lemon/max_cardinality_search.h
author Alpar Juttner <alpar@cs.elte.hu>
Tue, 20 Dec 2011 19:25:40 +0100
changeset 966 c8fce9beb46a
child 977 9a3187204242
permissions -rw-r--r--
Merge head merging
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2010
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_MAX_CARDINALITY_SEARCH_H
    20 #define LEMON_MAX_CARDINALITY_SEARCH_H
    21 
    22 
    23 /// \ingroup search
    24 /// \file 
    25 /// \brief Maximum cardinality search in undirected digraphs.
    26 
    27 #include <lemon/bin_heap.h>
    28 #include <lemon/bucket_heap.h>
    29 
    30 #include <lemon/error.h>
    31 #include <lemon/maps.h>
    32 
    33 #include <functional>
    34 
    35 namespace lemon {
    36 
    37   /// \brief Default traits class of MaxCardinalitySearch class.
    38   ///
    39   /// Default traits class of MaxCardinalitySearch class.
    40   /// \param Digraph Digraph type.
    41   /// \param CapacityMap Type of capacity map.
    42   template <typename GR, typename CAP>
    43   struct MaxCardinalitySearchDefaultTraits {
    44     /// The digraph type the algorithm runs on. 
    45     typedef GR Digraph;
    46 
    47     template <typename CM>
    48     struct CapMapSelector {
    49 
    50       typedef CM CapacityMap;
    51 
    52       static CapacityMap *createCapacityMap(const Digraph& g) {
    53 	return new CapacityMap(g);
    54       }
    55     };
    56 
    57     template <typename CM>
    58     struct CapMapSelector<ConstMap<CM, Const<int, 1> > > {
    59 
    60       typedef ConstMap<CM, Const<int, 1> > CapacityMap;
    61 
    62       static CapacityMap *createCapacityMap(const Digraph&) {
    63 	return new CapacityMap;
    64       }
    65     };
    66 
    67     /// \brief The type of the map that stores the arc capacities.
    68     ///
    69     /// The type of the map that stores the arc capacities.
    70     /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    71     typedef typename CapMapSelector<CAP>::CapacityMap CapacityMap;
    72 
    73     /// \brief The type of the capacity of the arcs.
    74     typedef typename CapacityMap::Value Value;
    75 
    76     /// \brief Instantiates a CapacityMap.
    77     ///
    78     /// This function instantiates a \ref CapacityMap.
    79     /// \param digraph is the digraph, to which we would like to define
    80     /// the CapacityMap.
    81     static CapacityMap *createCapacityMap(const Digraph& digraph) {
    82       return CapMapSelector<CapacityMap>::createCapacityMap(digraph);
    83     }
    84 
    85     /// \brief The cross reference type used by heap.
    86     ///
    87     /// The cross reference type used by heap.
    88     /// Usually it is \c Digraph::NodeMap<int>.
    89     typedef typename Digraph::template NodeMap<int> HeapCrossRef;
    90 
    91     /// \brief Instantiates a HeapCrossRef.
    92     ///
    93     /// This function instantiates a \ref HeapCrossRef. 
    94     /// \param digraph is the digraph, to which we would like to define the 
    95     /// HeapCrossRef.
    96     static HeapCrossRef *createHeapCrossRef(const Digraph &digraph) {
    97       return new HeapCrossRef(digraph);
    98     }
    99     
   100     template <typename CapacityMap>
   101     struct HeapSelector {
   102       template <typename Value, typename Ref>
   103       struct Selector { 
   104         typedef BinHeap<Value, Ref, std::greater<Value> > Heap;
   105       };
   106     };
   107 
   108     template <typename CapacityKey>
   109     struct HeapSelector<ConstMap<CapacityKey, Const<int, 1> > > {
   110       template <typename Value, typename Ref>
   111       struct Selector {
   112         typedef BucketHeap<Ref, false > Heap;
   113       };
   114     };
   115 
   116     /// \brief The heap type used by MaxCardinalitySearch algorithm.
   117     ///
   118     /// The heap type used by MaxCardinalitySearch algorithm. It should
   119     /// maximalize the priorities. The default heap type is
   120     /// the \ref BinHeap, but it is specialized when the
   121     /// CapacityMap is ConstMap<Digraph::Node, Const<int, 1> >
   122     /// to BucketHeap.
   123     ///
   124     /// \sa MaxCardinalitySearch
   125     typedef typename HeapSelector<CapacityMap>
   126     ::template Selector<Value, HeapCrossRef>
   127     ::Heap Heap;
   128 
   129     /// \brief Instantiates a Heap.
   130     ///
   131     /// This function instantiates a \ref Heap. 
   132     /// \param crossref The cross reference of the heap.
   133     static Heap *createHeap(HeapCrossRef& crossref) {
   134       return new Heap(crossref);
   135     }
   136 
   137     /// \brief The type of the map that stores whether a node is processed.
   138     ///
   139     /// The type of the map that stores whether a node is processed.
   140     /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
   141     /// By default it is a NullMap.
   142     typedef NullMap<typename Digraph::Node, bool> ProcessedMap;
   143 
   144     /// \brief Instantiates a ProcessedMap.
   145     ///
   146     /// This function instantiates a \ref ProcessedMap. 
   147     /// \param digraph is the digraph, to which
   148     /// we would like to define the \ref ProcessedMap
   149 #ifdef DOXYGEN
   150     static ProcessedMap *createProcessedMap(const Digraph &digraph)
   151 #else
   152     static ProcessedMap *createProcessedMap(const Digraph &)
   153 #endif
   154     {
   155       return new ProcessedMap();
   156     }
   157 
   158     /// \brief The type of the map that stores the cardinalities of the nodes.
   159     /// 
   160     /// The type of the map that stores the cardinalities of the nodes.
   161     /// It must meet the \ref concepts::WriteMap "WriteMap" concept.
   162     typedef typename Digraph::template NodeMap<Value> CardinalityMap;
   163 
   164     /// \brief Instantiates a CardinalityMap.
   165     ///
   166     /// This function instantiates a \ref CardinalityMap. 
   167     /// \param digraph is the digraph, to which we would like to define the \ref 
   168     /// CardinalityMap
   169     static CardinalityMap *createCardinalityMap(const Digraph &digraph) {
   170       return new CardinalityMap(digraph);
   171     }
   172 
   173 
   174   };
   175   
   176   /// \ingroup search
   177   ///
   178   /// \brief Maximum Cardinality Search algorithm class.
   179   ///
   180   /// This class provides an efficient implementation of Maximum Cardinality 
   181   /// Search algorithm. The maximum cardinality search first chooses any 
   182   /// node of the digraph. Then every time it chooses one unprocessed node
   183   /// with maximum cardinality, i.e the sum of capacities on out arcs to the nodes
   184   /// which were previusly processed.
   185   /// If there is a cut in the digraph the algorithm should choose
   186   /// again any unprocessed node of the digraph.
   187 
   188   /// The arc capacities are passed to the algorithm using a
   189   /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
   190   /// kind of capacity.
   191   ///
   192   /// The type of the capacity is determined by the \ref 
   193   /// concepts::ReadMap::Value "Value" of the capacity map.
   194   ///
   195   /// It is also possible to change the underlying priority heap.
   196   ///
   197   ///
   198   /// \param GR The digraph type the algorithm runs on. The value of
   199   /// Digraph is not used directly by the search algorithm, it 
   200   /// is only passed to \ref MaxCardinalitySearchDefaultTraits.
   201   /// \param CAP This read-only ArcMap determines the capacities of 
   202   /// the arcs. It is read once for each arc, so the map may involve in
   203   /// relatively time consuming process to compute the arc capacity if
   204   /// it is necessary. The default map type is \ref
   205   /// ConstMap "ConstMap<concepts::Digraph::Arc, Const<int,1> >". The value
   206   /// of CapacityMap is not used directly by search algorithm, it is only 
   207   /// passed to \ref MaxCardinalitySearchDefaultTraits.  
   208   /// \param TR Traits class to set various data types used by the 
   209   /// algorithm.  The default traits class is 
   210   /// \ref MaxCardinalitySearchDefaultTraits 
   211   /// "MaxCardinalitySearchDefaultTraits<GR, CAP>".  
   212   /// See \ref MaxCardinalitySearchDefaultTraits 
   213   /// for the documentation of a MaxCardinalitySearch traits class.
   214 
   215 #ifdef DOXYGEN
   216   template <typename GR, typename CAP, typename TR>
   217 #else
   218   template <typename GR, typename CAP = 
   219 	    ConstMap<typename GR::Arc, Const<int,1> >,
   220 	    typename TR = 
   221             MaxCardinalitySearchDefaultTraits<GR, CAP> >
   222 #endif
   223   class MaxCardinalitySearch {
   224   public:
   225 
   226     typedef TR Traits;
   227     ///The type of the underlying digraph.
   228     typedef typename Traits::Digraph Digraph;
   229     
   230     ///The type of the capacity of the arcs.
   231     typedef typename Traits::CapacityMap::Value Value;
   232     ///The type of the map that stores the arc capacities.
   233     typedef typename Traits::CapacityMap CapacityMap;
   234     ///The type of the map indicating if a node is processed.
   235     typedef typename Traits::ProcessedMap ProcessedMap;
   236     ///The type of the map that stores the cardinalities of the nodes.
   237     typedef typename Traits::CardinalityMap CardinalityMap;
   238     ///The cross reference type used for the current heap.
   239     typedef typename Traits::HeapCrossRef HeapCrossRef;
   240     ///The heap type used by the algorithm. It maximizes the priorities.
   241     typedef typename Traits::Heap Heap;
   242   private:
   243     // Pointer to the underlying digraph.
   244     const Digraph *_graph;
   245     // Pointer to the capacity map
   246     const CapacityMap *_capacity;
   247     // Indicates if \ref _capacity is locally allocated (\c true) or not.
   248     bool local_capacity;
   249     // Pointer to the map of cardinality.
   250     CardinalityMap *_cardinality;
   251     // Indicates if \ref _cardinality is locally allocated (\c true) or not.
   252     bool local_cardinality;
   253     // Pointer to the map of processed status of the nodes.
   254     ProcessedMap *_processed;
   255     // Indicates if \ref _processed is locally allocated (\c true) or not.
   256     bool local_processed;
   257     // Pointer to the heap cross references.
   258     HeapCrossRef *_heap_cross_ref;
   259     // Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
   260     bool local_heap_cross_ref;
   261     // Pointer to the heap.
   262     Heap *_heap;
   263     // Indicates if \ref _heap is locally allocated (\c true) or not.
   264     bool local_heap;
   265 
   266   public :
   267 
   268     typedef MaxCardinalitySearch Create;
   269  
   270     ///\name Named template parameters
   271 
   272     ///@{
   273 
   274     template <class T>
   275     struct DefCapacityMapTraits : public Traits {
   276       typedef T CapacityMap;
   277       static CapacityMap *createCapacityMap(const Digraph &) {
   278        	LEMON_ASSERT(false,"Uninitialized parameter.");
   279 	return 0;
   280       }
   281     };
   282     /// \brief \ref named-templ-param "Named parameter" for setting 
   283     /// CapacityMap type
   284     ///
   285     /// \ref named-templ-param "Named parameter" for setting CapacityMap type
   286     /// for the algorithm.
   287     template <class T>
   288     struct SetCapacityMap 
   289       : public MaxCardinalitySearch<Digraph, CapacityMap, 
   290                                     DefCapacityMapTraits<T> > { 
   291       typedef MaxCardinalitySearch<Digraph, CapacityMap, 
   292                                    DefCapacityMapTraits<T> > Create;
   293     };
   294 
   295     template <class T>
   296     struct DefCardinalityMapTraits : public Traits {
   297       typedef T CardinalityMap;
   298       static CardinalityMap *createCardinalityMap(const Digraph &) 
   299       {
   300 	LEMON_ASSERT(false,"Uninitialized parameter.");
   301 	return 0;
   302       }
   303     };
   304     /// \brief \ref named-templ-param "Named parameter" for setting 
   305     /// CardinalityMap type
   306     ///
   307     /// \ref named-templ-param "Named parameter" for setting CardinalityMap 
   308     /// type for the algorithm.
   309     template <class T>
   310     struct SetCardinalityMap 
   311       : public MaxCardinalitySearch<Digraph, CapacityMap, 
   312                                     DefCardinalityMapTraits<T> > { 
   313       typedef MaxCardinalitySearch<Digraph, CapacityMap, 
   314                                    DefCardinalityMapTraits<T> > Create;
   315     };
   316     
   317     template <class T>
   318     struct DefProcessedMapTraits : public Traits {
   319       typedef T ProcessedMap;
   320       static ProcessedMap *createProcessedMap(const Digraph &) {
   321        	LEMON_ASSERT(false,"Uninitialized parameter.");
   322 	return 0;
   323       }
   324     };
   325     /// \brief \ref named-templ-param "Named parameter" for setting 
   326     /// ProcessedMap type
   327     ///
   328     /// \ref named-templ-param "Named parameter" for setting ProcessedMap type
   329     /// for the algorithm.
   330     template <class T>
   331     struct SetProcessedMap 
   332       : public MaxCardinalitySearch<Digraph, CapacityMap, 
   333                                     DefProcessedMapTraits<T> > { 
   334       typedef MaxCardinalitySearch<Digraph, CapacityMap, 
   335                                    DefProcessedMapTraits<T> > Create;
   336     };
   337     
   338     template <class H, class CR>
   339     struct DefHeapTraits : public Traits {
   340       typedef CR HeapCrossRef;
   341       typedef H Heap;
   342       static HeapCrossRef *createHeapCrossRef(const Digraph &) {
   343      	LEMON_ASSERT(false,"Uninitialized parameter.");
   344 	return 0;
   345       }
   346       static Heap *createHeap(HeapCrossRef &) {
   347        	LEMON_ASSERT(false,"Uninitialized parameter.");
   348 	return 0;
   349       }
   350     };
   351     /// \brief \ref named-templ-param "Named parameter" for setting heap 
   352     /// and cross reference type
   353     ///
   354     /// \ref named-templ-param "Named parameter" for setting heap and cross 
   355     /// reference type for the algorithm.
   356     template <class H, class CR = typename Digraph::template NodeMap<int> >
   357     struct SetHeap
   358       : public MaxCardinalitySearch<Digraph, CapacityMap, 
   359                                     DefHeapTraits<H, CR> > { 
   360       typedef MaxCardinalitySearch< Digraph, CapacityMap, 
   361                                     DefHeapTraits<H, CR> > Create;
   362     };
   363 
   364     template <class H, class CR>
   365     struct DefStandardHeapTraits : public Traits {
   366       typedef CR HeapCrossRef;
   367       typedef H Heap;
   368       static HeapCrossRef *createHeapCrossRef(const Digraph &digraph) {
   369 	return new HeapCrossRef(digraph);
   370       }
   371       static Heap *createHeap(HeapCrossRef &crossref) {
   372 	return new Heap(crossref);
   373       }
   374     };
   375 
   376     /// \brief \ref named-templ-param "Named parameter" for setting heap and 
   377     /// cross reference type with automatic allocation
   378     ///
   379     /// \ref named-templ-param "Named parameter" for setting heap and cross 
   380     /// reference type. It can allocate the heap and the cross reference 
   381     /// object if the cross reference's constructor waits for the digraph as 
   382     /// parameter and the heap's constructor waits for the cross reference.
   383     template <class H, class CR = typename Digraph::template NodeMap<int> >
   384     struct SetStandardHeap
   385       : public MaxCardinalitySearch<Digraph, CapacityMap, 
   386                                     DefStandardHeapTraits<H, CR> > { 
   387       typedef MaxCardinalitySearch<Digraph, CapacityMap, 
   388                                    DefStandardHeapTraits<H, CR> > 
   389       Create;
   390     };
   391     
   392     ///@}
   393 
   394 
   395   protected:
   396 
   397     MaxCardinalitySearch() {}
   398 
   399   public:      
   400     
   401     /// \brief Constructor.
   402     ///
   403     ///\param digraph the digraph the algorithm will run on.
   404     ///\param capacity the capacity map used by the algorithm.
   405     ///When no capacity map given, a constant 1 capacity map will
   406     ///be allocated.
   407 #ifdef DOXYGEN
   408     MaxCardinalitySearch(const Digraph& digraph,
   409 			 const CapacityMap& capacity=0 ) :
   410 #else
   411     MaxCardinalitySearch(const Digraph& digraph,
   412 			 const CapacityMap& capacity=*static_cast<const CapacityMap*>(0) ) :
   413 #endif
   414       _graph(&digraph),
   415       _capacity(&capacity), local_capacity(false),
   416       _cardinality(0), local_cardinality(false),
   417       _processed(0), local_processed(false),
   418       _heap_cross_ref(0), local_heap_cross_ref(false),
   419       _heap(0), local_heap(false)
   420     { }
   421 
   422     /// \brief Destructor.
   423     ~MaxCardinalitySearch() {
   424       if(local_capacity) delete _capacity;
   425       if(local_cardinality) delete _cardinality;
   426       if(local_processed) delete _processed;
   427       if(local_heap_cross_ref) delete _heap_cross_ref;
   428       if(local_heap) delete _heap;
   429     }
   430 
   431     /// \brief Sets the capacity map.
   432     ///
   433     /// Sets the capacity map.
   434     /// \return <tt> (*this) </tt>
   435     MaxCardinalitySearch &capacityMap(const CapacityMap &m) {
   436       if (local_capacity) {
   437 	delete _capacity;
   438 	local_capacity=false;
   439       }
   440       _capacity=&m;
   441       return *this;
   442     }
   443 
   444     /// \brief Returns a const reference to the capacity map.
   445     ///
   446     /// Returns a const reference to the capacity map used by
   447     /// the algorithm.
   448     const CapacityMap &capacityMap() const {
   449       return *_capacity;
   450     }
   451 
   452     /// \brief Sets the map storing the cardinalities calculated by the 
   453     /// algorithm.
   454     ///
   455     /// Sets the map storing the cardinalities calculated by the algorithm.
   456     /// If you don't use this function before calling \ref run(),
   457     /// it will allocate one. The destuctor deallocates this
   458     /// automatically allocated map, of course.
   459     /// \return <tt> (*this) </tt>
   460     MaxCardinalitySearch &cardinalityMap(CardinalityMap &m) {
   461       if(local_cardinality) {
   462 	delete _cardinality;
   463 	local_cardinality=false;
   464       }
   465       _cardinality = &m;
   466       return *this;
   467     }
   468 
   469     /// \brief Sets the map storing the processed nodes.
   470     ///
   471     /// Sets the map storing the processed nodes.
   472     /// If you don't use this function before calling \ref run(),
   473     /// it will allocate one. The destuctor deallocates this
   474     /// automatically allocated map, of course.
   475     /// \return <tt> (*this) </tt>
   476     MaxCardinalitySearch &processedMap(ProcessedMap &m) 
   477     {
   478       if(local_processed) {
   479 	delete _processed;
   480 	local_processed=false;
   481       }
   482       _processed = &m;
   483       return *this;
   484     }
   485 
   486     /// \brief Returns a const reference to the cardinality map.
   487     ///
   488     /// Returns a const reference to the cardinality map used by
   489     /// the algorithm.
   490     const ProcessedMap &processedMap() const {
   491       return *_processed;
   492     }
   493 
   494     /// \brief Sets the heap and the cross reference used by algorithm.
   495     ///
   496     /// Sets the heap and the cross reference used by algorithm.
   497     /// If you don't use this function before calling \ref run(),
   498     /// it will allocate one. The destuctor deallocates this
   499     /// automatically allocated map, of course.
   500     /// \return <tt> (*this) </tt>
   501     MaxCardinalitySearch &heap(Heap& hp, HeapCrossRef &cr) {
   502       if(local_heap_cross_ref) {
   503 	delete _heap_cross_ref;
   504 	local_heap_cross_ref = false;
   505       }
   506       _heap_cross_ref = &cr;
   507       if(local_heap) {
   508 	delete _heap;
   509 	local_heap = false;
   510       }
   511       _heap = &hp;
   512       return *this;
   513     }
   514 
   515     /// \brief Returns a const reference to the heap.
   516     ///
   517     /// Returns a const reference to the heap used by
   518     /// the algorithm.
   519     const Heap &heap() const {
   520       return *_heap;
   521     }
   522 
   523     /// \brief Returns a const reference to the cross reference.
   524     ///
   525     /// Returns a const reference to the cross reference
   526     /// of the heap.
   527     const HeapCrossRef &heapCrossRef() const {
   528       return *_heap_cross_ref;
   529     }
   530 
   531   private:
   532 
   533     typedef typename Digraph::Node Node;
   534     typedef typename Digraph::NodeIt NodeIt;
   535     typedef typename Digraph::Arc Arc;
   536     typedef typename Digraph::InArcIt InArcIt;
   537 
   538     void create_maps() {
   539       if(!_capacity) {
   540 	local_capacity = true;
   541 	_capacity = Traits::createCapacityMap(*_graph);
   542       }
   543       if(!_cardinality) {
   544 	local_cardinality = true;
   545 	_cardinality = Traits::createCardinalityMap(*_graph);
   546       }
   547       if(!_processed) {
   548 	local_processed = true;
   549 	_processed = Traits::createProcessedMap(*_graph);
   550       }
   551       if (!_heap_cross_ref) {
   552 	local_heap_cross_ref = true;
   553 	_heap_cross_ref = Traits::createHeapCrossRef(*_graph);
   554       }
   555       if (!_heap) {
   556 	local_heap = true;
   557 	_heap = Traits::createHeap(*_heap_cross_ref);
   558       }
   559     }
   560     
   561     void finalizeNodeData(Node node, Value capacity) {
   562       _processed->set(node, true);
   563       _cardinality->set(node, capacity);
   564     }
   565 
   566   public:
   567     /// \name Execution control
   568     /// The simplest way to execute the algorithm is to use
   569     /// one of the member functions called \ref run().
   570     /// \n
   571     /// If you need more control on the execution,
   572     /// first you must call \ref init(), then you can add several source nodes
   573     /// with \ref addSource().
   574     /// Finally \ref start() will perform the computation.
   575 
   576     ///@{
   577 
   578     /// \brief Initializes the internal data structures.
   579     ///
   580     /// Initializes the internal data structures, and clears the heap.
   581     void init() {
   582       create_maps();
   583       _heap->clear();
   584       for (NodeIt it(*_graph) ; it != INVALID ; ++it) {
   585 	_processed->set(it, false);
   586 	_heap_cross_ref->set(it, Heap::PRE_HEAP);
   587       }
   588     }
   589     
   590     /// \brief Adds a new source node.
   591     /// 
   592     /// Adds a new source node to the priority heap.
   593     ///
   594     /// It checks if the node has not yet been added to the heap.
   595     void addSource(Node source, Value capacity = 0) {
   596       if(_heap->state(source) == Heap::PRE_HEAP) {
   597 	_heap->push(source, capacity);
   598       } 
   599     }
   600     
   601     /// \brief Processes the next node in the priority heap
   602     ///
   603     /// Processes the next node in the priority heap.
   604     ///
   605     /// \return The processed node.
   606     ///
   607     /// \warning The priority heap must not be empty!
   608     Node processNextNode() {
   609       Node node = _heap->top(); 
   610       finalizeNodeData(node, _heap->prio());
   611       _heap->pop();
   612       
   613       for (InArcIt it(*_graph, node); it != INVALID; ++it) {
   614 	Node source = _graph->source(it);
   615 	switch (_heap->state(source)) {
   616 	case Heap::PRE_HEAP:
   617 	  _heap->push(source, (*_capacity)[it]);
   618 	  break;
   619 	case Heap::IN_HEAP:
   620 	  _heap->decrease(source, (*_heap)[source] + (*_capacity)[it]);
   621 	  break;
   622 	case Heap::POST_HEAP:
   623 	  break;
   624 	}
   625       }
   626       return node;
   627     }
   628 
   629     /// \brief Next node to be processed.
   630     ///
   631     /// Next node to be processed.
   632     ///
   633     /// \return The next node to be processed or INVALID if the 
   634     /// priority heap is empty.
   635     Node nextNode() { 
   636       return !_heap->empty() ? _heap->top() : INVALID;
   637     }
   638  
   639     /// \brief Returns \c false if there are nodes
   640     /// to be processed in the priority heap
   641     ///
   642     /// Returns \c false if there are nodes
   643     /// to be processed in the priority heap
   644     bool emptyQueue() { return _heap->empty(); }
   645     /// \brief Returns the number of the nodes to be processed 
   646     /// in the priority heap
   647     ///
   648     /// Returns the number of the nodes to be processed in the priority heap
   649     int emptySize() { return _heap->size(); }
   650     
   651     /// \brief Executes the algorithm.
   652     ///
   653     /// Executes the algorithm.
   654     ///
   655     ///\pre init() must be called and at least one node should be added
   656     /// with addSource() before using this function.
   657     ///
   658     /// This method runs the Maximum Cardinality Search algorithm from the 
   659     /// source node(s).
   660     void start() {
   661       while ( !_heap->empty() ) processNextNode();
   662     }
   663     
   664     /// \brief Executes the algorithm until \c dest is reached.
   665     ///
   666     /// Executes the algorithm until \c dest is reached.
   667     ///
   668     /// \pre init() must be called and at least one node should be added
   669     /// with addSource() before using this function.
   670     ///
   671     /// This method runs the %MaxCardinalitySearch algorithm from the source 
   672     /// nodes.
   673     void start(Node dest) {
   674       while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
   675       if ( !_heap->empty() ) finalizeNodeData(_heap->top(), _heap->prio());
   676     }
   677     
   678     /// \brief Executes the algorithm until a condition is met.
   679     ///
   680     /// Executes the algorithm until a condition is met.
   681     ///
   682     /// \pre init() must be called and at least one node should be added
   683     /// with addSource() before using this function.
   684     ///
   685     /// \param nm must be a bool (or convertible) node map. The algorithm
   686     /// will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   687     template <typename NodeBoolMap>
   688     void start(const NodeBoolMap &nm) {
   689       while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
   690       if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
   691     }
   692     
   693     /// \brief Runs the maximum cardinality search algorithm from node \c s.
   694     ///
   695     /// This method runs the %MaxCardinalitySearch algorithm from a root 
   696     /// node \c s.
   697     ///
   698     ///\note d.run(s) is just a shortcut of the following code.
   699     ///\code
   700     ///  d.init();
   701     ///  d.addSource(s);
   702     ///  d.start();
   703     ///\endcode
   704     void run(Node s) {
   705       init();
   706       addSource(s);
   707       start();
   708     }
   709 
   710     /// \brief Runs the maximum cardinality search algorithm for the 
   711     /// whole digraph.
   712     ///
   713     /// This method runs the %MaxCardinalitySearch algorithm from all 
   714     /// unprocessed node of the digraph.
   715     ///
   716     ///\note d.run(s) is just a shortcut of the following code.
   717     ///\code
   718     ///  d.init();
   719     ///  for (NodeIt it(digraph); it != INVALID; ++it) {
   720     ///    if (!d.reached(it)) {
   721     ///      d.addSource(s);
   722     ///      d.start();
   723     ///    }
   724     ///  }
   725     ///\endcode
   726     void run() {
   727       init();
   728       for (NodeIt it(*_graph); it != INVALID; ++it) {
   729         if (!reached(it)) {
   730           addSource(it);
   731           start();
   732         }
   733       }
   734     }
   735     
   736     ///@}
   737 
   738     /// \name Query Functions
   739     /// The results of the maximum cardinality search algorithm can be 
   740     /// obtained using these functions.
   741     /// \n
   742     /// Before the use of these functions, either run() or start() must be 
   743     /// called.
   744     
   745     ///@{
   746 
   747     /// \brief The cardinality of a node.
   748     ///
   749     /// Returns the cardinality of a node.
   750     /// \pre \ref run() must be called before using this function.
   751     /// \warning If node \c v in unreachable from the root the return value
   752     /// of this funcion is undefined.
   753     Value cardinality(Node node) const { return (*_cardinality)[node]; }
   754 
   755     /// \brief The current cardinality of a node.
   756     ///
   757     /// Returns the current cardinality of a node.
   758     /// \pre the given node should be reached but not processed
   759     Value currentCardinality(Node node) const { return (*_heap)[node]; }
   760 
   761     /// \brief Returns a reference to the NodeMap of cardinalities.
   762     ///
   763     /// Returns a reference to the NodeMap of cardinalities. \pre \ref run() 
   764     /// must be called before using this function.
   765     const CardinalityMap &cardinalityMap() const { return *_cardinality;}
   766  
   767     /// \brief Checks if a node is reachable from the root.
   768     ///
   769     /// Returns \c true if \c v is reachable from the root.
   770     /// \warning The source nodes are initated as unreached.
   771     /// \pre \ref run() must be called before using this function.
   772     bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
   773 
   774     /// \brief Checks if a node is processed.
   775     ///
   776     /// Returns \c true if \c v is processed, i.e. the shortest
   777     /// path to \c v has already found.
   778     /// \pre \ref run() must be called before using this function.
   779     bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
   780     
   781     ///@}
   782   };
   783 
   784 }
   785 
   786 #endif