lemon/cost_scaling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Tue, 15 Mar 2011 19:52:31 +0100
changeset 1048 1226290a9b7d
parent 1047 ddd3c0d3d9bf
child 1049 a07b6b27fe69
permissions -rw-r--r--
Faster computation of the dual solution in CostScaling (#417)
alpar@956
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@874
     2
 *
alpar@956
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@874
     4
 *
alpar@956
     5
 * Copyright (C) 2003-2010
kpeter@874
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@874
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@874
     8
 *
kpeter@874
     9
 * Permission to use, modify and distribute this software is granted
kpeter@874
    10
 * provided that this copyright notice appears in all copies. For
kpeter@874
    11
 * precise terms see the accompanying LICENSE file.
kpeter@874
    12
 *
kpeter@874
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@874
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@874
    15
 * purpose.
kpeter@874
    16
 *
kpeter@874
    17
 */
kpeter@874
    18
kpeter@874
    19
#ifndef LEMON_COST_SCALING_H
kpeter@874
    20
#define LEMON_COST_SCALING_H
kpeter@874
    21
kpeter@874
    22
/// \ingroup min_cost_flow_algs
kpeter@874
    23
/// \file
kpeter@874
    24
/// \brief Cost scaling algorithm for finding a minimum cost flow.
kpeter@874
    25
kpeter@874
    26
#include <vector>
kpeter@874
    27
#include <deque>
kpeter@874
    28
#include <limits>
kpeter@874
    29
kpeter@874
    30
#include <lemon/core.h>
kpeter@874
    31
#include <lemon/maps.h>
kpeter@874
    32
#include <lemon/math.h>
kpeter@875
    33
#include <lemon/static_graph.h>
kpeter@874
    34
#include <lemon/circulation.h>
kpeter@874
    35
#include <lemon/bellman_ford.h>
kpeter@874
    36
kpeter@874
    37
namespace lemon {
kpeter@874
    38
kpeter@875
    39
  /// \brief Default traits class of CostScaling algorithm.
kpeter@875
    40
  ///
kpeter@875
    41
  /// Default traits class of CostScaling algorithm.
kpeter@875
    42
  /// \tparam GR Digraph type.
kpeter@878
    43
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@875
    44
  /// and supply values. By default it is \c int.
kpeter@878
    45
  /// \tparam C The number type used for costs and potentials.
kpeter@875
    46
  /// By default it is the same as \c V.
kpeter@875
    47
#ifdef DOXYGEN
kpeter@875
    48
  template <typename GR, typename V = int, typename C = V>
kpeter@875
    49
#else
kpeter@875
    50
  template < typename GR, typename V = int, typename C = V,
kpeter@875
    51
             bool integer = std::numeric_limits<C>::is_integer >
kpeter@875
    52
#endif
kpeter@875
    53
  struct CostScalingDefaultTraits
kpeter@875
    54
  {
kpeter@875
    55
    /// The type of the digraph
kpeter@875
    56
    typedef GR Digraph;
kpeter@875
    57
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@875
    58
    typedef V Value;
kpeter@875
    59
    /// The type of the arc costs
kpeter@875
    60
    typedef C Cost;
kpeter@875
    61
kpeter@875
    62
    /// \brief The large cost type used for internal computations
kpeter@875
    63
    ///
kpeter@875
    64
    /// The large cost type used for internal computations.
kpeter@875
    65
    /// It is \c long \c long if the \c Cost type is integer,
kpeter@875
    66
    /// otherwise it is \c double.
kpeter@875
    67
    /// \c Cost must be convertible to \c LargeCost.
kpeter@875
    68
    typedef double LargeCost;
kpeter@875
    69
  };
kpeter@875
    70
kpeter@875
    71
  // Default traits class for integer cost types
kpeter@875
    72
  template <typename GR, typename V, typename C>
kpeter@875
    73
  struct CostScalingDefaultTraits<GR, V, C, true>
kpeter@875
    74
  {
kpeter@875
    75
    typedef GR Digraph;
kpeter@875
    76
    typedef V Value;
kpeter@875
    77
    typedef C Cost;
kpeter@875
    78
#ifdef LEMON_HAVE_LONG_LONG
kpeter@875
    79
    typedef long long LargeCost;
kpeter@875
    80
#else
kpeter@875
    81
    typedef long LargeCost;
kpeter@875
    82
#endif
kpeter@875
    83
  };
kpeter@875
    84
kpeter@875
    85
kpeter@874
    86
  /// \addtogroup min_cost_flow_algs
kpeter@874
    87
  /// @{
kpeter@874
    88
kpeter@875
    89
  /// \brief Implementation of the Cost Scaling algorithm for
kpeter@875
    90
  /// finding a \ref min_cost_flow "minimum cost flow".
kpeter@874
    91
  ///
kpeter@875
    92
  /// \ref CostScaling implements a cost scaling algorithm that performs
kpeter@879
    93
  /// push/augment and relabel operations for finding a \ref min_cost_flow
kpeter@879
    94
  /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
alpar@956
    95
  /// \ref goldberg97efficient, \ref bunnagel98efficient.
kpeter@879
    96
  /// It is a highly efficient primal-dual solution method, which
kpeter@875
    97
  /// can be viewed as the generalization of the \ref Preflow
kpeter@875
    98
  /// "preflow push-relabel" algorithm for the maximum flow problem.
kpeter@874
    99
  ///
kpeter@1023
   100
  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
kpeter@1023
   101
  /// implementations available in LEMON for this problem.
kpeter@1023
   102
  ///
kpeter@875
   103
  /// Most of the parameters of the problem (except for the digraph)
kpeter@875
   104
  /// can be given using separate functions, and the algorithm can be
kpeter@875
   105
  /// executed using the \ref run() function. If some parameters are not
kpeter@875
   106
  /// specified, then default values will be used.
kpeter@874
   107
  ///
kpeter@875
   108
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@878
   109
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@891
   110
  /// and supply values in the algorithm. By default, it is \c int.
kpeter@878
   111
  /// \tparam C The number type used for costs and potentials in the
kpeter@891
   112
  /// algorithm. By default, it is the same as \c V.
kpeter@891
   113
  /// \tparam TR The traits class that defines various types used by the
kpeter@891
   114
  /// algorithm. By default, it is \ref CostScalingDefaultTraits
kpeter@891
   115
  /// "CostScalingDefaultTraits<GR, V, C>".
kpeter@891
   116
  /// In most cases, this parameter should not be set directly,
kpeter@891
   117
  /// consider to use the named template parameters instead.
kpeter@874
   118
  ///
kpeter@1025
   119
  /// \warning Both \c V and \c C must be signed number types.
kpeter@1025
   120
  /// \warning All input data (capacities, supply values, and costs) must
kpeter@875
   121
  /// be integer.
kpeter@1023
   122
  /// \warning This algorithm does not support negative costs for
kpeter@1023
   123
  /// arcs having infinite upper bound.
kpeter@876
   124
  ///
kpeter@876
   125
  /// \note %CostScaling provides three different internal methods,
kpeter@876
   126
  /// from which the most efficient one is used by default.
kpeter@876
   127
  /// For more information, see \ref Method.
kpeter@875
   128
#ifdef DOXYGEN
kpeter@875
   129
  template <typename GR, typename V, typename C, typename TR>
kpeter@875
   130
#else
kpeter@875
   131
  template < typename GR, typename V = int, typename C = V,
kpeter@875
   132
             typename TR = CostScalingDefaultTraits<GR, V, C> >
kpeter@875
   133
#endif
kpeter@874
   134
  class CostScaling
kpeter@874
   135
  {
kpeter@875
   136
  public:
kpeter@874
   137
kpeter@875
   138
    /// The type of the digraph
kpeter@875
   139
    typedef typename TR::Digraph Digraph;
kpeter@875
   140
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@875
   141
    typedef typename TR::Value Value;
kpeter@875
   142
    /// The type of the arc costs
kpeter@875
   143
    typedef typename TR::Cost Cost;
kpeter@874
   144
kpeter@875
   145
    /// \brief The large cost type
kpeter@875
   146
    ///
kpeter@875
   147
    /// The large cost type used for internal computations.
kpeter@891
   148
    /// By default, it is \c long \c long if the \c Cost type is integer,
kpeter@875
   149
    /// otherwise it is \c double.
kpeter@875
   150
    typedef typename TR::LargeCost LargeCost;
kpeter@874
   151
kpeter@875
   152
    /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
kpeter@875
   153
    typedef TR Traits;
kpeter@874
   154
kpeter@874
   155
  public:
kpeter@874
   156
kpeter@875
   157
    /// \brief Problem type constants for the \c run() function.
kpeter@875
   158
    ///
kpeter@875
   159
    /// Enum type containing the problem type constants that can be
kpeter@875
   160
    /// returned by the \ref run() function of the algorithm.
kpeter@875
   161
    enum ProblemType {
kpeter@875
   162
      /// The problem has no feasible solution (flow).
kpeter@875
   163
      INFEASIBLE,
kpeter@875
   164
      /// The problem has optimal solution (i.e. it is feasible and
kpeter@875
   165
      /// bounded), and the algorithm has found optimal flow and node
kpeter@875
   166
      /// potentials (primal and dual solutions).
kpeter@875
   167
      OPTIMAL,
kpeter@875
   168
      /// The digraph contains an arc of negative cost and infinite
kpeter@875
   169
      /// upper bound. It means that the objective function is unbounded
kpeter@878
   170
      /// on that arc, however, note that it could actually be bounded
kpeter@875
   171
      /// over the feasible flows, but this algroithm cannot handle
kpeter@875
   172
      /// these cases.
kpeter@875
   173
      UNBOUNDED
kpeter@875
   174
    };
kpeter@874
   175
kpeter@876
   176
    /// \brief Constants for selecting the internal method.
kpeter@876
   177
    ///
kpeter@876
   178
    /// Enum type containing constants for selecting the internal method
kpeter@876
   179
    /// for the \ref run() function.
kpeter@876
   180
    ///
kpeter@876
   181
    /// \ref CostScaling provides three internal methods that differ mainly
kpeter@876
   182
    /// in their base operations, which are used in conjunction with the
kpeter@876
   183
    /// relabel operation.
kpeter@876
   184
    /// By default, the so called \ref PARTIAL_AUGMENT
kpeter@1023
   185
    /// "Partial Augment-Relabel" method is used, which turned out to be
kpeter@876
   186
    /// the most efficient and the most robust on various test inputs.
kpeter@876
   187
    /// However, the other methods can be selected using the \ref run()
kpeter@876
   188
    /// function with the proper parameter.
kpeter@876
   189
    enum Method {
kpeter@876
   190
      /// Local push operations are used, i.e. flow is moved only on one
kpeter@876
   191
      /// admissible arc at once.
kpeter@876
   192
      PUSH,
kpeter@876
   193
      /// Augment operations are used, i.e. flow is moved on admissible
kpeter@876
   194
      /// paths from a node with excess to a node with deficit.
kpeter@876
   195
      AUGMENT,
alpar@956
   196
      /// Partial augment operations are used, i.e. flow is moved on
kpeter@876
   197
      /// admissible paths started from a node with excess, but the
kpeter@876
   198
      /// lengths of these paths are limited. This method can be viewed
kpeter@876
   199
      /// as a combined version of the previous two operations.
kpeter@876
   200
      PARTIAL_AUGMENT
kpeter@876
   201
    };
kpeter@876
   202
kpeter@874
   203
  private:
kpeter@874
   204
kpeter@875
   205
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
kpeter@874
   206
kpeter@875
   207
    typedef std::vector<int> IntVector;
kpeter@875
   208
    typedef std::vector<Value> ValueVector;
kpeter@875
   209
    typedef std::vector<Cost> CostVector;
kpeter@875
   210
    typedef std::vector<LargeCost> LargeCostVector;
kpeter@910
   211
    typedef std::vector<char> BoolVector;
kpeter@910
   212
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
kpeter@874
   213
kpeter@875
   214
  private:
alpar@956
   215
kpeter@875
   216
    template <typename KT, typename VT>
kpeter@886
   217
    class StaticVectorMap {
kpeter@874
   218
    public:
kpeter@875
   219
      typedef KT Key;
kpeter@875
   220
      typedef VT Value;
alpar@956
   221
kpeter@886
   222
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
alpar@956
   223
kpeter@875
   224
      const Value& operator[](const Key& key) const {
kpeter@875
   225
        return _v[StaticDigraph::id(key)];
kpeter@874
   226
      }
kpeter@874
   227
kpeter@875
   228
      Value& operator[](const Key& key) {
kpeter@875
   229
        return _v[StaticDigraph::id(key)];
kpeter@875
   230
      }
alpar@956
   231
kpeter@875
   232
      void set(const Key& key, const Value& val) {
kpeter@875
   233
        _v[StaticDigraph::id(key)] = val;
kpeter@874
   234
      }
kpeter@874
   235
kpeter@875
   236
    private:
kpeter@875
   237
      std::vector<Value>& _v;
kpeter@875
   238
    };
kpeter@875
   239
kpeter@886
   240
    typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
kpeter@874
   241
kpeter@874
   242
  private:
kpeter@874
   243
kpeter@875
   244
    // Data related to the underlying digraph
kpeter@875
   245
    const GR &_graph;
kpeter@875
   246
    int _node_num;
kpeter@875
   247
    int _arc_num;
kpeter@875
   248
    int _res_node_num;
kpeter@875
   249
    int _res_arc_num;
kpeter@875
   250
    int _root;
kpeter@874
   251
kpeter@875
   252
    // Parameters of the problem
kpeter@875
   253
    bool _have_lower;
kpeter@875
   254
    Value _sum_supply;
kpeter@910
   255
    int _sup_node_num;
kpeter@874
   256
kpeter@875
   257
    // Data structures for storing the digraph
kpeter@875
   258
    IntNodeMap _node_id;
kpeter@875
   259
    IntArcMap _arc_idf;
kpeter@875
   260
    IntArcMap _arc_idb;
kpeter@875
   261
    IntVector _first_out;
kpeter@875
   262
    BoolVector _forward;
kpeter@875
   263
    IntVector _source;
kpeter@875
   264
    IntVector _target;
kpeter@875
   265
    IntVector _reverse;
kpeter@875
   266
kpeter@875
   267
    // Node and arc data
kpeter@875
   268
    ValueVector _lower;
kpeter@875
   269
    ValueVector _upper;
kpeter@875
   270
    CostVector _scost;
kpeter@875
   271
    ValueVector _supply;
kpeter@875
   272
kpeter@875
   273
    ValueVector _res_cap;
kpeter@875
   274
    LargeCostVector _cost;
kpeter@875
   275
    LargeCostVector _pi;
kpeter@875
   276
    ValueVector _excess;
kpeter@875
   277
    IntVector _next_out;
kpeter@875
   278
    std::deque<int> _active_nodes;
kpeter@875
   279
kpeter@875
   280
    // Data for scaling
kpeter@875
   281
    LargeCost _epsilon;
kpeter@874
   282
    int _alpha;
kpeter@874
   283
kpeter@910
   284
    IntVector _buckets;
kpeter@910
   285
    IntVector _bucket_next;
kpeter@910
   286
    IntVector _bucket_prev;
kpeter@910
   287
    IntVector _rank;
kpeter@910
   288
    int _max_rank;
alpar@956
   289
kpeter@875
   290
  public:
alpar@956
   291
kpeter@875
   292
    /// \brief Constant for infinite upper bounds (capacities).
kpeter@875
   293
    ///
kpeter@875
   294
    /// Constant for infinite upper bounds (capacities).
kpeter@875
   295
    /// It is \c std::numeric_limits<Value>::infinity() if available,
kpeter@875
   296
    /// \c std::numeric_limits<Value>::max() otherwise.
kpeter@875
   297
    const Value INF;
kpeter@875
   298
kpeter@874
   299
  public:
kpeter@874
   300
kpeter@875
   301
    /// \name Named Template Parameters
kpeter@875
   302
    /// @{
kpeter@875
   303
kpeter@875
   304
    template <typename T>
kpeter@875
   305
    struct SetLargeCostTraits : public Traits {
kpeter@875
   306
      typedef T LargeCost;
kpeter@875
   307
    };
kpeter@875
   308
kpeter@875
   309
    /// \brief \ref named-templ-param "Named parameter" for setting
kpeter@875
   310
    /// \c LargeCost type.
kpeter@874
   311
    ///
kpeter@875
   312
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
kpeter@875
   313
    /// type, which is used for internal computations in the algorithm.
kpeter@875
   314
    /// \c Cost must be convertible to \c LargeCost.
kpeter@875
   315
    template <typename T>
kpeter@875
   316
    struct SetLargeCost
kpeter@875
   317
      : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
kpeter@875
   318
      typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
kpeter@875
   319
    };
kpeter@875
   320
kpeter@875
   321
    /// @}
kpeter@875
   322
kpeter@941
   323
  protected:
kpeter@941
   324
kpeter@941
   325
    CostScaling() {}
kpeter@941
   326
kpeter@875
   327
  public:
kpeter@875
   328
kpeter@875
   329
    /// \brief Constructor.
kpeter@874
   330
    ///
kpeter@875
   331
    /// The constructor of the class.
kpeter@875
   332
    ///
kpeter@875
   333
    /// \param graph The digraph the algorithm runs on.
kpeter@875
   334
    CostScaling(const GR& graph) :
kpeter@875
   335
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
kpeter@875
   336
      INF(std::numeric_limits<Value>::has_infinity ?
kpeter@875
   337
          std::numeric_limits<Value>::infinity() :
kpeter@875
   338
          std::numeric_limits<Value>::max())
kpeter@874
   339
    {
kpeter@878
   340
      // Check the number types
kpeter@875
   341
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
kpeter@875
   342
        "The flow type of CostScaling must be signed");
kpeter@875
   343
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
kpeter@875
   344
        "The cost type of CostScaling must be signed");
alpar@956
   345
kpeter@898
   346
      // Reset data structures
kpeter@875
   347
      reset();
kpeter@874
   348
    }
kpeter@874
   349
kpeter@875
   350
    /// \name Parameters
kpeter@875
   351
    /// The parameters of the algorithm can be specified using these
kpeter@875
   352
    /// functions.
kpeter@875
   353
kpeter@875
   354
    /// @{
kpeter@875
   355
kpeter@875
   356
    /// \brief Set the lower bounds on the arcs.
kpeter@874
   357
    ///
kpeter@875
   358
    /// This function sets the lower bounds on the arcs.
kpeter@875
   359
    /// If it is not used before calling \ref run(), the lower bounds
kpeter@875
   360
    /// will be set to zero on all arcs.
kpeter@874
   361
    ///
kpeter@875
   362
    /// \param map An arc map storing the lower bounds.
kpeter@875
   363
    /// Its \c Value type must be convertible to the \c Value type
kpeter@875
   364
    /// of the algorithm.
kpeter@875
   365
    ///
kpeter@875
   366
    /// \return <tt>(*this)</tt>
kpeter@875
   367
    template <typename LowerMap>
kpeter@875
   368
    CostScaling& lowerMap(const LowerMap& map) {
kpeter@875
   369
      _have_lower = true;
kpeter@875
   370
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@875
   371
        _lower[_arc_idf[a]] = map[a];
kpeter@875
   372
        _lower[_arc_idb[a]] = map[a];
kpeter@874
   373
      }
kpeter@874
   374
      return *this;
kpeter@874
   375
    }
kpeter@874
   376
kpeter@875
   377
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@874
   378
    ///
kpeter@875
   379
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@875
   380
    /// If it is not used before calling \ref run(), the upper bounds
kpeter@875
   381
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
kpeter@878
   382
    /// unbounded from above).
kpeter@874
   383
    ///
kpeter@875
   384
    /// \param map An arc map storing the upper bounds.
kpeter@875
   385
    /// Its \c Value type must be convertible to the \c Value type
kpeter@875
   386
    /// of the algorithm.
kpeter@875
   387
    ///
kpeter@875
   388
    /// \return <tt>(*this)</tt>
kpeter@875
   389
    template<typename UpperMap>
kpeter@875
   390
    CostScaling& upperMap(const UpperMap& map) {
kpeter@875
   391
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@875
   392
        _upper[_arc_idf[a]] = map[a];
kpeter@874
   393
      }
kpeter@874
   394
      return *this;
kpeter@874
   395
    }
kpeter@874
   396
kpeter@875
   397
    /// \brief Set the costs of the arcs.
kpeter@875
   398
    ///
kpeter@875
   399
    /// This function sets the costs of the arcs.
kpeter@875
   400
    /// If it is not used before calling \ref run(), the costs
kpeter@875
   401
    /// will be set to \c 1 on all arcs.
kpeter@875
   402
    ///
kpeter@875
   403
    /// \param map An arc map storing the costs.
kpeter@875
   404
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@875
   405
    /// of the algorithm.
kpeter@875
   406
    ///
kpeter@875
   407
    /// \return <tt>(*this)</tt>
kpeter@875
   408
    template<typename CostMap>
kpeter@875
   409
    CostScaling& costMap(const CostMap& map) {
kpeter@875
   410
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@875
   411
        _scost[_arc_idf[a]] =  map[a];
kpeter@875
   412
        _scost[_arc_idb[a]] = -map[a];
kpeter@875
   413
      }
kpeter@875
   414
      return *this;
kpeter@875
   415
    }
kpeter@875
   416
kpeter@875
   417
    /// \brief Set the supply values of the nodes.
kpeter@875
   418
    ///
kpeter@875
   419
    /// This function sets the supply values of the nodes.
kpeter@875
   420
    /// If neither this function nor \ref stSupply() is used before
kpeter@875
   421
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@875
   422
    ///
kpeter@875
   423
    /// \param map A node map storing the supply values.
kpeter@875
   424
    /// Its \c Value type must be convertible to the \c Value type
kpeter@875
   425
    /// of the algorithm.
kpeter@875
   426
    ///
kpeter@875
   427
    /// \return <tt>(*this)</tt>
kpeter@875
   428
    template<typename SupplyMap>
kpeter@875
   429
    CostScaling& supplyMap(const SupplyMap& map) {
kpeter@875
   430
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@875
   431
        _supply[_node_id[n]] = map[n];
kpeter@875
   432
      }
kpeter@875
   433
      return *this;
kpeter@875
   434
    }
kpeter@875
   435
kpeter@875
   436
    /// \brief Set single source and target nodes and a supply value.
kpeter@875
   437
    ///
kpeter@875
   438
    /// This function sets a single source node and a single target node
kpeter@875
   439
    /// and the required flow value.
kpeter@875
   440
    /// If neither this function nor \ref supplyMap() is used before
kpeter@875
   441
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@875
   442
    ///
kpeter@875
   443
    /// Using this function has the same effect as using \ref supplyMap()
kpeter@1023
   444
    /// with a map in which \c k is assigned to \c s, \c -k is
kpeter@875
   445
    /// assigned to \c t and all other nodes have zero supply value.
kpeter@875
   446
    ///
kpeter@875
   447
    /// \param s The source node.
kpeter@875
   448
    /// \param t The target node.
kpeter@875
   449
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@875
   450
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@875
   451
    ///
kpeter@875
   452
    /// \return <tt>(*this)</tt>
kpeter@875
   453
    CostScaling& stSupply(const Node& s, const Node& t, Value k) {
kpeter@875
   454
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@875
   455
        _supply[i] = 0;
kpeter@875
   456
      }
kpeter@875
   457
      _supply[_node_id[s]] =  k;
kpeter@875
   458
      _supply[_node_id[t]] = -k;
kpeter@875
   459
      return *this;
kpeter@875
   460
    }
alpar@956
   461
kpeter@875
   462
    /// @}
kpeter@875
   463
kpeter@874
   464
    /// \name Execution control
kpeter@875
   465
    /// The algorithm can be executed using \ref run().
kpeter@874
   466
kpeter@874
   467
    /// @{
kpeter@874
   468
kpeter@874
   469
    /// \brief Run the algorithm.
kpeter@874
   470
    ///
kpeter@875
   471
    /// This function runs the algorithm.
kpeter@875
   472
    /// The paramters can be specified using functions \ref lowerMap(),
kpeter@875
   473
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@875
   474
    /// For example,
kpeter@875
   475
    /// \code
kpeter@875
   476
    ///   CostScaling<ListDigraph> cs(graph);
kpeter@875
   477
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@875
   478
    ///     .supplyMap(sup).run();
kpeter@875
   479
    /// \endcode
kpeter@875
   480
    ///
kpeter@898
   481
    /// This function can be called more than once. All the given parameters
kpeter@898
   482
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
kpeter@898
   483
    /// is used, thus only the modified parameters have to be set again.
kpeter@898
   484
    /// If the underlying digraph was also modified after the construction
kpeter@898
   485
    /// of the class (or the last \ref reset() call), then the \ref reset()
kpeter@898
   486
    /// function must be called.
kpeter@874
   487
    ///
kpeter@876
   488
    /// \param method The internal method that will be used in the
kpeter@876
   489
    /// algorithm. For more information, see \ref Method.
kpeter@876
   490
    /// \param factor The cost scaling factor. It must be larger than one.
kpeter@874
   491
    ///
kpeter@875
   492
    /// \return \c INFEASIBLE if no feasible flow exists,
kpeter@875
   493
    /// \n \c OPTIMAL if the problem has optimal solution
kpeter@875
   494
    /// (i.e. it is feasible and bounded), and the algorithm has found
kpeter@875
   495
    /// optimal flow and node potentials (primal and dual solutions),
kpeter@875
   496
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
kpeter@875
   497
    /// and infinite upper bound. It means that the objective function
kpeter@878
   498
    /// is unbounded on that arc, however, note that it could actually be
kpeter@875
   499
    /// bounded over the feasible flows, but this algroithm cannot handle
kpeter@875
   500
    /// these cases.
kpeter@875
   501
    ///
kpeter@876
   502
    /// \see ProblemType, Method
kpeter@898
   503
    /// \see resetParams(), reset()
kpeter@876
   504
    ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
kpeter@876
   505
      _alpha = factor;
kpeter@875
   506
      ProblemType pt = init();
kpeter@875
   507
      if (pt != OPTIMAL) return pt;
kpeter@876
   508
      start(method);
kpeter@875
   509
      return OPTIMAL;
kpeter@875
   510
    }
kpeter@875
   511
kpeter@875
   512
    /// \brief Reset all the parameters that have been given before.
kpeter@875
   513
    ///
kpeter@875
   514
    /// This function resets all the paramaters that have been given
kpeter@875
   515
    /// before using functions \ref lowerMap(), \ref upperMap(),
kpeter@875
   516
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@875
   517
    ///
kpeter@898
   518
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@898
   519
    /// parameters are kept for the next \ref run() call, unless
kpeter@898
   520
    /// \ref resetParams() or \ref reset() is used.
kpeter@898
   521
    /// If the underlying digraph was also modified after the construction
kpeter@898
   522
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@898
   523
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@875
   524
    ///
kpeter@875
   525
    /// For example,
kpeter@875
   526
    /// \code
kpeter@875
   527
    ///   CostScaling<ListDigraph> cs(graph);
kpeter@875
   528
    ///
kpeter@875
   529
    ///   // First run
kpeter@875
   530
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@875
   531
    ///     .supplyMap(sup).run();
kpeter@875
   532
    ///
kpeter@898
   533
    ///   // Run again with modified cost map (resetParams() is not called,
kpeter@875
   534
    ///   // so only the cost map have to be set again)
kpeter@875
   535
    ///   cost[e] += 100;
kpeter@875
   536
    ///   cs.costMap(cost).run();
kpeter@875
   537
    ///
kpeter@898
   538
    ///   // Run again from scratch using resetParams()
kpeter@875
   539
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@898
   540
    ///   cs.resetParams();
kpeter@875
   541
    ///   cs.upperMap(capacity).costMap(cost)
kpeter@875
   542
    ///     .supplyMap(sup).run();
kpeter@875
   543
    /// \endcode
kpeter@875
   544
    ///
kpeter@875
   545
    /// \return <tt>(*this)</tt>
kpeter@898
   546
    ///
kpeter@898
   547
    /// \see reset(), run()
kpeter@898
   548
    CostScaling& resetParams() {
kpeter@875
   549
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@875
   550
        _supply[i] = 0;
kpeter@874
   551
      }
kpeter@875
   552
      int limit = _first_out[_root];
kpeter@875
   553
      for (int j = 0; j != limit; ++j) {
kpeter@875
   554
        _lower[j] = 0;
kpeter@875
   555
        _upper[j] = INF;
kpeter@875
   556
        _scost[j] = _forward[j] ? 1 : -1;
kpeter@875
   557
      }
kpeter@875
   558
      for (int j = limit; j != _res_arc_num; ++j) {
kpeter@875
   559
        _lower[j] = 0;
kpeter@875
   560
        _upper[j] = INF;
kpeter@875
   561
        _scost[j] = 0;
kpeter@875
   562
        _scost[_reverse[j]] = 0;
alpar@956
   563
      }
kpeter@875
   564
      _have_lower = false;
kpeter@875
   565
      return *this;
kpeter@874
   566
    }
kpeter@874
   567
kpeter@1045
   568
    /// \brief Reset the internal data structures and all the parameters
kpeter@1045
   569
    /// that have been given before.
kpeter@898
   570
    ///
kpeter@1045
   571
    /// This function resets the internal data structures and all the
kpeter@1045
   572
    /// paramaters that have been given before using functions \ref lowerMap(),
kpeter@1045
   573
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@898
   574
    ///
kpeter@1045
   575
    /// It is useful for multiple \ref run() calls. By default, all the given
kpeter@1045
   576
    /// parameters are kept for the next \ref run() call, unless
kpeter@1045
   577
    /// \ref resetParams() or \ref reset() is used.
kpeter@1045
   578
    /// If the underlying digraph was also modified after the construction
kpeter@1045
   579
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@1045
   580
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@1045
   581
    ///
kpeter@1045
   582
    /// See \ref resetParams() for examples.
kpeter@1045
   583
    ///
kpeter@898
   584
    /// \return <tt>(*this)</tt>
kpeter@1045
   585
    ///
kpeter@1045
   586
    /// \see resetParams(), run()
kpeter@898
   587
    CostScaling& reset() {
kpeter@898
   588
      // Resize vectors
kpeter@898
   589
      _node_num = countNodes(_graph);
kpeter@898
   590
      _arc_num = countArcs(_graph);
kpeter@898
   591
      _res_node_num = _node_num + 1;
kpeter@898
   592
      _res_arc_num = 2 * (_arc_num + _node_num);
kpeter@898
   593
      _root = _node_num;
kpeter@898
   594
kpeter@898
   595
      _first_out.resize(_res_node_num + 1);
kpeter@898
   596
      _forward.resize(_res_arc_num);
kpeter@898
   597
      _source.resize(_res_arc_num);
kpeter@898
   598
      _target.resize(_res_arc_num);
kpeter@898
   599
      _reverse.resize(_res_arc_num);
kpeter@898
   600
kpeter@898
   601
      _lower.resize(_res_arc_num);
kpeter@898
   602
      _upper.resize(_res_arc_num);
kpeter@898
   603
      _scost.resize(_res_arc_num);
kpeter@898
   604
      _supply.resize(_res_node_num);
alpar@956
   605
kpeter@898
   606
      _res_cap.resize(_res_arc_num);
kpeter@898
   607
      _cost.resize(_res_arc_num);
kpeter@898
   608
      _pi.resize(_res_node_num);
kpeter@898
   609
      _excess.resize(_res_node_num);
kpeter@898
   610
      _next_out.resize(_res_node_num);
kpeter@898
   611
kpeter@898
   612
      // Copy the graph
kpeter@898
   613
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
kpeter@898
   614
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@898
   615
        _node_id[n] = i;
kpeter@898
   616
      }
kpeter@898
   617
      i = 0;
kpeter@898
   618
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@898
   619
        _first_out[i] = j;
kpeter@898
   620
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@898
   621
          _arc_idf[a] = j;
kpeter@898
   622
          _forward[j] = true;
kpeter@898
   623
          _source[j] = i;
kpeter@898
   624
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@898
   625
        }
kpeter@898
   626
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@898
   627
          _arc_idb[a] = j;
kpeter@898
   628
          _forward[j] = false;
kpeter@898
   629
          _source[j] = i;
kpeter@898
   630
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@898
   631
        }
kpeter@898
   632
        _forward[j] = false;
kpeter@898
   633
        _source[j] = i;
kpeter@898
   634
        _target[j] = _root;
kpeter@898
   635
        _reverse[j] = k;
kpeter@898
   636
        _forward[k] = true;
kpeter@898
   637
        _source[k] = _root;
kpeter@898
   638
        _target[k] = i;
kpeter@898
   639
        _reverse[k] = j;
kpeter@898
   640
        ++j; ++k;
kpeter@898
   641
      }
kpeter@898
   642
      _first_out[i] = j;
kpeter@898
   643
      _first_out[_res_node_num] = k;
kpeter@898
   644
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@898
   645
        int fi = _arc_idf[a];
kpeter@898
   646
        int bi = _arc_idb[a];
kpeter@898
   647
        _reverse[fi] = bi;
kpeter@898
   648
        _reverse[bi] = fi;
kpeter@898
   649
      }
alpar@956
   650
kpeter@898
   651
      // Reset parameters
kpeter@898
   652
      resetParams();
kpeter@898
   653
      return *this;
kpeter@898
   654
    }
kpeter@898
   655
kpeter@874
   656
    /// @}
kpeter@874
   657
kpeter@874
   658
    /// \name Query Functions
kpeter@875
   659
    /// The results of the algorithm can be obtained using these
kpeter@874
   660
    /// functions.\n
kpeter@875
   661
    /// The \ref run() function must be called before using them.
kpeter@874
   662
kpeter@874
   663
    /// @{
kpeter@874
   664
kpeter@875
   665
    /// \brief Return the total cost of the found flow.
kpeter@874
   666
    ///
kpeter@875
   667
    /// This function returns the total cost of the found flow.
kpeter@875
   668
    /// Its complexity is O(e).
kpeter@875
   669
    ///
kpeter@875
   670
    /// \note The return type of the function can be specified as a
kpeter@875
   671
    /// template parameter. For example,
kpeter@875
   672
    /// \code
kpeter@875
   673
    ///   cs.totalCost<double>();
kpeter@875
   674
    /// \endcode
kpeter@875
   675
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@875
   676
    /// type of the algorithm, which is the default return type of the
kpeter@875
   677
    /// function.
kpeter@874
   678
    ///
kpeter@874
   679
    /// \pre \ref run() must be called before using this function.
kpeter@875
   680
    template <typename Number>
kpeter@875
   681
    Number totalCost() const {
kpeter@875
   682
      Number c = 0;
kpeter@875
   683
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@875
   684
        int i = _arc_idb[a];
kpeter@875
   685
        c += static_cast<Number>(_res_cap[i]) *
kpeter@875
   686
             (-static_cast<Number>(_scost[i]));
kpeter@875
   687
      }
kpeter@875
   688
      return c;
kpeter@874
   689
    }
kpeter@874
   690
kpeter@875
   691
#ifndef DOXYGEN
kpeter@875
   692
    Cost totalCost() const {
kpeter@875
   693
      return totalCost<Cost>();
kpeter@874
   694
    }
kpeter@875
   695
#endif
kpeter@874
   696
kpeter@874
   697
    /// \brief Return the flow on the given arc.
kpeter@874
   698
    ///
kpeter@875
   699
    /// This function returns the flow on the given arc.
kpeter@874
   700
    ///
kpeter@874
   701
    /// \pre \ref run() must be called before using this function.
kpeter@875
   702
    Value flow(const Arc& a) const {
kpeter@875
   703
      return _res_cap[_arc_idb[a]];
kpeter@874
   704
    }
kpeter@874
   705
kpeter@875
   706
    /// \brief Return the flow map (the primal solution).
kpeter@874
   707
    ///
kpeter@875
   708
    /// This function copies the flow value on each arc into the given
kpeter@875
   709
    /// map. The \c Value type of the algorithm must be convertible to
kpeter@875
   710
    /// the \c Value type of the map.
kpeter@874
   711
    ///
kpeter@874
   712
    /// \pre \ref run() must be called before using this function.
kpeter@875
   713
    template <typename FlowMap>
kpeter@875
   714
    void flowMap(FlowMap &map) const {
kpeter@875
   715
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@875
   716
        map.set(a, _res_cap[_arc_idb[a]]);
kpeter@875
   717
      }
kpeter@874
   718
    }
kpeter@874
   719
kpeter@875
   720
    /// \brief Return the potential (dual value) of the given node.
kpeter@874
   721
    ///
kpeter@875
   722
    /// This function returns the potential (dual value) of the
kpeter@875
   723
    /// given node.
kpeter@874
   724
    ///
kpeter@874
   725
    /// \pre \ref run() must be called before using this function.
kpeter@875
   726
    Cost potential(const Node& n) const {
kpeter@875
   727
      return static_cast<Cost>(_pi[_node_id[n]]);
kpeter@875
   728
    }
kpeter@875
   729
kpeter@875
   730
    /// \brief Return the potential map (the dual solution).
kpeter@875
   731
    ///
kpeter@875
   732
    /// This function copies the potential (dual value) of each node
kpeter@875
   733
    /// into the given map.
kpeter@875
   734
    /// The \c Cost type of the algorithm must be convertible to the
kpeter@875
   735
    /// \c Value type of the map.
kpeter@875
   736
    ///
kpeter@875
   737
    /// \pre \ref run() must be called before using this function.
kpeter@875
   738
    template <typename PotentialMap>
kpeter@875
   739
    void potentialMap(PotentialMap &map) const {
kpeter@875
   740
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@875
   741
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
kpeter@875
   742
      }
kpeter@874
   743
    }
kpeter@874
   744
kpeter@874
   745
    /// @}
kpeter@874
   746
kpeter@874
   747
  private:
kpeter@874
   748
kpeter@875
   749
    // Initialize the algorithm
kpeter@875
   750
    ProblemType init() {
kpeter@887
   751
      if (_res_node_num <= 1) return INFEASIBLE;
kpeter@875
   752
kpeter@875
   753
      // Check the sum of supply values
kpeter@875
   754
      _sum_supply = 0;
kpeter@875
   755
      for (int i = 0; i != _root; ++i) {
kpeter@875
   756
        _sum_supply += _supply[i];
kpeter@874
   757
      }
kpeter@875
   758
      if (_sum_supply > 0) return INFEASIBLE;
alpar@956
   759
kpeter@875
   760
kpeter@875
   761
      // Initialize vectors
kpeter@875
   762
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@875
   763
        _pi[i] = 0;
kpeter@875
   764
        _excess[i] = _supply[i];
kpeter@875
   765
      }
alpar@956
   766
kpeter@875
   767
      // Remove infinite upper bounds and check negative arcs
kpeter@875
   768
      const Value MAX = std::numeric_limits<Value>::max();
kpeter@875
   769
      int last_out;
kpeter@875
   770
      if (_have_lower) {
kpeter@875
   771
        for (int i = 0; i != _root; ++i) {
kpeter@875
   772
          last_out = _first_out[i+1];
kpeter@875
   773
          for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@875
   774
            if (_forward[j]) {
kpeter@875
   775
              Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
kpeter@875
   776
              if (c >= MAX) return UNBOUNDED;
kpeter@875
   777
              _excess[i] -= c;
kpeter@875
   778
              _excess[_target[j]] += c;
kpeter@875
   779
            }
kpeter@875
   780
          }
kpeter@875
   781
        }
kpeter@875
   782
      } else {
kpeter@875
   783
        for (int i = 0; i != _root; ++i) {
kpeter@875
   784
          last_out = _first_out[i+1];
kpeter@875
   785
          for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@875
   786
            if (_forward[j] && _scost[j] < 0) {
kpeter@875
   787
              Value c = _upper[j];
kpeter@875
   788
              if (c >= MAX) return UNBOUNDED;
kpeter@875
   789
              _excess[i] -= c;
kpeter@875
   790
              _excess[_target[j]] += c;
kpeter@875
   791
            }
kpeter@875
   792
          }
kpeter@875
   793
        }
kpeter@875
   794
      }
kpeter@875
   795
      Value ex, max_cap = 0;
kpeter@875
   796
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@875
   797
        ex = _excess[i];
kpeter@875
   798
        _excess[i] = 0;
kpeter@875
   799
        if (ex < 0) max_cap -= ex;
kpeter@875
   800
      }
kpeter@875
   801
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@875
   802
        if (_upper[j] >= MAX) _upper[j] = max_cap;
kpeter@874
   803
      }
kpeter@874
   804
kpeter@875
   805
      // Initialize the large cost vector and the epsilon parameter
kpeter@875
   806
      _epsilon = 0;
kpeter@875
   807
      LargeCost lc;
kpeter@875
   808
      for (int i = 0; i != _root; ++i) {
kpeter@875
   809
        last_out = _first_out[i+1];
kpeter@875
   810
        for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@875
   811
          lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
kpeter@875
   812
          _cost[j] = lc;
kpeter@875
   813
          if (lc > _epsilon) _epsilon = lc;
kpeter@875
   814
        }
kpeter@875
   815
      }
kpeter@875
   816
      _epsilon /= _alpha;
kpeter@874
   817
kpeter@875
   818
      // Initialize maps for Circulation and remove non-zero lower bounds
kpeter@875
   819
      ConstMap<Arc, Value> low(0);
kpeter@875
   820
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
kpeter@875
   821
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
kpeter@875
   822
      ValueArcMap cap(_graph), flow(_graph);
kpeter@875
   823
      ValueNodeMap sup(_graph);
kpeter@875
   824
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@875
   825
        sup[n] = _supply[_node_id[n]];
kpeter@874
   826
      }
kpeter@875
   827
      if (_have_lower) {
kpeter@875
   828
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@875
   829
          int j = _arc_idf[a];
kpeter@875
   830
          Value c = _lower[j];
kpeter@875
   831
          cap[a] = _upper[j] - c;
kpeter@875
   832
          sup[_graph.source(a)] -= c;
kpeter@875
   833
          sup[_graph.target(a)] += c;
kpeter@875
   834
        }
kpeter@875
   835
      } else {
kpeter@875
   836
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@875
   837
          cap[a] = _upper[_arc_idf[a]];
kpeter@875
   838
        }
kpeter@875
   839
      }
kpeter@874
   840
kpeter@910
   841
      _sup_node_num = 0;
kpeter@910
   842
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@910
   843
        if (sup[n] > 0) ++_sup_node_num;
kpeter@910
   844
      }
kpeter@910
   845
kpeter@874
   846
      // Find a feasible flow using Circulation
kpeter@875
   847
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
kpeter@875
   848
        circ(_graph, low, cap, sup);
kpeter@875
   849
      if (!circ.flowMap(flow).run()) return INFEASIBLE;
kpeter@875
   850
kpeter@875
   851
      // Set residual capacities and handle GEQ supply type
kpeter@875
   852
      if (_sum_supply < 0) {
kpeter@875
   853
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@875
   854
          Value fa = flow[a];
kpeter@875
   855
          _res_cap[_arc_idf[a]] = cap[a] - fa;
kpeter@875
   856
          _res_cap[_arc_idb[a]] = fa;
kpeter@875
   857
          sup[_graph.source(a)] -= fa;
kpeter@875
   858
          sup[_graph.target(a)] += fa;
kpeter@875
   859
        }
kpeter@875
   860
        for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@875
   861
          _excess[_node_id[n]] = sup[n];
kpeter@875
   862
        }
kpeter@875
   863
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@875
   864
          int u = _target[a];
kpeter@875
   865
          int ra = _reverse[a];
kpeter@875
   866
          _res_cap[a] = -_sum_supply + 1;
kpeter@875
   867
          _res_cap[ra] = -_excess[u];
kpeter@875
   868
          _cost[a] = 0;
kpeter@875
   869
          _cost[ra] = 0;
kpeter@875
   870
          _excess[u] = 0;
kpeter@875
   871
        }
kpeter@875
   872
      } else {
kpeter@875
   873
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@875
   874
          Value fa = flow[a];
kpeter@875
   875
          _res_cap[_arc_idf[a]] = cap[a] - fa;
kpeter@875
   876
          _res_cap[_arc_idb[a]] = fa;
kpeter@875
   877
        }
kpeter@875
   878
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@875
   879
          int ra = _reverse[a];
kpeter@910
   880
          _res_cap[a] = 0;
kpeter@875
   881
          _res_cap[ra] = 0;
kpeter@875
   882
          _cost[a] = 0;
kpeter@875
   883
          _cost[ra] = 0;
kpeter@875
   884
        }
kpeter@875
   885
      }
alpar@956
   886
alpar@956
   887
      // Initialize data structures for buckets
kpeter@910
   888
      _max_rank = _alpha * _res_node_num;
kpeter@910
   889
      _buckets.resize(_max_rank);
kpeter@910
   890
      _bucket_next.resize(_res_node_num + 1);
kpeter@910
   891
      _bucket_prev.resize(_res_node_num + 1);
kpeter@910
   892
      _rank.resize(_res_node_num + 1);
alpar@956
   893
kpeter@1045
   894
      return OPTIMAL;
kpeter@1045
   895
    }
kpeter@1045
   896
kpeter@1045
   897
    // Execute the algorithm and transform the results
kpeter@1045
   898
    void start(Method method) {
kpeter@1045
   899
      const int MAX_PARTIAL_PATH_LENGTH = 4;
kpeter@1045
   900
kpeter@876
   901
      switch (method) {
kpeter@876
   902
        case PUSH:
kpeter@876
   903
          startPush();
kpeter@876
   904
          break;
kpeter@876
   905
        case AUGMENT:
kpeter@1041
   906
          startAugment(_res_node_num - 1);
kpeter@876
   907
          break;
kpeter@876
   908
        case PARTIAL_AUGMENT:
kpeter@1045
   909
          startAugment(MAX_PARTIAL_PATH_LENGTH);
kpeter@876
   910
          break;
kpeter@875
   911
      }
kpeter@875
   912
kpeter@1048
   913
      // Compute node potentials (dual solution)
kpeter@1048
   914
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@1048
   915
        _pi[i] = static_cast<Cost>(_pi[i] / (_res_node_num * _alpha));
kpeter@1048
   916
      }
kpeter@1048
   917
      bool optimal = true;
kpeter@1048
   918
      for (int i = 0; optimal && i != _res_node_num; ++i) {
kpeter@1048
   919
        LargeCost pi_i = _pi[i];
kpeter@1048
   920
        int last_out = _first_out[i+1];
kpeter@1048
   921
        for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@1048
   922
          if (_res_cap[j] > 0 && _scost[j] + pi_i - _pi[_target[j]] < 0) {
kpeter@1048
   923
            optimal = false;
kpeter@1048
   924
            break;
kpeter@1048
   925
          }
kpeter@875
   926
        }
kpeter@875
   927
      }
kpeter@875
   928
kpeter@1048
   929
      if (!optimal) {
kpeter@1048
   930
        // Compute node potentials for the original costs with BellmanFord
kpeter@1048
   931
        // (if it is necessary)
kpeter@1048
   932
        typedef std::pair<int, int> IntPair;
kpeter@1048
   933
        StaticDigraph sgr;
kpeter@1048
   934
        std::vector<IntPair> arc_vec;
kpeter@1048
   935
        std::vector<LargeCost> cost_vec;
kpeter@1048
   936
        LargeCostArcMap cost_map(cost_vec);
kpeter@1048
   937
kpeter@1048
   938
        arc_vec.clear();
kpeter@1048
   939
        cost_vec.clear();
kpeter@1048
   940
        for (int j = 0; j != _res_arc_num; ++j) {
kpeter@1048
   941
          if (_res_cap[j] > 0) {
kpeter@1048
   942
            int u = _source[j], v = _target[j];
kpeter@1048
   943
            arc_vec.push_back(IntPair(u, v));
kpeter@1048
   944
            cost_vec.push_back(_scost[j] + _pi[u] - _pi[v]);
kpeter@1048
   945
          }
kpeter@1048
   946
        }
kpeter@1048
   947
        sgr.build(_res_node_num, arc_vec.begin(), arc_vec.end());
kpeter@1048
   948
kpeter@1048
   949
        typename BellmanFord<StaticDigraph, LargeCostArcMap>::Create
kpeter@1048
   950
          bf(sgr, cost_map);
kpeter@1048
   951
        bf.init(0);
kpeter@1048
   952
        bf.start();
kpeter@1048
   953
kpeter@1048
   954
        for (int i = 0; i != _res_node_num; ++i) {
kpeter@1048
   955
          _pi[i] += bf.dist(sgr.node(i));
kpeter@1048
   956
        }
kpeter@1048
   957
      }
kpeter@1048
   958
kpeter@1048
   959
      // Shift potentials to meet the requirements of the GEQ type
kpeter@1048
   960
      // optimality conditions
kpeter@1048
   961
      LargeCost max_pot = _pi[_root];
kpeter@1048
   962
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@1048
   963
        if (_pi[i] > max_pot) max_pot = _pi[i];
kpeter@1048
   964
      }
kpeter@1048
   965
      if (max_pot != 0) {
kpeter@1048
   966
        for (int i = 0; i != _res_node_num; ++i) {
kpeter@1048
   967
          _pi[i] -= max_pot;
kpeter@1048
   968
        }
kpeter@1048
   969
      }
kpeter@875
   970
kpeter@875
   971
      // Handle non-zero lower bounds
kpeter@875
   972
      if (_have_lower) {
kpeter@875
   973
        int limit = _first_out[_root];
kpeter@875
   974
        for (int j = 0; j != limit; ++j) {
kpeter@875
   975
          if (!_forward[j]) _res_cap[j] += _lower[j];
kpeter@875
   976
        }
kpeter@875
   977
      }
kpeter@874
   978
    }
alpar@956
   979
kpeter@910
   980
    // Initialize a cost scaling phase
kpeter@910
   981
    void initPhase() {
kpeter@910
   982
      // Saturate arcs not satisfying the optimality condition
kpeter@910
   983
      for (int u = 0; u != _res_node_num; ++u) {
kpeter@910
   984
        int last_out = _first_out[u+1];
kpeter@910
   985
        LargeCost pi_u = _pi[u];
kpeter@910
   986
        for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@1045
   987
          Value delta = _res_cap[a];
kpeter@1045
   988
          if (delta > 0) {
kpeter@1045
   989
            int v = _target[a];
kpeter@1045
   990
            if (_cost[a] + pi_u - _pi[v] < 0) {
kpeter@1045
   991
              _excess[u] -= delta;
kpeter@1045
   992
              _excess[v] += delta;
kpeter@1045
   993
              _res_cap[a] = 0;
kpeter@1045
   994
              _res_cap[_reverse[a]] += delta;
kpeter@1045
   995
            }
kpeter@910
   996
          }
kpeter@910
   997
        }
kpeter@910
   998
      }
alpar@956
   999
kpeter@910
  1000
      // Find active nodes (i.e. nodes with positive excess)
kpeter@910
  1001
      for (int u = 0; u != _res_node_num; ++u) {
kpeter@910
  1002
        if (_excess[u] > 0) _active_nodes.push_back(u);
kpeter@910
  1003
      }
kpeter@910
  1004
kpeter@910
  1005
      // Initialize the next arcs
kpeter@910
  1006
      for (int u = 0; u != _res_node_num; ++u) {
kpeter@910
  1007
        _next_out[u] = _first_out[u];
kpeter@910
  1008
      }
kpeter@910
  1009
    }
alpar@956
  1010
kpeter@1047
  1011
    // Price (potential) refinement heuristic
kpeter@1047
  1012
    bool priceRefinement() {
kpeter@910
  1013
kpeter@1047
  1014
      // Stack for stroing the topological order
kpeter@1047
  1015
      IntVector stack(_res_node_num);
kpeter@1047
  1016
      int stack_top;
kpeter@1047
  1017
kpeter@1047
  1018
      // Perform phases
kpeter@1047
  1019
      while (topologicalSort(stack, stack_top)) {
kpeter@1047
  1020
kpeter@1047
  1021
        // Compute node ranks in the acyclic admissible network and
kpeter@1047
  1022
        // store the nodes in buckets
kpeter@1047
  1023
        for (int i = 0; i != _res_node_num; ++i) {
kpeter@1047
  1024
          _rank[i] = 0;
kpeter@910
  1025
        }
kpeter@1047
  1026
        const int bucket_end = _root + 1;
kpeter@1047
  1027
        for (int r = 0; r != _max_rank; ++r) {
kpeter@1047
  1028
          _buckets[r] = bucket_end;
kpeter@1047
  1029
        }
kpeter@1047
  1030
        int top_rank = 0;
kpeter@1047
  1031
        for ( ; stack_top >= 0; --stack_top) {
kpeter@1047
  1032
          int u = stack[stack_top], v;
kpeter@1047
  1033
          int rank_u = _rank[u];
kpeter@1047
  1034
kpeter@1047
  1035
          LargeCost rc, pi_u = _pi[u];
kpeter@1047
  1036
          int last_out = _first_out[u+1];
kpeter@1047
  1037
          for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@1047
  1038
            if (_res_cap[a] > 0) {
kpeter@1047
  1039
              v = _target[a];
kpeter@1047
  1040
              rc = _cost[a] + pi_u - _pi[v];
kpeter@1047
  1041
              if (rc < 0) {
kpeter@1047
  1042
                LargeCost nrc = static_cast<LargeCost>((-rc - 0.5) / _epsilon);
kpeter@1047
  1043
                if (nrc < LargeCost(_max_rank)) {
kpeter@1047
  1044
                  int new_rank_v = rank_u + static_cast<int>(nrc);
kpeter@1047
  1045
                  if (new_rank_v > _rank[v]) {
kpeter@1047
  1046
                    _rank[v] = new_rank_v;
kpeter@1047
  1047
                  }
kpeter@1047
  1048
                }
kpeter@1047
  1049
              }
kpeter@1047
  1050
            }
kpeter@1047
  1051
          }
kpeter@1047
  1052
kpeter@1047
  1053
          if (rank_u > 0) {
kpeter@1047
  1054
            top_rank = std::max(top_rank, rank_u);
kpeter@1047
  1055
            int bfirst = _buckets[rank_u];
kpeter@1047
  1056
            _bucket_next[u] = bfirst;
kpeter@1047
  1057
            _bucket_prev[bfirst] = u;
kpeter@1047
  1058
            _buckets[rank_u] = u;
kpeter@1047
  1059
          }
kpeter@1047
  1060
        }
kpeter@1047
  1061
kpeter@1047
  1062
        // Check if the current flow is epsilon-optimal
kpeter@1047
  1063
        if (top_rank == 0) {
kpeter@1047
  1064
          return true;
kpeter@1047
  1065
        }
kpeter@1047
  1066
kpeter@1047
  1067
        // Process buckets in top-down order
kpeter@1047
  1068
        for (int rank = top_rank; rank > 0; --rank) {
kpeter@1047
  1069
          while (_buckets[rank] != bucket_end) {
kpeter@1047
  1070
            // Remove the first node from the current bucket
kpeter@1047
  1071
            int u = _buckets[rank];
kpeter@1047
  1072
            _buckets[rank] = _bucket_next[u];
kpeter@1047
  1073
kpeter@1047
  1074
            // Search the outgoing arcs of u
kpeter@1047
  1075
            LargeCost rc, pi_u = _pi[u];
kpeter@1047
  1076
            int last_out = _first_out[u+1];
kpeter@1047
  1077
            int v, old_rank_v, new_rank_v;
kpeter@1047
  1078
            for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@1047
  1079
              if (_res_cap[a] > 0) {
kpeter@1047
  1080
                v = _target[a];
kpeter@1047
  1081
                old_rank_v = _rank[v];
kpeter@1047
  1082
kpeter@1047
  1083
                if (old_rank_v < rank) {
kpeter@1047
  1084
kpeter@1047
  1085
                  // Compute the new rank of node v
kpeter@1047
  1086
                  rc = _cost[a] + pi_u - _pi[v];
kpeter@1047
  1087
                  if (rc < 0) {
kpeter@1047
  1088
                    new_rank_v = rank;
kpeter@1047
  1089
                  } else {
kpeter@1047
  1090
                    LargeCost nrc = rc / _epsilon;
kpeter@1047
  1091
                    new_rank_v = 0;
kpeter@1047
  1092
                    if (nrc < LargeCost(_max_rank)) {
kpeter@1047
  1093
                      new_rank_v = rank - 1 - static_cast<int>(nrc);
kpeter@1047
  1094
                    }
kpeter@1047
  1095
                  }
kpeter@1047
  1096
kpeter@1047
  1097
                  // Change the rank of node v
kpeter@1047
  1098
                  if (new_rank_v > old_rank_v) {
kpeter@1047
  1099
                    _rank[v] = new_rank_v;
kpeter@1047
  1100
kpeter@1047
  1101
                    // Remove v from its old bucket
kpeter@1047
  1102
                    if (old_rank_v > 0) {
kpeter@1047
  1103
                      if (_buckets[old_rank_v] == v) {
kpeter@1047
  1104
                        _buckets[old_rank_v] = _bucket_next[v];
kpeter@1047
  1105
                      } else {
kpeter@1047
  1106
                        int pv = _bucket_prev[v], nv = _bucket_next[v];
kpeter@1047
  1107
                        _bucket_next[pv] = nv;
kpeter@1047
  1108
                        _bucket_prev[nv] = pv;
kpeter@1047
  1109
                      }
kpeter@1047
  1110
                    }
kpeter@1047
  1111
kpeter@1047
  1112
                    // Insert v into its new bucket
kpeter@1047
  1113
                    int nv = _buckets[new_rank_v];
kpeter@1047
  1114
                    _bucket_next[v] = nv;
kpeter@1047
  1115
                    _bucket_prev[nv] = v;
kpeter@1047
  1116
                    _buckets[new_rank_v] = v;
kpeter@1047
  1117
                  }
kpeter@1047
  1118
                }
kpeter@1047
  1119
              }
kpeter@1047
  1120
            }
kpeter@1047
  1121
kpeter@1047
  1122
            // Refine potential of node u
kpeter@1047
  1123
            _pi[u] -= rank * _epsilon;
kpeter@1047
  1124
          }
kpeter@1047
  1125
        }
kpeter@1047
  1126
kpeter@910
  1127
      }
kpeter@910
  1128
kpeter@1047
  1129
      return false;
kpeter@1047
  1130
    }
kpeter@1047
  1131
kpeter@1047
  1132
    // Find and cancel cycles in the admissible network and
kpeter@1047
  1133
    // determine topological order using DFS
kpeter@1047
  1134
    bool topologicalSort(IntVector &stack, int &stack_top) {
kpeter@1047
  1135
      const int MAX_CYCLE_CANCEL = 1;
kpeter@1047
  1136
kpeter@1047
  1137
      BoolVector reached(_res_node_num, false);
kpeter@1047
  1138
      BoolVector processed(_res_node_num, false);
kpeter@1047
  1139
      IntVector pred(_res_node_num);
kpeter@1047
  1140
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@1047
  1141
        _next_out[i] = _first_out[i];
kpeter@910
  1142
      }
kpeter@1047
  1143
      stack_top = -1;
kpeter@1047
  1144
kpeter@1047
  1145
      int cycle_cnt = 0;
kpeter@1047
  1146
      for (int start = 0; start != _res_node_num; ++start) {
kpeter@1047
  1147
        if (reached[start]) continue;
kpeter@1047
  1148
kpeter@1047
  1149
        // Start DFS search from this start node
kpeter@1047
  1150
        pred[start] = -1;
kpeter@1047
  1151
        int tip = start, v;
kpeter@1047
  1152
        while (true) {
kpeter@1047
  1153
          // Check the outgoing arcs of the current tip node
kpeter@1047
  1154
          reached[tip] = true;
kpeter@1047
  1155
          LargeCost pi_tip = _pi[tip];
kpeter@1047
  1156
          int a, last_out = _first_out[tip+1];
kpeter@1047
  1157
          for (a = _next_out[tip]; a != last_out; ++a) {
kpeter@1047
  1158
            if (_res_cap[a] > 0) {
kpeter@1047
  1159
              v = _target[a];
kpeter@1047
  1160
              if (_cost[a] + pi_tip - _pi[v] < 0) {
kpeter@1047
  1161
                if (!reached[v]) {
kpeter@1047
  1162
                  // A new node is reached
kpeter@1047
  1163
                  reached[v] = true;
kpeter@1047
  1164
                  pred[v] = tip;
kpeter@1047
  1165
                  _next_out[tip] = a;
kpeter@1047
  1166
                  tip = v;
kpeter@1047
  1167
                  a = _next_out[tip];
kpeter@1047
  1168
                  last_out = _first_out[tip+1];
kpeter@1047
  1169
                  break;
kpeter@1047
  1170
                }
kpeter@1047
  1171
                else if (!processed[v]) {
kpeter@1047
  1172
                  // A cycle is found
kpeter@1047
  1173
                  ++cycle_cnt;
kpeter@1047
  1174
                  _next_out[tip] = a;
kpeter@1047
  1175
kpeter@1047
  1176
                  // Find the minimum residual capacity along the cycle
kpeter@1047
  1177
                  Value d, delta = _res_cap[a];
kpeter@1047
  1178
                  int u, delta_node = tip;
kpeter@1047
  1179
                  for (u = tip; u != v; ) {
kpeter@1047
  1180
                    u = pred[u];
kpeter@1047
  1181
                    d = _res_cap[_next_out[u]];
kpeter@1047
  1182
                    if (d <= delta) {
kpeter@1047
  1183
                      delta = d;
kpeter@1047
  1184
                      delta_node = u;
kpeter@1047
  1185
                    }
kpeter@1047
  1186
                  }
kpeter@1047
  1187
kpeter@1047
  1188
                  // Augment along the cycle
kpeter@1047
  1189
                  _res_cap[a] -= delta;
kpeter@1047
  1190
                  _res_cap[_reverse[a]] += delta;
kpeter@1047
  1191
                  for (u = tip; u != v; ) {
kpeter@1047
  1192
                    u = pred[u];
kpeter@1047
  1193
                    int ca = _next_out[u];
kpeter@1047
  1194
                    _res_cap[ca] -= delta;
kpeter@1047
  1195
                    _res_cap[_reverse[ca]] += delta;
kpeter@1047
  1196
                  }
kpeter@1047
  1197
kpeter@1047
  1198
                  // Check the maximum number of cycle canceling
kpeter@1047
  1199
                  if (cycle_cnt >= MAX_CYCLE_CANCEL) {
kpeter@1047
  1200
                    return false;
kpeter@1047
  1201
                  }
kpeter@1047
  1202
kpeter@1047
  1203
                  // Roll back search to delta_node
kpeter@1047
  1204
                  if (delta_node != tip) {
kpeter@1047
  1205
                    for (u = tip; u != delta_node; u = pred[u]) {
kpeter@1047
  1206
                      reached[u] = false;
kpeter@1047
  1207
                    }
kpeter@1047
  1208
                    tip = delta_node;
kpeter@1047
  1209
                    a = _next_out[tip] + 1;
kpeter@1047
  1210
                    last_out = _first_out[tip+1];
kpeter@1047
  1211
                    break;
kpeter@1047
  1212
                  }
kpeter@1047
  1213
                }
kpeter@1047
  1214
              }
kpeter@1047
  1215
            }
kpeter@1047
  1216
          }
kpeter@1047
  1217
kpeter@1047
  1218
          // Step back to the previous node
kpeter@1047
  1219
          if (a == last_out) {
kpeter@1047
  1220
            processed[tip] = true;
kpeter@1047
  1221
            stack[++stack_top] = tip;
kpeter@1047
  1222
            tip = pred[tip];
kpeter@1047
  1223
            if (tip < 0) {
kpeter@1047
  1224
              // Finish DFS from the current start node
kpeter@1047
  1225
              break;
kpeter@1047
  1226
            }
kpeter@1047
  1227
            ++_next_out[tip];
kpeter@1047
  1228
          }
kpeter@1047
  1229
        }
kpeter@1047
  1230
kpeter@1047
  1231
      }
kpeter@1047
  1232
kpeter@1047
  1233
      return (cycle_cnt == 0);
kpeter@910
  1234
    }
kpeter@910
  1235
kpeter@910
  1236
    // Global potential update heuristic
kpeter@910
  1237
    void globalUpdate() {
kpeter@1045
  1238
      const int bucket_end = _root + 1;
alpar@956
  1239
kpeter@910
  1240
      // Initialize buckets
kpeter@910
  1241
      for (int r = 0; r != _max_rank; ++r) {
kpeter@910
  1242
        _buckets[r] = bucket_end;
kpeter@910
  1243
      }
kpeter@910
  1244
      Value total_excess = 0;
kpeter@1045
  1245
      int b0 = bucket_end;
kpeter@910
  1246
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@910
  1247
        if (_excess[i] < 0) {
kpeter@910
  1248
          _rank[i] = 0;
kpeter@1045
  1249
          _bucket_next[i] = b0;
kpeter@1045
  1250
          _bucket_prev[b0] = i;
kpeter@1045
  1251
          b0 = i;
kpeter@910
  1252
        } else {
kpeter@910
  1253
          total_excess += _excess[i];
kpeter@910
  1254
          _rank[i] = _max_rank;
kpeter@910
  1255
        }
kpeter@910
  1256
      }
kpeter@910
  1257
      if (total_excess == 0) return;
kpeter@1045
  1258
      _buckets[0] = b0;
kpeter@910
  1259
kpeter@910
  1260
      // Search the buckets
kpeter@910
  1261
      int r = 0;
kpeter@910
  1262
      for ( ; r != _max_rank; ++r) {
kpeter@910
  1263
        while (_buckets[r] != bucket_end) {
kpeter@910
  1264
          // Remove the first node from the current bucket
kpeter@910
  1265
          int u = _buckets[r];
kpeter@910
  1266
          _buckets[r] = _bucket_next[u];
alpar@956
  1267
kpeter@910
  1268
          // Search the incomming arcs of u
kpeter@910
  1269
          LargeCost pi_u = _pi[u];
kpeter@910
  1270
          int last_out = _first_out[u+1];
kpeter@910
  1271
          for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@910
  1272
            int ra = _reverse[a];
kpeter@910
  1273
            if (_res_cap[ra] > 0) {
kpeter@910
  1274
              int v = _source[ra];
kpeter@910
  1275
              int old_rank_v = _rank[v];
kpeter@910
  1276
              if (r < old_rank_v) {
kpeter@910
  1277
                // Compute the new rank of v
kpeter@910
  1278
                LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
kpeter@910
  1279
                int new_rank_v = old_rank_v;
kpeter@1045
  1280
                if (nrc < LargeCost(_max_rank)) {
kpeter@1045
  1281
                  new_rank_v = r + 1 + static_cast<int>(nrc);
kpeter@1045
  1282
                }
alpar@956
  1283
kpeter@910
  1284
                // Change the rank of v
kpeter@910
  1285
                if (new_rank_v < old_rank_v) {
kpeter@910
  1286
                  _rank[v] = new_rank_v;
kpeter@910
  1287
                  _next_out[v] = _first_out[v];
alpar@956
  1288
kpeter@910
  1289
                  // Remove v from its old bucket
kpeter@910
  1290
                  if (old_rank_v < _max_rank) {
kpeter@910
  1291
                    if (_buckets[old_rank_v] == v) {
kpeter@910
  1292
                      _buckets[old_rank_v] = _bucket_next[v];
kpeter@910
  1293
                    } else {
kpeter@1045
  1294
                      int pv = _bucket_prev[v], nv = _bucket_next[v];
kpeter@1045
  1295
                      _bucket_next[pv] = nv;
kpeter@1045
  1296
                      _bucket_prev[nv] = pv;
kpeter@910
  1297
                    }
kpeter@910
  1298
                  }
alpar@956
  1299
kpeter@1045
  1300
                  // Insert v into its new bucket
kpeter@1045
  1301
                  int nv = _buckets[new_rank_v];
kpeter@1045
  1302
                  _bucket_next[v] = nv;
kpeter@1045
  1303
                  _bucket_prev[nv] = v;
kpeter@910
  1304
                  _buckets[new_rank_v] = v;
kpeter@910
  1305
                }
kpeter@910
  1306
              }
kpeter@910
  1307
            }
kpeter@910
  1308
          }
kpeter@910
  1309
kpeter@910
  1310
          // Finish search if there are no more active nodes
kpeter@910
  1311
          if (_excess[u] > 0) {
kpeter@910
  1312
            total_excess -= _excess[u];
kpeter@910
  1313
            if (total_excess <= 0) break;
kpeter@910
  1314
          }
kpeter@910
  1315
        }
kpeter@910
  1316
        if (total_excess <= 0) break;
kpeter@910
  1317
      }
alpar@956
  1318
kpeter@910
  1319
      // Relabel nodes
kpeter@910
  1320
      for (int u = 0; u != _res_node_num; ++u) {
kpeter@910
  1321
        int k = std::min(_rank[u], r);
kpeter@910
  1322
        if (k > 0) {
kpeter@910
  1323
          _pi[u] -= _epsilon * k;
kpeter@910
  1324
          _next_out[u] = _first_out[u];
kpeter@910
  1325
        }
kpeter@910
  1326
      }
kpeter@910
  1327
    }
kpeter@874
  1328
kpeter@876
  1329
    /// Execute the algorithm performing augment and relabel operations
kpeter@1041
  1330
    void startAugment(int max_length) {
kpeter@874
  1331
      // Paramters for heuristics
kpeter@1047
  1332
      const int PRICE_REFINEMENT_LIMIT = 2;
kpeter@1046
  1333
      const double GLOBAL_UPDATE_FACTOR = 1.0;
kpeter@1046
  1334
      const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
kpeter@910
  1335
        (_res_node_num + _sup_node_num * _sup_node_num));
kpeter@1046
  1336
      int next_global_update_limit = global_update_skip;
alpar@956
  1337
kpeter@875
  1338
      // Perform cost scaling phases
kpeter@1046
  1339
      IntVector path;
kpeter@1046
  1340
      BoolVector path_arc(_res_arc_num, false);
kpeter@1046
  1341
      int relabel_cnt = 0;
kpeter@1047
  1342
      int eps_phase_cnt = 0;
kpeter@874
  1343
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
kpeter@874
  1344
                                        1 : _epsilon / _alpha )
kpeter@874
  1345
      {
kpeter@1047
  1346
        ++eps_phase_cnt;
kpeter@1047
  1347
kpeter@1047
  1348
        // Price refinement heuristic
kpeter@1047
  1349
        if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
kpeter@1047
  1350
          if (priceRefinement()) continue;
kpeter@874
  1351
        }
alpar@956
  1352
kpeter@910
  1353
        // Initialize current phase
kpeter@910
  1354
        initPhase();
alpar@956
  1355
kpeter@874
  1356
        // Perform partial augment and relabel operations
kpeter@875
  1357
        while (true) {
kpeter@874
  1358
          // Select an active node (FIFO selection)
kpeter@875
  1359
          while (_active_nodes.size() > 0 &&
kpeter@875
  1360
                 _excess[_active_nodes.front()] <= 0) {
kpeter@875
  1361
            _active_nodes.pop_front();
kpeter@874
  1362
          }
kpeter@875
  1363
          if (_active_nodes.size() == 0) break;
kpeter@875
  1364
          int start = _active_nodes.front();
kpeter@874
  1365
kpeter@874
  1366
          // Find an augmenting path from the start node
kpeter@875
  1367
          int tip = start;
kpeter@1046
  1368
          while (int(path.size()) < max_length && _excess[tip] >= 0) {
kpeter@875
  1369
            int u;
kpeter@1046
  1370
            LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
kpeter@1046
  1371
            LargeCost pi_tip = _pi[tip];
kpeter@910
  1372
            int last_out = _first_out[tip+1];
kpeter@875
  1373
            for (int a = _next_out[tip]; a != last_out; ++a) {
kpeter@1046
  1374
              if (_res_cap[a] > 0) {
kpeter@1046
  1375
                u = _target[a];
kpeter@1046
  1376
                rc = _cost[a] + pi_tip - _pi[u];
kpeter@1046
  1377
                if (rc < 0) {
kpeter@1046
  1378
                  path.push_back(a);
kpeter@1046
  1379
                  _next_out[tip] = a;
kpeter@1046
  1380
                  if (path_arc[a]) {
kpeter@1046
  1381
                    goto augment;   // a cycle is found, stop path search
kpeter@1046
  1382
                  }
kpeter@1046
  1383
                  tip = u;
kpeter@1046
  1384
                  path_arc[a] = true;
kpeter@1046
  1385
                  goto next_step;
kpeter@1046
  1386
                }
kpeter@1046
  1387
                else if (rc < min_red_cost) {
kpeter@1046
  1388
                  min_red_cost = rc;
kpeter@1046
  1389
                }
kpeter@874
  1390
              }
kpeter@874
  1391
            }
kpeter@874
  1392
kpeter@874
  1393
            // Relabel tip node
kpeter@910
  1394
            if (tip != start) {
kpeter@910
  1395
              int ra = _reverse[path.back()];
kpeter@1046
  1396
              min_red_cost =
kpeter@1046
  1397
                std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
kpeter@910
  1398
            }
kpeter@1046
  1399
            last_out = _next_out[tip];
kpeter@875
  1400
            for (int a = _first_out[tip]; a != last_out; ++a) {
kpeter@1046
  1401
              if (_res_cap[a] > 0) {
kpeter@1046
  1402
                rc = _cost[a] + pi_tip - _pi[_target[a]];
kpeter@1046
  1403
                if (rc < min_red_cost) {
kpeter@1046
  1404
                  min_red_cost = rc;
kpeter@1046
  1405
                }
kpeter@875
  1406
              }
kpeter@874
  1407
            }
kpeter@875
  1408
            _pi[tip] -= min_red_cost + _epsilon;
kpeter@875
  1409
            _next_out[tip] = _first_out[tip];
kpeter@910
  1410
            ++relabel_cnt;
kpeter@874
  1411
kpeter@874
  1412
            // Step back
kpeter@874
  1413
            if (tip != start) {
kpeter@1046
  1414
              int pa = path.back();
kpeter@1046
  1415
              path_arc[pa] = false;
kpeter@1046
  1416
              tip = _source[pa];
kpeter@910
  1417
              path.pop_back();
kpeter@874
  1418
            }
kpeter@874
  1419
kpeter@875
  1420
          next_step: ;
kpeter@874
  1421
          }
kpeter@874
  1422
kpeter@874
  1423
          // Augment along the found path (as much flow as possible)
kpeter@1046
  1424
        augment:
kpeter@875
  1425
          Value delta;
kpeter@910
  1426
          int pa, u, v = start;
kpeter@910
  1427
          for (int i = 0; i != int(path.size()); ++i) {
kpeter@910
  1428
            pa = path[i];
kpeter@875
  1429
            u = v;
kpeter@910
  1430
            v = _target[pa];
kpeter@1046
  1431
            path_arc[pa] = false;
kpeter@875
  1432
            delta = std::min(_res_cap[pa], _excess[u]);
kpeter@875
  1433
            _res_cap[pa] -= delta;
kpeter@875
  1434
            _res_cap[_reverse[pa]] += delta;
kpeter@875
  1435
            _excess[u] -= delta;
kpeter@875
  1436
            _excess[v] += delta;
kpeter@1046
  1437
            if (_excess[v] > 0 && _excess[v] <= delta) {
kpeter@875
  1438
              _active_nodes.push_back(v);
kpeter@1046
  1439
            }
kpeter@874
  1440
          }
kpeter@1046
  1441
          path.clear();
kpeter@910
  1442
kpeter@910
  1443
          // Global update heuristic
kpeter@1046
  1444
          if (relabel_cnt >= next_global_update_limit) {
kpeter@910
  1445
            globalUpdate();
kpeter@1046
  1446
            next_global_update_limit += global_update_skip;
kpeter@910
  1447
          }
kpeter@874
  1448
        }
kpeter@1046
  1449
kpeter@874
  1450
      }
kpeter@1046
  1451
kpeter@874
  1452
    }
kpeter@874
  1453
kpeter@875
  1454
    /// Execute the algorithm performing push and relabel operations
kpeter@876
  1455
    void startPush() {
kpeter@874
  1456
      // Paramters for heuristics
kpeter@1047
  1457
      const int PRICE_REFINEMENT_LIMIT = 2;
kpeter@910
  1458
      const double GLOBAL_UPDATE_FACTOR = 2.0;
kpeter@874
  1459
kpeter@1046
  1460
      const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
kpeter@910
  1461
        (_res_node_num + _sup_node_num * _sup_node_num));
kpeter@1046
  1462
      int next_global_update_limit = global_update_skip;
alpar@956
  1463
kpeter@875
  1464
      // Perform cost scaling phases
kpeter@875
  1465
      BoolVector hyper(_res_node_num, false);
kpeter@910
  1466
      LargeCostVector hyper_cost(_res_node_num);
kpeter@1046
  1467
      int relabel_cnt = 0;
kpeter@1047
  1468
      int eps_phase_cnt = 0;
kpeter@874
  1469
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
kpeter@874
  1470
                                        1 : _epsilon / _alpha )
kpeter@874
  1471
      {
kpeter@1047
  1472
        ++eps_phase_cnt;
kpeter@1047
  1473
kpeter@1047
  1474
        // Price refinement heuristic
kpeter@1047
  1475
        if (eps_phase_cnt >= PRICE_REFINEMENT_LIMIT) {
kpeter@1047
  1476
          if (priceRefinement()) continue;
kpeter@874
  1477
        }
alpar@956
  1478
kpeter@910
  1479
        // Initialize current phase
kpeter@910
  1480
        initPhase();
kpeter@874
  1481
kpeter@874
  1482
        // Perform push and relabel operations
kpeter@875
  1483
        while (_active_nodes.size() > 0) {
kpeter@910
  1484
          LargeCost min_red_cost, rc, pi_n;
kpeter@875
  1485
          Value delta;
kpeter@875
  1486
          int n, t, a, last_out = _res_arc_num;
kpeter@875
  1487
kpeter@910
  1488
        next_node:
kpeter@874
  1489
          // Select an active node (FIFO selection)
kpeter@875
  1490
          n = _active_nodes.front();
kpeter@910
  1491
          last_out = _first_out[n+1];
kpeter@910
  1492
          pi_n = _pi[n];
alpar@956
  1493
kpeter@874
  1494
          // Perform push operations if there are admissible arcs
kpeter@875
  1495
          if (_excess[n] > 0) {
kpeter@875
  1496
            for (a = _next_out[n]; a != last_out; ++a) {
kpeter@875
  1497
              if (_res_cap[a] > 0 &&
kpeter@910
  1498
                  _cost[a] + pi_n - _pi[_target[a]] < 0) {
kpeter@875
  1499
                delta = std::min(_res_cap[a], _excess[n]);
kpeter@875
  1500
                t = _target[a];
kpeter@874
  1501
kpeter@874
  1502
                // Push-look-ahead heuristic
kpeter@875
  1503
                Value ahead = -_excess[t];
kpeter@910
  1504
                int last_out_t = _first_out[t+1];
kpeter@910
  1505
                LargeCost pi_t = _pi[t];
kpeter@875
  1506
                for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
alpar@956
  1507
                  if (_res_cap[ta] > 0 &&
kpeter@910
  1508
                      _cost[ta] + pi_t - _pi[_target[ta]] < 0)
kpeter@875
  1509
                    ahead += _res_cap[ta];
kpeter@875
  1510
                  if (ahead >= delta) break;
kpeter@874
  1511
                }
kpeter@874
  1512
                if (ahead < 0) ahead = 0;
kpeter@874
  1513
kpeter@874
  1514
                // Push flow along the arc
kpeter@910
  1515
                if (ahead < delta && !hyper[t]) {
kpeter@875
  1516
                  _res_cap[a] -= ahead;
kpeter@875
  1517
                  _res_cap[_reverse[a]] += ahead;
kpeter@874
  1518
                  _excess[n] -= ahead;
kpeter@874
  1519
                  _excess[t] += ahead;
kpeter@875
  1520
                  _active_nodes.push_front(t);
kpeter@874
  1521
                  hyper[t] = true;
kpeter@910
  1522
                  hyper_cost[t] = _cost[a] + pi_n - pi_t;
kpeter@875
  1523
                  _next_out[n] = a;
kpeter@875
  1524
                  goto next_node;
kpeter@874
  1525
                } else {
kpeter@875
  1526
                  _res_cap[a] -= delta;
kpeter@875
  1527
                  _res_cap[_reverse[a]] += delta;
kpeter@874
  1528
                  _excess[n] -= delta;
kpeter@874
  1529
                  _excess[t] += delta;
kpeter@874
  1530
                  if (_excess[t] > 0 && _excess[t] <= delta)
kpeter@875
  1531
                    _active_nodes.push_back(t);
kpeter@874
  1532
                }
kpeter@874
  1533
kpeter@875
  1534
                if (_excess[n] == 0) {
kpeter@875
  1535
                  _next_out[n] = a;
kpeter@875
  1536
                  goto remove_nodes;
kpeter@875
  1537
                }
kpeter@874
  1538
              }
kpeter@874
  1539
            }
kpeter@875
  1540
            _next_out[n] = a;
kpeter@874
  1541
          }
kpeter@874
  1542
kpeter@874
  1543
          // Relabel the node if it is still active (or hyper)
kpeter@875
  1544
          if (_excess[n] > 0 || hyper[n]) {
kpeter@910
  1545
             min_red_cost = hyper[n] ? -hyper_cost[n] :
kpeter@910
  1546
               std::numeric_limits<LargeCost>::max();
kpeter@875
  1547
            for (int a = _first_out[n]; a != last_out; ++a) {
kpeter@1046
  1548
              if (_res_cap[a] > 0) {
kpeter@1046
  1549
                rc = _cost[a] + pi_n - _pi[_target[a]];
kpeter@1046
  1550
                if (rc < min_red_cost) {
kpeter@1046
  1551
                  min_red_cost = rc;
kpeter@1046
  1552
                }
kpeter@875
  1553
              }
kpeter@874
  1554
            }
kpeter@875
  1555
            _pi[n] -= min_red_cost + _epsilon;
kpeter@910
  1556
            _next_out[n] = _first_out[n];
kpeter@874
  1557
            hyper[n] = false;
kpeter@910
  1558
            ++relabel_cnt;
kpeter@874
  1559
          }
alpar@956
  1560
kpeter@874
  1561
          // Remove nodes that are not active nor hyper
kpeter@875
  1562
        remove_nodes:
kpeter@875
  1563
          while ( _active_nodes.size() > 0 &&
kpeter@875
  1564
                  _excess[_active_nodes.front()] <= 0 &&
kpeter@875
  1565
                  !hyper[_active_nodes.front()] ) {
kpeter@875
  1566
            _active_nodes.pop_front();
kpeter@874
  1567
          }
alpar@956
  1568
kpeter@910
  1569
          // Global update heuristic
kpeter@1046
  1570
          if (relabel_cnt >= next_global_update_limit) {
kpeter@910
  1571
            globalUpdate();
kpeter@910
  1572
            for (int u = 0; u != _res_node_num; ++u)
kpeter@910
  1573
              hyper[u] = false;
kpeter@1046
  1574
            next_global_update_limit += global_update_skip;
kpeter@910
  1575
          }
kpeter@874
  1576
        }
kpeter@874
  1577
      }
kpeter@874
  1578
    }
kpeter@874
  1579
kpeter@874
  1580
  }; //class CostScaling
kpeter@874
  1581
kpeter@874
  1582
  ///@}
kpeter@874
  1583
kpeter@874
  1584
} //namespace lemon
kpeter@874
  1585
kpeter@874
  1586
#endif //LEMON_COST_SCALING_H