   /// \brief Default traits class of KarpMmc class.
    37   ///
    38   /// Default traits class of KarpMmc class.
    39   /// \tparam GR The type of the digraph.
    40   /// \tparam CM The type of the cost map.
    41   /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
    42 #ifdef DOXYGEN
    43   template <typename GR, typename CM>
    44 #else
    45   template <typename GR, typename CM,
    46     bool integer = std::numeric_limits<typename CM::Value>::is_integer>
    47 #endif
    48   struct KarpMmcDefaultTraits
    49   {
    50     /// The type of the digraph
    51     typedef GR Digraph;
    52     /// The type of the cost map
    53     typedef CM CostMap;
    54     /// The type of the arc costs
    55     typedef typename CostMap::Value Cost;
    56 
    57     /// \brief The large cost type used for internal computations
    58     ///
    59     /// The large cost type used for internal computations.
    60     /// It is \c long \c long if the \c Cost type is integer,
    61     /// otherwise it is \c double.
    62     /// \c Cost must be convertible to \c LargeCost.
    63     typedef double LargeCost;
    64 
    65     /// The tolerance type used for internal computations
    66     typedef lemon::Tolerance<LargeCost> Tolerance;
    67 
    68     /// \brief The path type of the found cycles
    69     ///
    70     /// The path type of the found cycles.
    71     /// It must conform to the \ref lemon::concepts::Path "Path" concept
    72     /// and it must have an \c addFront() function.
    73     typedef lemon::Path<Digraph> Path;
    74   };
    75 
    76   // Default traits class for integer cost types
    77   template <typename GR, typename CM>
    78   struct KarpMmcDefaultTraits<GR, CM, true>
    79   {
    80     typedef GR Digraph;
    81     typedef CM CostMap;
    82     typedef typename CostMap::Value Cost;
    83 #ifdef LEMON_HAVE_LONG_LONG
    84     typedef long long LargeCost;
    85 #else
    86     typedef long LargeCost;
    87 #endif
    88     typedef lemon::Tolerance<LargeCost> Tolerance;
    89     typedef lemon::Path<Digraph> Path;
    90   };
    91 
    92 
    93   /// \addtogroup min_mean_cycle
    94   /// @{
    95 
    96   /// \brief Implementation of Karp's algorithm for finding a minimum
    97   /// mean cycle.
    98   ///
    99   /// This class implements Karp's algorithm for finding a directed
   100   /// cycle of minimum mean cost in a digraph
   101   /// \ref karp78characterization, \ref dasdan98minmeancycle.
   102   /// It runs in time O(ne) and uses space O(n<sup>2</sup>+e).
   103   ///
   104   /// \tparam GR The type of the digraph the algorithm runs on.
   105   /// \tparam CM The type of the cost map. The default
   106   /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
   107   /// \tparam TR The traits class that defines various types used by the
   108   /// algorithm. By default, it is \ref KarpMmcDefaultTraits
   109   /// "KarpMmcDefaultTraits<GR, CM>".
   110   /// In most cases, this parameter should not be set directly,
   111   /// consider to use the named template parameters instead.
   112 #ifdef DOXYGEN
   113   template <typename GR, typename CM, typename TR>
   114 #else
   115   template < typename GR,
   116              typename CM = typename GR::template ArcMap<int>,
   117              typename TR = KarpMmcDefaultTraits<GR, CM> >
   118 #endif
   119   class KarpMmc
   120   {
   121   public:
   122 
   123     /// The type of the digraph
   124     typedef typename TR::Digraph Digraph;
   125     /// The type of the cost map
   126     typedef typename TR::CostMap CostMap;
   127     /// The type of the arc costs
   128     typedef typename TR::Cost Cost;
   129 
   130     /// \brief The large cost type
   131     ///
   132     /// The large cost type used for internal computations.
   133     /// By default, it is \c long \c long if the \c Cost type is integer,
   134     /// otherwise it is \c double.
   135     typedef typename TR::LargeCost LargeCost;
   136 
   137     /// The tolerance type
   138     typedef typename TR::Tolerance Tolerance;
   139 
   140     /// \brief The path type of the found cycles
   141     ///
   142     /// The path type of the found cycles.
   143     /// Using the \ref KarpMmcDefaultTraits "default traits class",
   144     /// it is \ref lemon::Path "Path<Digraph>".
   145     typedef typename TR::Path Path;
   146 
   147     /// The \ref KarpMmcDefaultTraits "traits class" of the algorithm
   148     typedef TR Traits;
   149 
   150   private:
   151 
   152     TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
   153 
   154     // Data sturcture for path data
   155     struct PathData
   156     {
   157       LargeCost dist;
   158       Arc pred;
   159       PathData(LargeCost d, Arc p = INVALID) :
   160         dist(d), pred(p) {}
   161     };
   162 
   163     typedef typename Digraph::template NodeMap<std::vector<PathData> >
   164       PathDataNodeMap;
   165 
   166   private:
   167 
   168     // The digraph the algorithm runs on
   169     const Digraph &_gr;
   170     // The cost of the arcs
   171     const CostMap &_cost;
   172 
   173     // Data for storing the strongly connected components
   174     int _comp_num;
   175     typename Digraph::template NodeMap<int> _comp;
   176     std::vector<std::vector<Node> > _comp_nodes;
   177     std::vector<Node>* _nodes;
   178     typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs;
   179 
   180     // Data for the found cycle
   181     LargeCost _cycle_cost;
   182     int _cycle_size;
   183     Node _cycle_node;
   184 
   185     Path *_cycle_path;
   186     bool _local_path;
   187 
   188     // Node map for storing path data
   189     PathDataNodeMap _data;
   190     // The processed nodes in the last round
   191     std::vector<Node> _process;
   192 
   193     Tolerance _tolerance;
   194 
   195     // Infinite constant
   196     const LargeCost INF;
   197 
   198   public:
   199 
   200     /// \name Named Template Parameters
   201     /// @{
   202 
   203     template <typename T>
   204     struct SetLargeCostTraits : public Traits {
   205       typedef T LargeCost;
   206       typedef lemon::Tolerance<T> Tolerance;
   207     };
   208 
   209     /// \brief \ref named-templ-param "Named parameter" for setting
   210     /// \c LargeCost type.
   211     ///
   212     /// \ref named-templ-param "Named parameter" for setting \c LargeCost
   213     /// type. It is used for internal computations in the algorithm.
   214     template <typename T>
   215     struct SetLargeCost
   216       : public KarpMmc<GR, CM, SetLargeCostTraits<T> > {
   217       typedef KarpMmc<GR, CM, SetLargeCostTraits<T> > Create;
   218     };
   219 
   220     template <typename T>
   221     struct SetPathTraits : public Traits {
   222       typedef T Path;
   223     };
   224 
   225     /// \brief \ref named-templ-param "Named parameter" for setting
   226     /// \c %Path type.
   227     ///
   228     /// \ref named-templ-param "Named parameter" for setting the \c %Path
   229     /// type of the found cycles.
   230     /// It must conform to the \ref lemon::concepts::Path "Path" concept
   231     /// and it must have an \c addFront() function.
   232     template <typename T>
   233     struct SetPath
   234       : public KarpMmc<GR, CM, SetPathTraits<T> > {
   235       typedef KarpMmc<GR, CM, SetPathTraits<T> > Create;
   236     };
   237 
   238     /// @}
   239 
   240   protected:
   241 
   242     KarpMmc() {}
   243 
   244   public:
   245 
   246     /// \brief Constructor.
   247     ///
   248     /// The constructor of the class.
   249     ///
   250     /// \param digraph The digraph the algorithm runs on.
   251     /// \param cost The costs of the arcs.
   252     KarpMmc( const Digraph &digraph,
   253              const CostMap &cost ) :
   254       _gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph),
   255       _cycle_cost(0), _cycle_size(1), _cycle_node(INVALID),
   256       _cycle_path(NULL), _local_path(false), _data(digraph),
   257       INF(std::numeric_limits<LargeCost>::has_infinity ?
   258           std::numeric_limits<LargeCost>::infinity() :
   259           std::numeric_limits<LargeCost>::max())
   260     {}
   261 
   262     /// Destructor.
   263     ~KarpMmc() {
   264       if (_local_path) delete _cycle_path;
   265     }
   266 
   267     /// \brief Set the path structure for storing the found cycle.
   268     ///
   269     /// This function sets an external path structure for storing the
   270     /// found cycle.
   271     ///
   272     /// If you don't call this function before calling \ref run() or
   273     /// \ref findCycleMean(), it will allocate a local \ref Path "path"
   274     /// structure. The destuctor deallocates this automatically
   275     /// allocated object, of course.
   276     ///
   277     /// \note The algorithm calls only the \ref lemon::Path::addFront()
   278     /// "addFront()" function of the given path structure.
   279     ///
   280     /// \return <tt>(*this)</tt>
   281     KarpMmc& cycle(Path &path) {
   282       if (_local_path) {
   283         delete _cycle_path;
   284         _local_path = false;
   285       }
   286       _cycle_path = &path;
   287       return *this;
   288     }
   289 
   290     /// \brief Set the tolerance used by the algorithm.
   291     ///
   292     /// This function sets the tolerance object used by the algorithm.
   293     ///
   294     /// \return <tt>(*this)</tt>
   295     KarpMmc& tolerance(const Tolerance& tolerance) {
   296       _tolerance = tolerance;
   297       return *this;
   298     }
   299 
   300     /// \brief Return a const reference to the tolerance.
   301     ///
   302     /// This function returns a const reference to the tolerance object
   303     /// used by the algorithm.
   304     const Tolerance& tolerance() const {
   305       return _tolerance;
   306     }
   307 
   308     /// \name Execution control
   309     /// The simplest way to execute the algorithm is to call the \ref run()
   310     /// function.\n
   311     /// If you only need the minimum mean cost, you may call
   312     /// \ref findCycleMean().
   313 
   314     /// @{
   315 
   316     /// \brief Run the algorithm.
   317     ///
   318     /// This function runs the algorithm.
   319     /// It can be called more than once (e.g. if the underlying digraph
   320     /// and/or the arc costs have been modified).
   321     ///
   322     /// \return \c true if a directed cycle exists in the digraph.
   323     ///
   324     /// \note <tt>mmc.run()</tt> is just a shortcut of the following code.
   325     /// \code
   326     ///   return mmc.findCycleMean() && mmc.findCycle();
   327     /// \endcode
   328     bool run() {
   329       return findCycleMean() && findCycle();
   330     }
   331 
   332     /// \brief Find the minimum cycle mean.
   333     ///
   334     /// This function finds the minimum mean cost of the directed
   335     /// cycles in the digraph.
   336     ///
   337     /// \return \c true if a directed cycle exists in the digraph.
   338     bool findCycleMean() {
   339       // Initialization and find strongly connected components
   340       init();
   341       findComponents();
   342 
   343       // Find the minimum cycle mean in the components
   344       for (int comp = 0; comp < _comp_num; ++comp) {
   345         if (!initComponent(comp)) continue;
   346         processRounds();
   347         updateMinMean();
   348       }
   349       return (_cycle_node != INVALID);
   350     }
   351 
   352     /// \brief Find a minimum mean directed cycle.
   353     ///
   354     /// This function finds a directed cycle of minimum mean cost
   355     /// in the digraph using the data computed by findCycleMean().
   356     ///
   357     /// \return \c true if a directed cycle exists in the digraph.
   358     ///
   359     /// \pre \ref findCycleMean() must be called before using this function.
   360     bool findCycle() {
   361       if (_cycle_node == INVALID) return false;
   362       IntNodeMap reached(_gr, -1);
   363       int r = _data[_cycle_node].size();
   364       Node u = _cycle_node;
   365       while (reached[u] < 0) {
   366         reached[u] = --r;
   367         u = _gr.source(_data[u][r].pred);
   368       }
   369       r = reached[u];
   370       Arc e = _data[u][r].pred;
   371       _cycle_path->addFront(e);
   372       _cycle_cost = _cost[e];
   373       _cycle_size = 1;
   374       Node v;
   375       while ((v = _gr.source(e)) != u) {
   376         e = _data[v][--r].pred;
   377         _cycle_path->addFront(e);
   378         _cycle_cost += _cost[e];
   379         ++_cycle_size;
   380       }
   381       return true;
   382     }
   383 
   384     /// @}
   385 
   386     /// \name Query Functions
   387     /// The results of the algorithm can be obtained using these
   388     /// functions.\n
   389     /// The algorithm should be executed before using them.
   390 
   391     /// @{
   392 
   393     /// \brief Return the total cost of the found cycle.
   394     ///
   395     /// This function returns the total cost of the found cycle.
   396     ///
   397     /// \pre \ref run() or \ref findCycleMean() must be called before
   398     /// using this function.
   399     Cost cycleCost() const {
   400       return static_cast<Cost>(_cycle_cost);
   401     }
   402 
   403     /// \brief Return the number of arcs on the found cycle.
   404     ///
   405     /// This function returns the number of arcs on the found cycle.
   406     ///
   407     /// \pre \ref run() or \ref findCycleMean() must be called before
   408     /// using this function.
   409     int cycleSize() const {
   410       return _cycle_size;
   411     }
   412 
   413     /// \brief Return the mean cost of the found cycle.
   414     ///
   415     /// This function returns the mean cost of the found cycle.
   416     ///
   417     /// \note <tt>alg.cycleMean()</tt> is just a shortcut of the
   418     /// following code.
   419     /// \code
   420     ///   return static_cast<double>(alg.cycleCost()) / alg.cycleSize();
   421     /// \endcode
   422     ///
   423     /// \pre \ref run() or \ref findCycleMean() must be called before
   424     /// using this function.
   425     double cycleMean() const {
   426       return static_cast<double>(_cycle_cost) / _cycle_size;
   427     }
   428 
   429     /// \brief Return the found cycle.
   430     ///
   431     /// This function returns a const reference to the path structure
   432     /// storing the found cycle.
   433     ///
   434     /// \pre \ref run() or \ref findCycle() must be called before using
   435     /// this function.
   436     const Path& cycle() const {
   437       return *_cycle_path;
   438     }
   439 
   440     ///@}
   441 
   442   private:
   443 
   444     // Initialization
   445     void init() {
   446       if (!_cycle_path) {
   447         _local_path = true;
   448         _cycle_path = new Path;
   449       }
   450       _cycle_path->clear();
   451       _cycle_cost = 0;
   452       _cycle_size = 1;
   453       _cycle_node = INVALID;
   454       for (NodeIt u(_gr); u != INVALID; ++u)
   455         _data[u].clear();
   456     }
   457 
   458     // Find strongly connected components and initialize _comp_nodes
   459     // and _out_arcs
   460     void findComponents() {
   461       _comp_num = stronglyConnectedComponents(_gr, _comp);
   462       _comp_nodes.resize(_comp_num);
   463       if (_comp_num == 1) {
   464         _comp_nodes[0].clear();
   465         for (NodeIt n(_gr); n != INVALID; ++n) {
   466           _comp_nodes[0].push_back(n);
   467           _out_arcs[n].clear();
   468           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   469             _out_arcs[n].push_back(a);
   470           }
   471         }
   472       } else {
   473         for (int i = 0; i < _comp_num; ++i)
   474           _comp_nodes[i].clear();
   475         for (NodeIt n(_gr); n != INVALID; ++n) {
   476           int k = _comp[n];
   477           _comp_nodes[k].push_back(n);
   478           _out_arcs[n].clear();
   479           for (OutArcIt a(_gr, n); a != INVALID; ++a) {
   480             if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a);
   481           }
   482         }
   483       }
   484     }
   485 
   486     // Initialize path data for the current component
   487     bool initComponent(int comp) {
   488       _nodes = &(_comp_nodes[comp]);
   489       int n = _nodes->size();
   490       if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
   491         return false;
   492       }
   493       for (int i = 0; i < n; ++i) {
   494         _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
   495       }
   496       return true;
   497     }
   498 
   499     // Process all rounds of computing path data for the current component.
   500     // _data[v][k] is the cost of a shortest directed walk from the root
   501     // node to node v containing exactly k arcs.
   502     void processRounds() {
   503       Node start = (*_nodes)[0];
   504       _data[start][0] = PathData(0);
   505       _process.clear();
   506       _process.push_back(start);
   507 
   508       int k, n = _nodes->size();
   509       for (k = 1; k <= n && int(_process.size()) < n; ++k) {
   510         processNextBuildRound(k);
   511       }
   512       for ( ; k <= n; ++k) {
   513         processNextFullRound(k);
   514       }
   515     }
   516 
   517     // Process one round and rebuild _process
   518     void processNextBuildRound(int k) {
   519       std::vector<Node> next;
   520       Node u, v;
   521       Arc e;
   522       LargeCost d;
   523       for (int i = 0; i < int(_process.size()); ++i) {
   524         u = _process[i];
   525         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   526           e = _out_arcs[u][j];
   527           v = _gr.target(e);
   528           d = _data[u][k-1].dist + _cost[e];
   529           if (_tolerance.less(d, _data[v][k].dist)) {
   530             if (_data[v][k].dist == INF) next.push_back(v);
   531             _data[v][k] = PathData(d, e);
   532           }
   533         }
   534       }
   535       _process.swap(next);
   536     }
   537 
   538     // Process one round using _nodes instead of _process
   539     void processNextFullRound(int k) {
   540       Node u, v;
   541       Arc e;
   542       LargeCost d;
   543       for (int i = 0; i < int(_nodes->size()); ++i) {
   544         u = (*_nodes)[i];
   545         for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
   546           e = _out_arcs[u][j];
   547           v = _gr.target(e);
   548           d = _data[u][k-1].dist + _cost[e];
   549           if (_tolerance.less(d, _data[v][k].dist)) {
   550             _data[v][k] = PathData(d, e);
   551           }
   552         }
   553       }
   554     }
   555 
   556     // Update the minimum cycle mean
   557     void updateMinMean() {
   558       int n = _nodes->size();
   559       for (int i = 0; i < n; ++i) {
   560         Node u = (*_nodes)[i];
   561         if (_data[u][n].dist == INF) continue;
   562         LargeCost cost, max_cost = 0;
   563         int size, max_size = 1;
   564         bool found_curr = false;
   565         for (int k = 0; k < n; ++k) {
   566           if (_data[u][k].dist == INF) continue;
   567           cost = _data[u][n].dist - _data[u][k].dist;
   568           size = n - k;
   569           if (!found_curr || cost * max_size > max_cost * size) {
   570             found_curr = true;
   571             max_cost = cost;
   572             max_size = size;
   573           }
   574         }
   575         if ( found_curr && (_cycle_node == INVALID ||
   576              max_cost * _cycle_size < _cycle_cost * max_size) ) {
   577           _cycle_cost = max_cost;
   578           _cycle_size = max_size;
   579           _cycle_node = u;
   580         }
   581       }
   582     }
   583 
   584   }; //class KarpMmc
   585 
   586   ///@}
   587 
   588 } //namespace lemon
   589 
   590 #endif //LEMON_KARP_MMC_H