lemon/path.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sat, 17 Feb 2018 23:44:15 +0100
changeset 1420 1f4f01870c1e
parent 1336 0759d974de81
child 1421 4fd76139b69e
permissions -rw-r--r--
API doc improvements for Path structures (#250)
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@96
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@96
     4
 *
alpar@1270
     5
 * Copyright (C) 2003-2013
alpar@96
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@96
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@96
     8
 *
alpar@96
     9
 * Permission to use, modify and distribute this software is granted
alpar@96
    10
 * provided that this copyright notice appears in all copies. For
alpar@96
    11
 * precise terms see the accompanying LICENSE file.
alpar@96
    12
 *
alpar@96
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@96
    14
 * express or implied, and with no claim as to its suitability for any
alpar@96
    15
 * purpose.
alpar@96
    16
 *
alpar@96
    17
 */
alpar@96
    18
alpar@96
    19
///\ingroup paths
alpar@96
    20
///\file
alpar@96
    21
///\brief Classes for representing paths in digraphs.
alpar@96
    22
///
alpar@96
    23
alpar@96
    24
#ifndef LEMON_PATH_H
alpar@96
    25
#define LEMON_PATH_H
alpar@96
    26
alpar@96
    27
#include <vector>
alpar@96
    28
#include <algorithm>
alpar@96
    29
alpar@96
    30
#include <lemon/error.h>
deba@220
    31
#include <lemon/core.h>
alpar@100
    32
#include <lemon/concepts/path.h>
ggab90@1336
    33
#include <lemon/bits/stl_iterators.h>
alpar@96
    34
alpar@96
    35
namespace lemon {
alpar@96
    36
alpar@96
    37
  /// \addtogroup paths
alpar@96
    38
  /// @{
alpar@96
    39
alpar@96
    40
alpar@96
    41
  /// \brief A structure for representing directed paths in a digraph.
alpar@96
    42
  ///
alpar@96
    43
  /// A structure for representing directed path in a digraph.
kpeter@606
    44
  /// \tparam GR The digraph type in which the path is.
alpar@96
    45
  ///
kpeter@1420
    46
  /// In a sense, a path can be treated as a list of arcs. The
kpeter@1420
    47
  /// LEMON path type simply stores this list. As a consequence, it
kpeter@1420
    48
  /// cannot enumerate the nodes in the path, and the source node of
kpeter@1420
    49
  /// a zero-length path is undefined.
alpar@96
    50
  ///
alpar@96
    51
  /// This implementation is a back and front insertable and erasable
alpar@96
    52
  /// path type. It can be indexed in O(1) time. The front and back
alpar@97
    53
  /// insertion and erase is done in O(1) (amortized) time. The
alpar@97
    54
  /// implementation uses two vectors for storing the front and back
alpar@97
    55
  /// insertions.
kpeter@606
    56
  template <typename GR>
alpar@96
    57
  class Path {
alpar@96
    58
  public:
alpar@96
    59
kpeter@606
    60
    typedef GR Digraph;
alpar@96
    61
    typedef typename Digraph::Arc Arc;
alpar@96
    62
alpar@96
    63
    /// \brief Default constructor
alpar@96
    64
    ///
alpar@96
    65
    /// Default constructor
alpar@96
    66
    Path() {}
alpar@96
    67
alpar@1144
    68
    /// \brief Copy constructor
alpar@1144
    69
    ///
alpar@1144
    70
    Path(const Path& cpath) {
alpar@1144
    71
      pathCopy(cpath, *this);
alpar@1144
    72
    }
alpar@1144
    73
alpar@96
    74
    /// \brief Template copy constructor
alpar@96
    75
    ///
alpar@97
    76
    /// This constuctor initializes the path from any other path type.
alpar@97
    77
    /// It simply makes a copy of the given path.
alpar@96
    78
    template <typename CPath>
alpar@96
    79
    Path(const CPath& cpath) {
kpeter@551
    80
      pathCopy(cpath, *this);
alpar@96
    81
    }
alpar@96
    82
alpar@1144
    83
    /// \brief Copy assignment
alpar@1144
    84
    ///
alpar@1144
    85
    Path& operator=(const Path& cpath) {
alpar@1144
    86
      pathCopy(cpath, *this);
alpar@1144
    87
      return *this;
alpar@1144
    88
    }
alpar@1144
    89
alpar@96
    90
    /// \brief Template copy assignment
alpar@96
    91
    ///
alpar@97
    92
    /// This operator makes a copy of a path of any other type.
alpar@96
    93
    template <typename CPath>
alpar@96
    94
    Path& operator=(const CPath& cpath) {
kpeter@551
    95
      pathCopy(cpath, *this);
alpar@96
    96
      return *this;
alpar@96
    97
    }
alpar@96
    98
ladanyi@236
    99
    /// \brief LEMON style iterator for path arcs
alpar@96
   100
    ///
alpar@96
   101
    /// This class is used to iterate on the arcs of the paths.
alpar@96
   102
    class ArcIt {
alpar@96
   103
      friend class Path;
alpar@96
   104
    public:
alpar@96
   105
      /// \brief Default constructor
alpar@96
   106
      ArcIt() {}
alpar@96
   107
      /// \brief Invalid constructor
alpar@96
   108
      ArcIt(Invalid) : path(0), idx(-1) {}
alpar@97
   109
      /// \brief Initializate the iterator to the first arc of path
alpar@209
   110
      ArcIt(const Path &_path)
alpar@96
   111
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
alpar@96
   112
alpar@96
   113
    private:
alpar@96
   114
alpar@209
   115
      ArcIt(const Path &_path, int _idx)
alpar@96
   116
        : path(&_path), idx(_idx) {}
alpar@96
   117
alpar@96
   118
    public:
alpar@96
   119
alpar@96
   120
      /// \brief Conversion to Arc
alpar@96
   121
      operator const Arc&() const {
alpar@96
   122
        return path->nth(idx);
alpar@96
   123
      }
alpar@96
   124
alpar@96
   125
      /// \brief Next arc
alpar@209
   126
      ArcIt& operator++() {
alpar@96
   127
        ++idx;
alpar@209
   128
        if (idx >= path->length()) idx = -1;
alpar@209
   129
        return *this;
alpar@96
   130
      }
alpar@96
   131
alpar@96
   132
      /// \brief Comparison operator
alpar@96
   133
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
alpar@96
   134
      /// \brief Comparison operator
alpar@96
   135
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
alpar@96
   136
      /// \brief Comparison operator
alpar@96
   137
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
alpar@96
   138
alpar@96
   139
    private:
alpar@96
   140
      const Path *path;
alpar@96
   141
      int idx;
alpar@96
   142
    };
alpar@96
   143
ggab90@1336
   144
    /// \brief Gets the collection of the arcs of the path.
ggab90@1336
   145
    ///
ggab90@1336
   146
    /// This function can be used for iterating on the
ggab90@1336
   147
    /// arcs of the path. It returns a wrapped
ggab90@1336
   148
    /// ArcIt, which looks like an STL container
ggab90@1336
   149
    /// (by having begin() and end()) which you can use in range-based
ggab90@1336
   150
    /// for loops, STL algorithms, etc.
ggab90@1336
   151
    /// For example you can write:
ggab90@1336
   152
    ///\code
ggab90@1336
   153
    /// for(auto a: p.arcs())
ggab90@1336
   154
    ///   doSomething(a);
ggab90@1336
   155
    ///\endcode
ggab90@1336
   156
    LemonRangeWrapper1<ArcIt, Path> arcs() const {
ggab90@1336
   157
      return LemonRangeWrapper1<ArcIt, Path>(*this);
ggab90@1336
   158
    }
ggab90@1336
   159
ggab90@1336
   160
alpar@96
   161
    /// \brief Length of the path.
alpar@96
   162
    int length() const { return head.size() + tail.size(); }
alpar@97
   163
    /// \brief Return whether the path is empty.
alpar@96
   164
    bool empty() const { return head.empty() && tail.empty(); }
alpar@96
   165
alpar@97
   166
    /// \brief Reset the path to an empty one.
alpar@96
   167
    void clear() { head.clear(); tail.clear(); }
alpar@96
   168
kpeter@1024
   169
    /// \brief The n-th arc.
alpar@96
   170
    ///
kpeter@1420
   171
    /// Gives back the n-th arc. This function runs in O(1) time.
kpeter@1420
   172
    /// \pre \c n is in the range <tt>[0..length() - 1]</tt>.
alpar@96
   173
    const Arc& nth(int n) const {
alpar@96
   174
      return n < int(head.size()) ? *(head.rbegin() + n) :
alpar@96
   175
        *(tail.begin() + (n - head.size()));
alpar@96
   176
    }
alpar@96
   177
kpeter@1024
   178
    /// \brief Initialize arc iterator to point to the n-th arc
alpar@96
   179
    ///
kpeter@606
   180
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
alpar@96
   181
    ArcIt nthIt(int n) const {
alpar@96
   182
      return ArcIt(*this, n);
alpar@96
   183
    }
alpar@96
   184
alpar@97
   185
    /// \brief The first arc of the path
alpar@96
   186
    const Arc& front() const {
alpar@96
   187
      return head.empty() ? tail.front() : head.back();
alpar@96
   188
    }
alpar@96
   189
alpar@96
   190
    /// \brief Add a new arc before the current path
alpar@96
   191
    void addFront(const Arc& arc) {
alpar@96
   192
      head.push_back(arc);
alpar@96
   193
    }
alpar@96
   194
alpar@96
   195
    /// \brief Erase the first arc of the path
alpar@96
   196
    void eraseFront() {
alpar@96
   197
      if (!head.empty()) {
alpar@96
   198
        head.pop_back();
alpar@96
   199
      } else {
alpar@96
   200
        head.clear();
alpar@96
   201
        int halfsize = tail.size() / 2;
alpar@96
   202
        head.resize(halfsize);
alpar@96
   203
        std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
alpar@96
   204
                  head.rbegin());
alpar@96
   205
        std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
alpar@96
   206
        tail.resize(tail.size() - halfsize - 1);
alpar@96
   207
      }
alpar@96
   208
    }
alpar@96
   209
alpar@97
   210
    /// \brief The last arc of the path
alpar@96
   211
    const Arc& back() const {
alpar@96
   212
      return tail.empty() ? head.front() : tail.back();
alpar@96
   213
    }
alpar@96
   214
alpar@96
   215
    /// \brief Add a new arc behind the current path
alpar@96
   216
    void addBack(const Arc& arc) {
alpar@96
   217
      tail.push_back(arc);
alpar@96
   218
    }
alpar@96
   219
alpar@96
   220
    /// \brief Erase the last arc of the path
alpar@96
   221
    void eraseBack() {
alpar@96
   222
      if (!tail.empty()) {
alpar@96
   223
        tail.pop_back();
alpar@96
   224
      } else {
alpar@96
   225
        int halfsize = head.size() / 2;
alpar@96
   226
        tail.resize(halfsize);
alpar@96
   227
        std::copy(head.begin() + 1, head.begin() + halfsize + 1,
alpar@96
   228
                  tail.rbegin());
alpar@96
   229
        std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
alpar@96
   230
        head.resize(head.size() - halfsize - 1);
alpar@96
   231
      }
alpar@96
   232
    }
alpar@96
   233
alpar@96
   234
    typedef True BuildTag;
alpar@96
   235
alpar@96
   236
    template <typename CPath>
alpar@96
   237
    void build(const CPath& path) {
alpar@96
   238
      int len = path.length();
alpar@96
   239
      tail.reserve(len);
alpar@96
   240
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
alpar@96
   241
        tail.push_back(it);
alpar@96
   242
      }
alpar@96
   243
    }
alpar@96
   244
alpar@96
   245
    template <typename CPath>
alpar@96
   246
    void buildRev(const CPath& path) {
alpar@96
   247
      int len = path.length();
alpar@96
   248
      head.reserve(len);
alpar@96
   249
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
alpar@96
   250
        head.push_back(it);
alpar@96
   251
      }
alpar@96
   252
    }
alpar@96
   253
alpar@96
   254
  protected:
alpar@96
   255
    typedef std::vector<Arc> Container;
alpar@96
   256
    Container head, tail;
alpar@96
   257
alpar@96
   258
  };
alpar@96
   259
alpar@96
   260
  /// \brief A structure for representing directed paths in a digraph.
alpar@96
   261
  ///
alpar@96
   262
  /// A structure for representing directed path in a digraph.
kpeter@606
   263
  /// \tparam GR The digraph type in which the path is.
alpar@96
   264
  ///
kpeter@1420
   265
  /// In a sense, a path can be treated as a list of arcs. The
kpeter@1420
   266
  /// LEMON path type simply stores this list. As a consequence, it
kpeter@1420
   267
  /// cannot enumerate the nodes in the path, and the source node of
kpeter@1420
   268
  /// a zero-length path is undefined.
alpar@96
   269
  ///
alpar@96
   270
  /// This implementation is a just back insertable and erasable path
alpar@96
   271
  /// type. It can be indexed in O(1) time. The back insertion and
alpar@96
   272
  /// erasure is amortized O(1) time. This implementation is faster
kpeter@1420
   273
  /// than the \c Path type because it use just one vector for the
alpar@96
   274
  /// arcs.
kpeter@606
   275
  template <typename GR>
alpar@96
   276
  class SimplePath {
alpar@96
   277
  public:
alpar@96
   278
kpeter@606
   279
    typedef GR Digraph;
alpar@96
   280
    typedef typename Digraph::Arc Arc;
alpar@96
   281
alpar@96
   282
    /// \brief Default constructor
alpar@96
   283
    ///
alpar@96
   284
    /// Default constructor
alpar@96
   285
    SimplePath() {}
alpar@96
   286
alpar@1144
   287
    /// \brief Copy constructor
alpar@1144
   288
    ///
alpar@1144
   289
    SimplePath(const SimplePath& cpath) {
alpar@1144
   290
      pathCopy(cpath, *this);
alpar@1144
   291
    }
alpar@1144
   292
alpar@96
   293
    /// \brief Template copy constructor
alpar@96
   294
    ///
alpar@96
   295
    /// This path can be initialized with any other path type. It just
alpar@96
   296
    /// makes a copy of the given path.
alpar@96
   297
    template <typename CPath>
alpar@96
   298
    SimplePath(const CPath& cpath) {
kpeter@551
   299
      pathCopy(cpath, *this);
alpar@96
   300
    }
alpar@96
   301
alpar@1144
   302
    /// \brief Copy assignment
alpar@1144
   303
    ///
alpar@1144
   304
    SimplePath& operator=(const SimplePath& cpath) {
alpar@1144
   305
      pathCopy(cpath, *this);
alpar@1144
   306
      return *this;
alpar@1144
   307
    }
alpar@1144
   308
alpar@96
   309
    /// \brief Template copy assignment
alpar@96
   310
    ///
alpar@96
   311
    /// This path can be initialized with any other path type. It just
alpar@96
   312
    /// makes a copy of the given path.
alpar@96
   313
    template <typename CPath>
alpar@96
   314
    SimplePath& operator=(const CPath& cpath) {
kpeter@551
   315
      pathCopy(cpath, *this);
alpar@96
   316
      return *this;
alpar@96
   317
    }
alpar@96
   318
alpar@96
   319
    /// \brief Iterator class to iterate on the arcs of the paths
alpar@96
   320
    ///
alpar@96
   321
    /// This class is used to iterate on the arcs of the paths
alpar@96
   322
    ///
alpar@96
   323
    /// Of course it converts to Digraph::Arc
alpar@96
   324
    class ArcIt {
alpar@96
   325
      friend class SimplePath;
alpar@96
   326
    public:
alpar@96
   327
      /// Default constructor
alpar@96
   328
      ArcIt() {}
alpar@96
   329
      /// Invalid constructor
alpar@96
   330
      ArcIt(Invalid) : path(0), idx(-1) {}
alpar@96
   331
      /// \brief Initializate the constructor to the first arc of path
alpar@209
   332
      ArcIt(const SimplePath &_path)
alpar@96
   333
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
alpar@96
   334
alpar@96
   335
    private:
alpar@96
   336
alpar@96
   337
      /// Constructor with starting point
alpar@209
   338
      ArcIt(const SimplePath &_path, int _idx)
kpeter@1212
   339
        : path(&_path), idx(_idx) {}
alpar@96
   340
alpar@96
   341
    public:
alpar@96
   342
alpar@96
   343
      ///Conversion to Digraph::Arc
alpar@96
   344
      operator const Arc&() const {
alpar@96
   345
        return path->nth(idx);
alpar@96
   346
      }
alpar@96
   347
alpar@96
   348
      /// Next arc
alpar@209
   349
      ArcIt& operator++() {
alpar@96
   350
        ++idx;
alpar@209
   351
        if (idx >= path->length()) idx = -1;
alpar@209
   352
        return *this;
alpar@96
   353
      }
alpar@96
   354
alpar@96
   355
      /// Comparison operator
alpar@96
   356
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
alpar@96
   357
      /// Comparison operator
alpar@96
   358
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
alpar@96
   359
      /// Comparison operator
alpar@96
   360
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
alpar@96
   361
alpar@96
   362
    private:
alpar@96
   363
      const SimplePath *path;
alpar@96
   364
      int idx;
alpar@96
   365
    };
alpar@96
   366
ggab90@1336
   367
    /// \brief Gets the collection of the arcs of the path.
ggab90@1336
   368
    ///
ggab90@1336
   369
    /// This function can be used for iterating on the
ggab90@1336
   370
    /// arcs of the path. It returns a wrapped
ggab90@1336
   371
    /// ArcIt, which looks like an STL container
ggab90@1336
   372
    /// (by having begin() and end()) which you can use in range-based
ggab90@1336
   373
    /// for loops, STL algorithms, etc.
ggab90@1336
   374
    /// For example you can write:
ggab90@1336
   375
    ///\code
ggab90@1336
   376
    /// for(auto a: p.arcs())
ggab90@1336
   377
    ///   doSomething(a);
ggab90@1336
   378
    ///\endcode
ggab90@1336
   379
    LemonRangeWrapper1<ArcIt, SimplePath> arcs() const {
ggab90@1336
   380
      return LemonRangeWrapper1<ArcIt, SimplePath>(*this);
ggab90@1336
   381
    }
ggab90@1336
   382
ggab90@1336
   383
alpar@96
   384
    /// \brief Length of the path.
alpar@96
   385
    int length() const { return data.size(); }
alpar@97
   386
    /// \brief Return true if the path is empty.
alpar@96
   387
    bool empty() const { return data.empty(); }
alpar@96
   388
alpar@97
   389
    /// \brief Reset the path to an empty one.
alpar@96
   390
    void clear() { data.clear(); }
alpar@96
   391
kpeter@1024
   392
    /// \brief The n-th arc.
alpar@96
   393
    ///
kpeter@1420
   394
    /// Gives back the n-th arc. This function runs in O(1) time.
kpeter@1420
   395
    /// \pre \c n is in the range <tt>[0..length() - 1]</tt>.
alpar@96
   396
    const Arc& nth(int n) const {
alpar@96
   397
      return data[n];
alpar@96
   398
    }
alpar@96
   399
kpeter@1024
   400
    /// \brief  Initializes arc iterator to point to the n-th arc.
alpar@96
   401
    ArcIt nthIt(int n) const {
alpar@96
   402
      return ArcIt(*this, n);
alpar@96
   403
    }
alpar@96
   404
alpar@97
   405
    /// \brief The first arc of the path.
alpar@96
   406
    const Arc& front() const {
alpar@96
   407
      return data.front();
alpar@96
   408
    }
alpar@96
   409
alpar@97
   410
    /// \brief The last arc of the path.
alpar@96
   411
    const Arc& back() const {
alpar@96
   412
      return data.back();
alpar@96
   413
    }
alpar@96
   414
alpar@96
   415
    /// \brief Add a new arc behind the current path.
alpar@96
   416
    void addBack(const Arc& arc) {
alpar@96
   417
      data.push_back(arc);
alpar@96
   418
    }
alpar@96
   419
alpar@96
   420
    /// \brief Erase the last arc of the path
alpar@96
   421
    void eraseBack() {
alpar@96
   422
      data.pop_back();
alpar@96
   423
    }
alpar@96
   424
alpar@96
   425
    typedef True BuildTag;
alpar@96
   426
alpar@96
   427
    template <typename CPath>
alpar@96
   428
    void build(const CPath& path) {
alpar@96
   429
      int len = path.length();
alpar@96
   430
      data.resize(len);
alpar@96
   431
      int index = 0;
alpar@96
   432
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
alpar@96
   433
        data[index] = it;;
alpar@96
   434
        ++index;
alpar@96
   435
      }
alpar@96
   436
    }
alpar@96
   437
alpar@96
   438
    template <typename CPath>
alpar@96
   439
    void buildRev(const CPath& path) {
alpar@96
   440
      int len = path.length();
alpar@96
   441
      data.resize(len);
alpar@96
   442
      int index = len;
alpar@96
   443
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
alpar@96
   444
        --index;
alpar@96
   445
        data[index] = it;;
alpar@96
   446
      }
alpar@96
   447
    }
alpar@96
   448
alpar@96
   449
  protected:
alpar@96
   450
    typedef std::vector<Arc> Container;
alpar@96
   451
    Container data;
alpar@96
   452
alpar@96
   453
  };
alpar@96
   454
alpar@96
   455
  /// \brief A structure for representing directed paths in a digraph.
alpar@96
   456
  ///
alpar@96
   457
  /// A structure for representing directed path in a digraph.
kpeter@606
   458
  /// \tparam GR The digraph type in which the path is.
alpar@96
   459
  ///
kpeter@1420
   460
  /// In a sense, a path can be treated as a list of arcs. The
kpeter@1420
   461
  /// LEMON path type simply stores this list. As a consequence, it
kpeter@1420
   462
  /// cannot enumerate the nodes in the path, and the source node of
kpeter@1420
   463
  /// a zero-length path is undefined.
alpar@96
   464
  ///
alpar@96
   465
  /// This implementation is a back and front insertable and erasable
alpar@96
   466
  /// path type. It can be indexed in O(k) time, where k is the rank
alpar@96
   467
  /// of the arc in the path. The length can be computed in O(n)
alpar@96
   468
  /// time. The front and back insertion and erasure is O(1) time
alpar@96
   469
  /// and it can be splited and spliced in O(1) time.
kpeter@606
   470
  template <typename GR>
alpar@96
   471
  class ListPath {
alpar@96
   472
  public:
alpar@96
   473
kpeter@606
   474
    typedef GR Digraph;
alpar@96
   475
    typedef typename Digraph::Arc Arc;
alpar@96
   476
alpar@96
   477
  protected:
alpar@96
   478
alpar@209
   479
    // the std::list<> is incompatible
alpar@96
   480
    // hard to create invalid iterator
alpar@96
   481
    struct Node {
alpar@96
   482
      Arc arc;
alpar@96
   483
      Node *next, *prev;
alpar@96
   484
    };
alpar@96
   485
alpar@96
   486
    Node *first, *last;
alpar@96
   487
alpar@96
   488
    std::allocator<Node> alloc;
alpar@96
   489
alpar@96
   490
  public:
alpar@209
   491
alpar@96
   492
    /// \brief Default constructor
alpar@96
   493
    ///
alpar@96
   494
    /// Default constructor
alpar@96
   495
    ListPath() : first(0), last(0) {}
alpar@96
   496
alpar@1144
   497
    /// \brief Copy constructor
alpar@1144
   498
    ///
alpar@1144
   499
    ListPath(const ListPath& cpath) : first(0), last(0) {
alpar@1144
   500
      pathCopy(cpath, *this);
alpar@1144
   501
    }
alpar@1144
   502
alpar@96
   503
    /// \brief Template copy constructor
alpar@96
   504
    ///
alpar@96
   505
    /// This path can be initialized with any other path type. It just
alpar@96
   506
    /// makes a copy of the given path.
alpar@96
   507
    template <typename CPath>
alpar@96
   508
    ListPath(const CPath& cpath) : first(0), last(0) {
kpeter@551
   509
      pathCopy(cpath, *this);
alpar@96
   510
    }
alpar@96
   511
alpar@96
   512
    /// \brief Destructor of the path
alpar@96
   513
    ///
alpar@96
   514
    /// Destructor of the path
alpar@96
   515
    ~ListPath() {
alpar@96
   516
      clear();
alpar@96
   517
    }
alpar@96
   518
alpar@1144
   519
    /// \brief Copy assignment
alpar@1144
   520
    ///
alpar@1144
   521
    ListPath& operator=(const ListPath& cpath) {
alpar@1144
   522
      pathCopy(cpath, *this);
alpar@1144
   523
      return *this;
alpar@1144
   524
    }
alpar@1144
   525
alpar@96
   526
    /// \brief Template copy assignment
alpar@96
   527
    ///
alpar@96
   528
    /// This path can be initialized with any other path type. It just
alpar@96
   529
    /// makes a copy of the given path.
alpar@96
   530
    template <typename CPath>
alpar@96
   531
    ListPath& operator=(const CPath& cpath) {
kpeter@551
   532
      pathCopy(cpath, *this);
alpar@96
   533
      return *this;
alpar@96
   534
    }
alpar@96
   535
alpar@96
   536
    /// \brief Iterator class to iterate on the arcs of the paths
alpar@96
   537
    ///
alpar@96
   538
    /// This class is used to iterate on the arcs of the paths
alpar@96
   539
    ///
alpar@96
   540
    /// Of course it converts to Digraph::Arc
alpar@96
   541
    class ArcIt {
alpar@96
   542
      friend class ListPath;
alpar@96
   543
    public:
alpar@96
   544
      /// Default constructor
alpar@96
   545
      ArcIt() {}
alpar@96
   546
      /// Invalid constructor
alpar@96
   547
      ArcIt(Invalid) : path(0), node(0) {}
alpar@96
   548
      /// \brief Initializate the constructor to the first arc of path
alpar@209
   549
      ArcIt(const ListPath &_path)
alpar@96
   550
        : path(&_path), node(_path.first) {}
alpar@96
   551
alpar@96
   552
    protected:
alpar@96
   553
alpar@209
   554
      ArcIt(const ListPath &_path, Node *_node)
alpar@96
   555
        : path(&_path), node(_node) {}
alpar@96
   556
alpar@96
   557
alpar@96
   558
    public:
alpar@96
   559
alpar@96
   560
      ///Conversion to Digraph::Arc
alpar@96
   561
      operator const Arc&() const {
alpar@96
   562
        return node->arc;
alpar@96
   563
      }
alpar@96
   564
alpar@96
   565
      /// Next arc
alpar@209
   566
      ArcIt& operator++() {
alpar@96
   567
        node = node->next;
alpar@209
   568
        return *this;
alpar@96
   569
      }
alpar@96
   570
alpar@96
   571
      /// Comparison operator
alpar@96
   572
      bool operator==(const ArcIt& e) const { return node==e.node; }
alpar@96
   573
      /// Comparison operator
alpar@96
   574
      bool operator!=(const ArcIt& e) const { return node!=e.node; }
alpar@96
   575
      /// Comparison operator
alpar@96
   576
      bool operator<(const ArcIt& e) const { return node<e.node; }
alpar@96
   577
alpar@96
   578
    private:
alpar@96
   579
      const ListPath *path;
alpar@96
   580
      Node *node;
alpar@96
   581
    };
alpar@96
   582
ggab90@1336
   583
    /// \brief Gets the collection of the arcs of the path.
ggab90@1336
   584
    ///
ggab90@1336
   585
    /// This function can be used for iterating on the
ggab90@1336
   586
    /// arcs of the path. It returns a wrapped
ggab90@1336
   587
    /// ArcIt, which looks like an STL container
ggab90@1336
   588
    /// (by having begin() and end()) which you can use in range-based
ggab90@1336
   589
    /// for loops, STL algorithms, etc.
ggab90@1336
   590
    /// For example you can write:
ggab90@1336
   591
    ///\code
ggab90@1336
   592
    /// for(auto a: p.arcs())
ggab90@1336
   593
    ///   doSomething(a);
ggab90@1336
   594
    ///\endcode
ggab90@1336
   595
    LemonRangeWrapper1<ArcIt, ListPath> arcs() const {
ggab90@1336
   596
      return LemonRangeWrapper1<ArcIt, ListPath>(*this);
ggab90@1336
   597
    }
ggab90@1336
   598
ggab90@1336
   599
kpeter@1024
   600
    /// \brief The n-th arc.
alpar@96
   601
    ///
kpeter@1024
   602
    /// This function looks for the n-th arc in O(n) time.
kpeter@1420
   603
    /// \pre \c n is in the range <tt>[0..length() - 1]</tt>.
alpar@96
   604
    const Arc& nth(int n) const {
alpar@96
   605
      Node *node = first;
alpar@96
   606
      for (int i = 0; i < n; ++i) {
alpar@96
   607
        node = node->next;
alpar@96
   608
      }
alpar@96
   609
      return node->arc;
alpar@96
   610
    }
alpar@96
   611
kpeter@1024
   612
    /// \brief Initializes arc iterator to point to the n-th arc.
alpar@96
   613
    ArcIt nthIt(int n) const {
alpar@96
   614
      Node *node = first;
alpar@96
   615
      for (int i = 0; i < n; ++i) {
alpar@96
   616
        node = node->next;
alpar@96
   617
      }
alpar@96
   618
      return ArcIt(*this, node);
alpar@96
   619
    }
alpar@96
   620
alpar@96
   621
    /// \brief Length of the path.
alpar@96
   622
    int length() const {
alpar@96
   623
      int len = 0;
alpar@96
   624
      Node *node = first;
alpar@96
   625
      while (node != 0) {
alpar@96
   626
        node = node->next;
alpar@96
   627
        ++len;
alpar@96
   628
      }
alpar@96
   629
      return len;
alpar@96
   630
    }
alpar@96
   631
alpar@97
   632
    /// \brief Return true if the path is empty.
alpar@96
   633
    bool empty() const { return first == 0; }
alpar@96
   634
alpar@97
   635
    /// \brief Reset the path to an empty one.
alpar@96
   636
    void clear() {
alpar@96
   637
      while (first != 0) {
alpar@96
   638
        last = first->next;
alpar@96
   639
        alloc.destroy(first);
alpar@96
   640
        alloc.deallocate(first, 1);
alpar@96
   641
        first = last;
alpar@96
   642
      }
alpar@96
   643
    }
alpar@96
   644
alpar@97
   645
    /// \brief The first arc of the path
alpar@96
   646
    const Arc& front() const {
alpar@96
   647
      return first->arc;
alpar@96
   648
    }
alpar@96
   649
alpar@96
   650
    /// \brief Add a new arc before the current path
alpar@96
   651
    void addFront(const Arc& arc) {
alpar@96
   652
      Node *node = alloc.allocate(1);
alpar@96
   653
      alloc.construct(node, Node());
alpar@96
   654
      node->prev = 0;
alpar@96
   655
      node->next = first;
alpar@96
   656
      node->arc = arc;
alpar@96
   657
      if (first) {
alpar@96
   658
        first->prev = node;
alpar@96
   659
        first = node;
alpar@96
   660
      } else {
alpar@96
   661
        first = last = node;
alpar@96
   662
      }
alpar@96
   663
    }
alpar@96
   664
alpar@96
   665
    /// \brief Erase the first arc of the path
alpar@96
   666
    void eraseFront() {
alpar@96
   667
      Node *node = first;
alpar@96
   668
      first = first->next;
alpar@96
   669
      if (first) {
alpar@96
   670
        first->prev = 0;
alpar@96
   671
      } else {
alpar@96
   672
        last = 0;
alpar@96
   673
      }
alpar@96
   674
      alloc.destroy(node);
alpar@96
   675
      alloc.deallocate(node, 1);
alpar@96
   676
    }
alpar@96
   677
alpar@97
   678
    /// \brief The last arc of the path.
alpar@96
   679
    const Arc& back() const {
alpar@96
   680
      return last->arc;
alpar@96
   681
    }
alpar@96
   682
alpar@96
   683
    /// \brief Add a new arc behind the current path.
alpar@96
   684
    void addBack(const Arc& arc) {
alpar@96
   685
      Node *node = alloc.allocate(1);
alpar@96
   686
      alloc.construct(node, Node());
alpar@96
   687
      node->next = 0;
alpar@96
   688
      node->prev = last;
alpar@96
   689
      node->arc = arc;
alpar@96
   690
      if (last) {
alpar@96
   691
        last->next = node;
alpar@96
   692
        last = node;
alpar@96
   693
      } else {
alpar@96
   694
        last = first = node;
alpar@96
   695
      }
alpar@96
   696
    }
alpar@96
   697
alpar@96
   698
    /// \brief Erase the last arc of the path
alpar@96
   699
    void eraseBack() {
alpar@96
   700
      Node *node = last;
alpar@96
   701
      last = last->prev;
alpar@96
   702
      if (last) {
alpar@96
   703
        last->next = 0;
alpar@96
   704
      } else {
alpar@96
   705
        first = 0;
alpar@96
   706
      }
alpar@96
   707
      alloc.destroy(node);
alpar@96
   708
      alloc.deallocate(node, 1);
alpar@96
   709
    }
alpar@96
   710
alpar@97
   711
    /// \brief Splice a path to the back of the current path.
alpar@96
   712
    ///
alpar@97
   713
    /// It splices \c tpath to the back of the current path and \c
alpar@96
   714
    /// tpath becomes empty. The time complexity of this function is
alpar@96
   715
    /// O(1).
alpar@96
   716
    void spliceBack(ListPath& tpath) {
alpar@96
   717
      if (first) {
alpar@96
   718
        if (tpath.first) {
alpar@96
   719
          last->next = tpath.first;
alpar@96
   720
          tpath.first->prev = last;
alpar@96
   721
          last = tpath.last;
alpar@96
   722
        }
alpar@96
   723
      } else {
alpar@96
   724
        first = tpath.first;
alpar@96
   725
        last = tpath.last;
alpar@96
   726
      }
alpar@96
   727
      tpath.first = tpath.last = 0;
alpar@96
   728
    }
alpar@96
   729
alpar@97
   730
    /// \brief Splice a path to the front of the current path.
alpar@96
   731
    ///
alpar@97
   732
    /// It splices \c tpath before the current path and \c tpath
alpar@96
   733
    /// becomes empty. The time complexity of this function
alpar@96
   734
    /// is O(1).
alpar@96
   735
    void spliceFront(ListPath& tpath) {
alpar@96
   736
      if (first) {
alpar@96
   737
        if (tpath.first) {
alpar@96
   738
          first->prev = tpath.last;
alpar@96
   739
          tpath.last->next = first;
alpar@96
   740
          first = tpath.first;
alpar@96
   741
        }
alpar@96
   742
      } else {
alpar@96
   743
        first = tpath.first;
alpar@96
   744
        last = tpath.last;
alpar@96
   745
      }
alpar@96
   746
      tpath.first = tpath.last = 0;
alpar@96
   747
    }
alpar@96
   748
alpar@97
   749
    /// \brief Splice a path into the current path.
alpar@96
   750
    ///
alpar@96
   751
    /// It splices the \c tpath into the current path before the
alpar@96
   752
    /// position of \c it iterator and \c tpath becomes empty. The
alpar@97
   753
    /// time complexity of this function is O(1). If the \c it is
alpar@97
   754
    /// \c INVALID then it will splice behind the current path.
alpar@96
   755
    void splice(ArcIt it, ListPath& tpath) {
alpar@96
   756
      if (it.node) {
alpar@96
   757
        if (tpath.first) {
alpar@96
   758
          tpath.first->prev = it.node->prev;
alpar@96
   759
          if (it.node->prev) {
alpar@96
   760
            it.node->prev->next = tpath.first;
alpar@96
   761
          } else {
alpar@96
   762
            first = tpath.first;
alpar@96
   763
          }
alpar@96
   764
          it.node->prev = tpath.last;
alpar@96
   765
          tpath.last->next = it.node;
alpar@96
   766
        }
alpar@96
   767
      } else {
alpar@96
   768
        if (first) {
alpar@96
   769
          if (tpath.first) {
alpar@96
   770
            last->next = tpath.first;
alpar@96
   771
            tpath.first->prev = last;
alpar@96
   772
            last = tpath.last;
alpar@96
   773
          }
alpar@96
   774
        } else {
alpar@96
   775
          first = tpath.first;
alpar@96
   776
          last = tpath.last;
alpar@96
   777
        }
alpar@96
   778
      }
alpar@96
   779
      tpath.first = tpath.last = 0;
alpar@96
   780
    }
alpar@96
   781
alpar@97
   782
    /// \brief Split the current path.
alpar@96
   783
    ///
alpar@97
   784
    /// It splits the current path into two parts. The part before
alpar@97
   785
    /// the iterator \c it will remain in the current path and the part
alpar@97
   786
    /// starting with
alpar@97
   787
    /// \c it will put into \c tpath. If \c tpath have arcs
alpar@97
   788
    /// before the operation they are removed first.  The time
kpeter@1420
   789
    /// complexity of this function is O(1) plus the time of emtying
alpar@97
   790
    /// \c tpath. If \c it is \c INVALID then it just clears \c tpath
alpar@96
   791
    void split(ArcIt it, ListPath& tpath) {
alpar@96
   792
      tpath.clear();
alpar@96
   793
      if (it.node) {
alpar@96
   794
        tpath.first = it.node;
alpar@96
   795
        tpath.last = last;
alpar@96
   796
        if (it.node->prev) {
alpar@96
   797
          last = it.node->prev;
alpar@96
   798
          last->next = 0;
alpar@96
   799
        } else {
alpar@96
   800
          first = last = 0;
alpar@96
   801
        }
alpar@96
   802
        it.node->prev = 0;
alpar@96
   803
      }
alpar@96
   804
    }
alpar@96
   805
alpar@96
   806
alpar@96
   807
    typedef True BuildTag;
alpar@96
   808
alpar@96
   809
    template <typename CPath>
alpar@96
   810
    void build(const CPath& path) {
alpar@96
   811
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
alpar@96
   812
        addBack(it);
alpar@96
   813
      }
alpar@96
   814
    }
alpar@96
   815
alpar@96
   816
    template <typename CPath>
alpar@96
   817
    void buildRev(const CPath& path) {
alpar@96
   818
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
alpar@96
   819
        addFront(it);
alpar@96
   820
      }
alpar@96
   821
    }
alpar@96
   822
alpar@96
   823
  };
alpar@96
   824
alpar@96
   825
  /// \brief A structure for representing directed paths in a digraph.
alpar@96
   826
  ///
alpar@96
   827
  /// A structure for representing directed path in a digraph.
kpeter@606
   828
  /// \tparam GR The digraph type in which the path is.
alpar@96
   829
  ///
kpeter@1420
   830
  /// In a sense, a path can be treated as a list of arcs. The
kpeter@1420
   831
  /// LEMON path type simply stores this list. As a consequence, it
kpeter@1420
   832
  /// cannot enumerate the nodes in the path, and the source node of
kpeter@1420
   833
  /// a zero-length path is undefined.
alpar@96
   834
  ///
alpar@97
   835
  /// This implementation is completly static, i.e. it can be copy constucted
alpar@97
   836
  /// or copy assigned from another path, but otherwise it cannot be
alpar@97
   837
  /// modified.
alpar@97
   838
  ///
kpeter@1420
   839
  /// Being the most memory-efficient path type in LEMON, it is
kpeter@1420
   840
  /// intented to be used when you want to store a large number of paths.
kpeter@606
   841
  template <typename GR>
alpar@96
   842
  class StaticPath {
alpar@96
   843
  public:
alpar@96
   844
kpeter@606
   845
    typedef GR Digraph;
alpar@96
   846
    typedef typename Digraph::Arc Arc;
alpar@96
   847
alpar@96
   848
    /// \brief Default constructor
alpar@96
   849
    ///
alpar@96
   850
    /// Default constructor
ggab90@1336
   851
    StaticPath() : len(0), _arcs(0) {}
alpar@209
   852
alpar@1144
   853
    /// \brief Copy constructor
alpar@1144
   854
    ///
ggab90@1336
   855
    StaticPath(const StaticPath& cpath) : _arcs(0) {
alpar@1144
   856
      pathCopy(cpath, *this);
alpar@1144
   857
    }
alpar@1144
   858
alpar@96
   859
    /// \brief Template copy constructor
alpar@96
   860
    ///
alpar@97
   861
    /// This path can be initialized from any other path type.
alpar@96
   862
    template <typename CPath>
ggab90@1336
   863
    StaticPath(const CPath& cpath) : _arcs(0) {
kpeter@551
   864
      pathCopy(cpath, *this);
alpar@96
   865
    }
alpar@96
   866
alpar@96
   867
    /// \brief Destructor of the path
alpar@96
   868
    ///
alpar@96
   869
    /// Destructor of the path
alpar@96
   870
    ~StaticPath() {
ggab90@1336
   871
      if (_arcs) delete[] _arcs;
alpar@96
   872
    }
alpar@96
   873
alpar@1144
   874
    /// \brief Copy assignment
alpar@1144
   875
    ///
alpar@1144
   876
    StaticPath& operator=(const StaticPath& cpath) {
alpar@1144
   877
      pathCopy(cpath, *this);
alpar@1144
   878
      return *this;
alpar@1144
   879
    }
alpar@1144
   880
alpar@96
   881
    /// \brief Template copy assignment
alpar@96
   882
    ///
alpar@97
   883
    /// This path can be made equal to any other path type. It simply
alpar@96
   884
    /// makes a copy of the given path.
alpar@96
   885
    template <typename CPath>
alpar@96
   886
    StaticPath& operator=(const CPath& cpath) {
kpeter@551
   887
      pathCopy(cpath, *this);
alpar@96
   888
      return *this;
alpar@96
   889
    }
alpar@96
   890
alpar@96
   891
    /// \brief Iterator class to iterate on the arcs of the paths
alpar@96
   892
    ///
alpar@96
   893
    /// This class is used to iterate on the arcs of the paths
alpar@96
   894
    ///
alpar@96
   895
    /// Of course it converts to Digraph::Arc
alpar@96
   896
    class ArcIt {
alpar@96
   897
      friend class StaticPath;
alpar@96
   898
    public:
alpar@96
   899
      /// Default constructor
alpar@96
   900
      ArcIt() {}
alpar@96
   901
      /// Invalid constructor
alpar@96
   902
      ArcIt(Invalid) : path(0), idx(-1) {}
alpar@96
   903
      /// Initializate the constructor to the first arc of path
alpar@209
   904
      ArcIt(const StaticPath &_path)
alpar@96
   905
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
alpar@96
   906
alpar@96
   907
    private:
alpar@96
   908
alpar@96
   909
      /// Constructor with starting point
alpar@209
   910
      ArcIt(const StaticPath &_path, int _idx)
alpar@96
   911
        : idx(_idx), path(&_path) {}
alpar@96
   912
alpar@96
   913
    public:
alpar@96
   914
alpar@96
   915
      ///Conversion to Digraph::Arc
alpar@96
   916
      operator const Arc&() const {
alpar@96
   917
        return path->nth(idx);
alpar@96
   918
      }
alpar@96
   919
alpar@96
   920
      /// Next arc
alpar@209
   921
      ArcIt& operator++() {
alpar@96
   922
        ++idx;
alpar@209
   923
        if (idx >= path->length()) idx = -1;
alpar@209
   924
        return *this;
alpar@96
   925
      }
alpar@96
   926
alpar@96
   927
      /// Comparison operator
alpar@96
   928
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
alpar@96
   929
      /// Comparison operator
alpar@96
   930
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
alpar@96
   931
      /// Comparison operator
alpar@96
   932
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
alpar@96
   933
alpar@96
   934
    private:
alpar@96
   935
      const StaticPath *path;
alpar@96
   936
      int idx;
alpar@96
   937
    };
ggab90@1336
   938
    
ggab90@1336
   939
    /// \brief Gets the collection of the arcs of the path.
ggab90@1336
   940
    ///
ggab90@1336
   941
    /// This function can be used for iterating on the
ggab90@1336
   942
    /// arcs of the path. It returns a wrapped
ggab90@1336
   943
    /// ArcIt, which looks like an STL container
ggab90@1336
   944
    /// (by having begin() and end()) which you can use in range-based
ggab90@1336
   945
    /// for loops, STL algorithms, etc.
ggab90@1336
   946
    /// For example you can write:
ggab90@1336
   947
    ///\code
ggab90@1336
   948
    /// for(auto a: p.arcs())
ggab90@1336
   949
    ///   doSomething(a);
ggab90@1336
   950
    ///\endcode
ggab90@1336
   951
    LemonRangeWrapper1<ArcIt, StaticPath> arcs() const {
ggab90@1336
   952
      return LemonRangeWrapper1<ArcIt, StaticPath>(*this);
ggab90@1336
   953
    }
ggab90@1336
   954
    
alpar@96
   955
kpeter@1024
   956
    /// \brief The n-th arc.
alpar@96
   957
    ///
kpeter@1420
   958
    /// Gives back the n-th arc. This function runs in O(1) time.
kpeter@1420
   959
    /// \pre \c n is in the range <tt>[0..length() - 1]</tt>.
alpar@96
   960
    const Arc& nth(int n) const {
ggab90@1336
   961
      return _arcs[n];
alpar@96
   962
    }
alpar@96
   963
kpeter@1024
   964
    /// \brief The arc iterator pointing to the n-th arc.
alpar@96
   965
    ArcIt nthIt(int n) const {
alpar@96
   966
      return ArcIt(*this, n);
alpar@96
   967
    }
alpar@96
   968
alpar@97
   969
    /// \brief The length of the path.
alpar@96
   970
    int length() const { return len; }
alpar@96
   971
alpar@97
   972
    /// \brief Return true when the path is empty.
alpar@96
   973
    int empty() const { return len == 0; }
alpar@96
   974
kpeter@1420
   975
    /// \brief Reset the path to an empty one.
alpar@96
   976
    void clear() {
alpar@96
   977
      len = 0;
ggab90@1336
   978
      if (_arcs) delete[] _arcs;
ggab90@1336
   979
      _arcs = 0;
alpar@96
   980
    }
alpar@96
   981
alpar@97
   982
    /// \brief The first arc of the path.
alpar@96
   983
    const Arc& front() const {
ggab90@1336
   984
      return _arcs[0];
alpar@96
   985
    }
alpar@96
   986
alpar@97
   987
    /// \brief The last arc of the path.
alpar@96
   988
    const Arc& back() const {
ggab90@1336
   989
      return _arcs[len - 1];
alpar@96
   990
    }
alpar@96
   991
alpar@96
   992
alpar@96
   993
    typedef True BuildTag;
alpar@96
   994
alpar@96
   995
    template <typename CPath>
alpar@96
   996
    void build(const CPath& path) {
alpar@96
   997
      len = path.length();
ggab90@1336
   998
      _arcs = new Arc[len];
alpar@96
   999
      int index = 0;
alpar@96
  1000
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
ggab90@1336
  1001
        _arcs[index] = it;
alpar@96
  1002
        ++index;
alpar@96
  1003
      }
alpar@96
  1004
    }
alpar@96
  1005
alpar@96
  1006
    template <typename CPath>
alpar@96
  1007
    void buildRev(const CPath& path) {
alpar@96
  1008
      len = path.length();
ggab90@1336
  1009
      _arcs = new Arc[len];
alpar@96
  1010
      int index = len;
alpar@96
  1011
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
alpar@96
  1012
        --index;
ggab90@1336
  1013
        _arcs[index] = it;
alpar@96
  1014
      }
alpar@96
  1015
    }
alpar@96
  1016
alpar@96
  1017
  private:
alpar@96
  1018
    int len;
ggab90@1336
  1019
    Arc* _arcs;
alpar@96
  1020
  };
alpar@96
  1021
alpar@98
  1022
  ///////////////////////////////////////////////////////////////////////
alpar@98
  1023
  // Additional utilities
alpar@98
  1024
  ///////////////////////////////////////////////////////////////////////
alpar@98
  1025
alpar@98
  1026
  namespace _path_bits {
alpar@98
  1027
alpar@98
  1028
    template <typename Path, typename Enable = void>
deba@144
  1029
    struct RevPathTagIndicator {
alpar@98
  1030
      static const bool value = false;
alpar@98
  1031
    };
alpar@98
  1032
deba@144
  1033
    template <typename Path>
deba@144
  1034
    struct RevPathTagIndicator<
alpar@209
  1035
      Path,
deba@144
  1036
      typename enable_if<typename Path::RevPathTag, void>::type
deba@144
  1037
      > {
deba@144
  1038
      static const bool value = true;
deba@144
  1039
    };
deba@144
  1040
deba@144
  1041
    template <typename Path, typename Enable = void>
deba@144
  1042
    struct BuildTagIndicator {
deba@144
  1043
      static const bool value = false;
deba@144
  1044
    };
deba@144
  1045
deba@144
  1046
    template <typename Path>
deba@144
  1047
    struct BuildTagIndicator<
alpar@209
  1048
      Path,
deba@144
  1049
      typename enable_if<typename Path::BuildTag, void>::type
alpar@98
  1050
    > {
alpar@98
  1051
      static const bool value = true;
alpar@98
  1052
    };
alpar@98
  1053
kpeter@551
  1054
    template <typename From, typename To,
kpeter@551
  1055
              bool buildEnable = BuildTagIndicator<To>::value>
kpeter@517
  1056
    struct PathCopySelectorForward {
kpeter@551
  1057
      static void copy(const From& from, To& to) {
kpeter@551
  1058
        to.clear();
kpeter@551
  1059
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
kpeter@551
  1060
          to.addBack(it);
alpar@98
  1061
        }
alpar@98
  1062
      }
alpar@98
  1063
    };
alpar@98
  1064
kpeter@551
  1065
    template <typename From, typename To>
kpeter@551
  1066
    struct PathCopySelectorForward<From, To, true> {
kpeter@551
  1067
      static void copy(const From& from, To& to) {
kpeter@551
  1068
        to.clear();
kpeter@551
  1069
        to.build(from);
kpeter@517
  1070
      }
kpeter@517
  1071
    };
kpeter@517
  1072
kpeter@551
  1073
    template <typename From, typename To,
kpeter@551
  1074
              bool buildEnable = BuildTagIndicator<To>::value>
kpeter@517
  1075
    struct PathCopySelectorBackward {
kpeter@551
  1076
      static void copy(const From& from, To& to) {
kpeter@551
  1077
        to.clear();
kpeter@551
  1078
        for (typename From::RevArcIt it(from); it != INVALID; ++it) {
kpeter@551
  1079
          to.addFront(it);
alpar@98
  1080
        }
alpar@98
  1081
      }
alpar@98
  1082
    };
alpar@98
  1083
kpeter@551
  1084
    template <typename From, typename To>
kpeter@551
  1085
    struct PathCopySelectorBackward<From, To, true> {
kpeter@551
  1086
      static void copy(const From& from, To& to) {
kpeter@551
  1087
        to.clear();
kpeter@551
  1088
        to.buildRev(from);
alpar@98
  1089
      }
alpar@98
  1090
    };
alpar@98
  1091
alpar@956
  1092
kpeter@551
  1093
    template <typename From, typename To,
kpeter@551
  1094
              bool revEnable = RevPathTagIndicator<From>::value>
kpeter@517
  1095
    struct PathCopySelector {
kpeter@551
  1096
      static void copy(const From& from, To& to) {
kpeter@551
  1097
        PathCopySelectorForward<From, To>::copy(from, to);
alpar@956
  1098
      }
kpeter@517
  1099
    };
kpeter@517
  1100
kpeter@551
  1101
    template <typename From, typename To>
kpeter@551
  1102
    struct PathCopySelector<From, To, true> {
kpeter@551
  1103
      static void copy(const From& from, To& to) {
kpeter@551
  1104
        PathCopySelectorBackward<From, To>::copy(from, to);
alpar@956
  1105
      }
kpeter@517
  1106
    };
kpeter@517
  1107
alpar@98
  1108
  }
alpar@98
  1109
alpar@98
  1110
alpar@98
  1111
  /// \brief Make a copy of a path.
alpar@98
  1112
  ///
kpeter@551
  1113
  /// This function makes a copy of a path.
kpeter@551
  1114
  template <typename From, typename To>
kpeter@551
  1115
  void pathCopy(const From& from, To& to) {
kpeter@551
  1116
    checkConcept<concepts::PathDumper<typename From::Digraph>, From>();
kpeter@551
  1117
    _path_bits::PathCopySelector<From, To>::copy(from, to);
kpeter@551
  1118
  }
kpeter@551
  1119
kpeter@551
  1120
  /// \brief Deprecated version of \ref pathCopy().
kpeter@551
  1121
  ///
kpeter@551
  1122
  /// Deprecated version of \ref pathCopy() (only for reverse compatibility).
kpeter@551
  1123
  template <typename To, typename From>
kpeter@551
  1124
  void copyPath(To& to, const From& from) {
kpeter@551
  1125
    pathCopy(from, to);
alpar@98
  1126
  }
alpar@98
  1127
alpar@98
  1128
  /// \brief Check the consistency of a path.
alpar@98
  1129
  ///
alpar@98
  1130
  /// This function checks that the target of each arc is the same
alpar@209
  1131
  /// as the source of the next one.
alpar@209
  1132
  ///
alpar@98
  1133
  template <typename Digraph, typename Path>
alpar@98
  1134
  bool checkPath(const Digraph& digraph, const Path& path) {
alpar@98
  1135
    typename Path::ArcIt it(path);
alpar@98
  1136
    if (it == INVALID) return true;
alpar@98
  1137
    typename Digraph::Node node = digraph.target(it);
alpar@98
  1138
    ++it;
alpar@98
  1139
    while (it != INVALID) {
alpar@98
  1140
      if (digraph.source(it) != node) return false;
alpar@98
  1141
      node = digraph.target(it);
alpar@98
  1142
      ++it;
alpar@98
  1143
    }
alpar@98
  1144
    return true;
alpar@98
  1145
  }
alpar@98
  1146
alpar@98
  1147
  /// \brief The source of a path
alpar@98
  1148
  ///
kpeter@548
  1149
  /// This function returns the source node of the given path.
kpeter@548
  1150
  /// If the path is empty, then it returns \c INVALID.
alpar@98
  1151
  template <typename Digraph, typename Path>
alpar@98
  1152
  typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {
kpeter@548
  1153
    return path.empty() ? INVALID : digraph.source(path.front());
alpar@98
  1154
  }
alpar@98
  1155
alpar@98
  1156
  /// \brief The target of a path
alpar@98
  1157
  ///
kpeter@548
  1158
  /// This function returns the target node of the given path.
kpeter@548
  1159
  /// If the path is empty, then it returns \c INVALID.
alpar@98
  1160
  template <typename Digraph, typename Path>
alpar@98
  1161
  typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
kpeter@548
  1162
    return path.empty() ? INVALID : digraph.target(path.back());
alpar@98
  1163
  }
alpar@98
  1164
kpeter@1420
  1165
  /// \brief Class for iterating through the nodes of a path
alpar@98
  1166
  ///
kpeter@1420
  1167
  /// Class for iterating through the nodes of a path.
alpar@98
  1168
  ///
kpeter@1420
  1169
  /// In a sense, a path can be treated as a list of arcs. The
kpeter@1420
  1170
  /// LEMON path type simply stores this list. As a consequence, it
kpeter@1420
  1171
  /// cannot enumerate the nodes in the path, and the source node of
kpeter@1420
  1172
  /// a zero-length path is undefined.
kpeter@1420
  1173
  ///
kpeter@1420
  1174
  /// However, this class implements a node iterator for path structures.
kpeter@1420
  1175
  /// To provide this feature, the underlying digraph should be passed to
alpar@98
  1176
  /// the constructor of the iterator.
alpar@98
  1177
  template <typename Path>
alpar@98
  1178
  class PathNodeIt {
alpar@98
  1179
  private:
alpar@98
  1180
    const typename Path::Digraph *_digraph;
alpar@98
  1181
    typename Path::ArcIt _it;
alpar@98
  1182
    typename Path::Digraph::Node _nd;
alpar@98
  1183
alpar@98
  1184
  public:
alpar@98
  1185
alpar@98
  1186
    typedef typename Path::Digraph Digraph;
alpar@98
  1187
    typedef typename Digraph::Node Node;
alpar@209
  1188
alpar@98
  1189
    /// Default constructor
alpar@98
  1190
    PathNodeIt() {}
alpar@98
  1191
    /// Invalid constructor
alpar@209
  1192
    PathNodeIt(Invalid)
alpar@98
  1193
      : _digraph(0), _it(INVALID), _nd(INVALID) {}
alpar@98
  1194
    /// Constructor
alpar@209
  1195
    PathNodeIt(const Digraph& digraph, const Path& path)
alpar@98
  1196
      : _digraph(&digraph), _it(path) {
alpar@98
  1197
      _nd = (_it != INVALID ? _digraph->source(_it) : INVALID);
alpar@98
  1198
    }
alpar@98
  1199
    /// Constructor
alpar@209
  1200
    PathNodeIt(const Digraph& digraph, const Path& path, const Node& src)
alpar@98
  1201
      : _digraph(&digraph), _it(path), _nd(src) {}
alpar@98
  1202
alpar@98
  1203
    ///Conversion to Digraph::Node
alpar@98
  1204
    operator Node() const {
alpar@98
  1205
      return _nd;
alpar@98
  1206
    }
alpar@98
  1207
alpar@98
  1208
    /// Next node
alpar@98
  1209
    PathNodeIt& operator++() {
alpar@98
  1210
      if (_it == INVALID) _nd = INVALID;
alpar@98
  1211
      else {
alpar@209
  1212
        _nd = _digraph->target(_it);
alpar@209
  1213
        ++_it;
alpar@98
  1214
      }
alpar@98
  1215
      return *this;
alpar@98
  1216
    }
alpar@98
  1217
alpar@98
  1218
    /// Comparison operator
alpar@209
  1219
    bool operator==(const PathNodeIt& n) const {
alpar@209
  1220
      return _it == n._it && _nd == n._nd;
alpar@98
  1221
    }
alpar@98
  1222
    /// Comparison operator
alpar@209
  1223
    bool operator!=(const PathNodeIt& n) const {
alpar@209
  1224
      return _it != n._it || _nd != n._nd;
alpar@98
  1225
    }
alpar@98
  1226
    /// Comparison operator
alpar@209
  1227
    bool operator<(const PathNodeIt& n) const {
alpar@98
  1228
      return (_it < n._it && _nd != INVALID);
alpar@98
  1229
    }
alpar@209
  1230
alpar@98
  1231
  };
alpar@209
  1232
ggab90@1336
  1233
  /// \brief Gets the collection of the nodes of the path.
ggab90@1336
  1234
  ///
ggab90@1336
  1235
  /// This function can be used for iterating on the
ggab90@1336
  1236
  /// nodes of the path. It returns a wrapped
ggab90@1336
  1237
  /// PathNodeIt, which looks like an STL container
ggab90@1336
  1238
  /// (by having begin() and end()) which you can use in range-based
ggab90@1336
  1239
  /// for loops, STL algorithms, etc.
ggab90@1336
  1240
  /// For example you can write:
ggab90@1336
  1241
  ///\code
ggab90@1336
  1242
  /// for(auto u: pathNodes(g,p))
ggab90@1336
  1243
  ///   doSomething(u);
ggab90@1336
  1244
  ///\endcode
ggab90@1336
  1245
  template<typename Path>
ggab90@1336
  1246
  LemonRangeWrapper2<PathNodeIt<Path>, typename Path::Digraph, Path>
ggab90@1336
  1247
      pathNodes(const typename Path::Digraph &g, const Path &p) {
ggab90@1336
  1248
    return
ggab90@1336
  1249
        LemonRangeWrapper2<PathNodeIt<Path>, typename Path::Digraph, Path>(g,p);
ggab90@1336
  1250
  }
ggab90@1336
  1251
alpar@96
  1252
  ///@}
alpar@96
  1253
alpar@96
  1254
} // namespace lemon
alpar@96
  1255
alpar@96
  1256
#endif // LEMON_PATH_H