lemon/cplex.cc
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 10 Jul 2009 09:15:22 +0200
changeset 751 7124b2581f72
parent 598 9d0d7e20f76d
child 793 e4554cd6b2bf
child 1081 f1398882a928
child 1140 8d281761dea4
permissions -rw-r--r--
Make K a template parameter in KaryHeap (#301)
alpar@484
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@484
     2
 *
alpar@484
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@484
     4
 *
deba@598
     5
 * Copyright (C) 2003-2009
alpar@484
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@484
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@484
     8
 *
alpar@484
     9
 * Permission to use, modify and distribute this software is granted
alpar@484
    10
 * provided that this copyright notice appears in all copies. For
alpar@484
    11
 * precise terms see the accompanying LICENSE file.
alpar@484
    12
 *
alpar@484
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@484
    14
 * express or implied, and with no claim as to its suitability for any
alpar@484
    15
 * purpose.
alpar@484
    16
 *
alpar@484
    17
 */
alpar@484
    18
alpar@484
    19
#include <iostream>
alpar@484
    20
#include <vector>
alpar@484
    21
#include <cstring>
alpar@484
    22
alpar@484
    23
#include <lemon/cplex.h>
alpar@484
    24
alpar@484
    25
extern "C" {
alpar@484
    26
#include <ilcplex/cplex.h>
alpar@484
    27
}
alpar@484
    28
alpar@484
    29
alpar@484
    30
///\file
alpar@484
    31
///\brief Implementation of the LEMON-CPLEX lp solver interface.
alpar@484
    32
namespace lemon {
alpar@484
    33
alpar@484
    34
  CplexEnv::LicenseError::LicenseError(int status) {
alpar@484
    35
    if (!CPXgeterrorstring(0, status, _message)) {
alpar@484
    36
      std::strcpy(_message, "Cplex unknown error");
alpar@484
    37
    }
alpar@484
    38
  }
alpar@484
    39
alpar@484
    40
  CplexEnv::CplexEnv() {
alpar@484
    41
    int status;
alpar@484
    42
    _cnt = new int;
alpar@484
    43
    _env = CPXopenCPLEX(&status);
alpar@484
    44
    if (_env == 0) {
alpar@484
    45
      delete _cnt;
alpar@484
    46
      _cnt = 0;
alpar@484
    47
      throw LicenseError(status);
alpar@484
    48
    }
alpar@484
    49
  }
alpar@484
    50
alpar@484
    51
  CplexEnv::CplexEnv(const CplexEnv& other) {
alpar@484
    52
    _env = other._env;
alpar@484
    53
    _cnt = other._cnt;
alpar@484
    54
    ++(*_cnt);
alpar@484
    55
  }
alpar@484
    56
alpar@484
    57
  CplexEnv& CplexEnv::operator=(const CplexEnv& other) {
alpar@484
    58
    _env = other._env;
alpar@484
    59
    _cnt = other._cnt;
alpar@484
    60
    ++(*_cnt);
alpar@484
    61
    return *this;
alpar@484
    62
  }
alpar@484
    63
alpar@484
    64
  CplexEnv::~CplexEnv() {
alpar@484
    65
    --(*_cnt);
alpar@484
    66
    if (*_cnt == 0) {
alpar@484
    67
      delete _cnt;
alpar@484
    68
      CPXcloseCPLEX(&_env);
alpar@484
    69
    }
alpar@484
    70
  }
alpar@484
    71
alpar@484
    72
  CplexBase::CplexBase() : LpBase() {
alpar@484
    73
    int status;
alpar@484
    74
    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
deba@623
    75
    messageLevel(MESSAGE_NOTHING);
alpar@484
    76
  }
alpar@484
    77
alpar@484
    78
  CplexBase::CplexBase(const CplexEnv& env)
alpar@484
    79
    : LpBase(), _env(env) {
alpar@484
    80
    int status;
alpar@484
    81
    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
deba@623
    82
    messageLevel(MESSAGE_NOTHING);
alpar@484
    83
  }
alpar@484
    84
alpar@484
    85
  CplexBase::CplexBase(const CplexBase& cplex)
alpar@484
    86
    : LpBase() {
alpar@484
    87
    int status;
alpar@484
    88
    _prob = CPXcloneprob(cplexEnv(), cplex._prob, &status);
alpar@484
    89
    rows = cplex.rows;
alpar@484
    90
    cols = cplex.cols;
deba@623
    91
    messageLevel(MESSAGE_NOTHING);
alpar@484
    92
  }
alpar@484
    93
alpar@484
    94
  CplexBase::~CplexBase() {
alpar@484
    95
    CPXfreeprob(cplexEnv(),&_prob);
alpar@484
    96
  }
alpar@484
    97
alpar@484
    98
  int CplexBase::_addCol() {
alpar@484
    99
    int i = CPXgetnumcols(cplexEnv(), _prob);
alpar@484
   100
    double lb = -INF, ub = INF;
alpar@484
   101
    CPXnewcols(cplexEnv(), _prob, 1, 0, &lb, &ub, 0, 0);
alpar@484
   102
    return i;
alpar@484
   103
  }
alpar@484
   104
alpar@484
   105
alpar@484
   106
  int CplexBase::_addRow() {
alpar@484
   107
    int i = CPXgetnumrows(cplexEnv(), _prob);
alpar@484
   108
    const double ub = INF;
alpar@484
   109
    const char s = 'L';
alpar@484
   110
    CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0);
alpar@484
   111
    return i;
alpar@484
   112
  }
alpar@484
   113
alpar@484
   114
alpar@484
   115
  void CplexBase::_eraseCol(int i) {
alpar@484
   116
    CPXdelcols(cplexEnv(), _prob, i, i);
alpar@484
   117
  }
alpar@484
   118
alpar@484
   119
  void CplexBase::_eraseRow(int i) {
alpar@484
   120
    CPXdelrows(cplexEnv(), _prob, i, i);
alpar@484
   121
  }
alpar@484
   122
alpar@484
   123
  void CplexBase::_eraseColId(int i) {
alpar@484
   124
    cols.eraseIndex(i);
alpar@484
   125
    cols.shiftIndices(i);
alpar@484
   126
  }
alpar@484
   127
  void CplexBase::_eraseRowId(int i) {
alpar@484
   128
    rows.eraseIndex(i);
alpar@484
   129
    rows.shiftIndices(i);
alpar@484
   130
  }
alpar@484
   131
alpar@484
   132
  void CplexBase::_getColName(int col, std::string &name) const {
alpar@484
   133
    int size;
alpar@484
   134
    CPXgetcolname(cplexEnv(), _prob, 0, 0, 0, &size, col, col);
alpar@484
   135
    if (size == 0) {
alpar@484
   136
      name.clear();
alpar@484
   137
      return;
alpar@484
   138
    }
alpar@484
   139
alpar@484
   140
    size *= -1;
alpar@484
   141
    std::vector<char> buf(size);
alpar@484
   142
    char *cname;
alpar@484
   143
    int tmp;
alpar@484
   144
    CPXgetcolname(cplexEnv(), _prob, &cname, &buf.front(), size,
alpar@484
   145
                  &tmp, col, col);
alpar@484
   146
    name = cname;
alpar@484
   147
  }
alpar@484
   148
alpar@484
   149
  void CplexBase::_setColName(int col, const std::string &name) {
alpar@484
   150
    char *cname;
alpar@484
   151
    cname = const_cast<char*>(name.c_str());
alpar@484
   152
    CPXchgcolname(cplexEnv(), _prob, 1, &col, &cname);
alpar@484
   153
  }
alpar@484
   154
alpar@484
   155
  int CplexBase::_colByName(const std::string& name) const {
alpar@484
   156
    int index;
alpar@484
   157
    if (CPXgetcolindex(cplexEnv(), _prob,
alpar@484
   158
                       const_cast<char*>(name.c_str()), &index) == 0) {
alpar@484
   159
      return index;
alpar@484
   160
    }
alpar@484
   161
    return -1;
alpar@484
   162
  }
alpar@484
   163
alpar@484
   164
  void CplexBase::_getRowName(int row, std::string &name) const {
alpar@484
   165
    int size;
alpar@484
   166
    CPXgetrowname(cplexEnv(), _prob, 0, 0, 0, &size, row, row);
alpar@484
   167
    if (size == 0) {
alpar@484
   168
      name.clear();
alpar@484
   169
      return;
alpar@484
   170
    }
alpar@484
   171
alpar@484
   172
    size *= -1;
alpar@484
   173
    std::vector<char> buf(size);
alpar@484
   174
    char *cname;
alpar@484
   175
    int tmp;
alpar@484
   176
    CPXgetrowname(cplexEnv(), _prob, &cname, &buf.front(), size,
alpar@484
   177
                  &tmp, row, row);
alpar@484
   178
    name = cname;
alpar@484
   179
  }
alpar@484
   180
alpar@484
   181
  void CplexBase::_setRowName(int row, const std::string &name) {
alpar@484
   182
    char *cname;
alpar@484
   183
    cname = const_cast<char*>(name.c_str());
alpar@484
   184
    CPXchgrowname(cplexEnv(), _prob, 1, &row, &cname);
alpar@484
   185
  }
alpar@484
   186
alpar@484
   187
  int CplexBase::_rowByName(const std::string& name) const {
alpar@484
   188
    int index;
alpar@484
   189
    if (CPXgetrowindex(cplexEnv(), _prob,
alpar@484
   190
                       const_cast<char*>(name.c_str()), &index) == 0) {
alpar@484
   191
      return index;
alpar@484
   192
    }
alpar@484
   193
    return -1;
alpar@484
   194
  }
alpar@484
   195
alpar@484
   196
  void CplexBase::_setRowCoeffs(int i, ExprIterator b,
alpar@484
   197
                                      ExprIterator e)
alpar@484
   198
  {
alpar@484
   199
    std::vector<int> indices;
alpar@484
   200
    std::vector<int> rowlist;
alpar@484
   201
    std::vector<Value> values;
alpar@484
   202
alpar@484
   203
    for(ExprIterator it=b; it!=e; ++it) {
alpar@484
   204
      indices.push_back(it->first);
alpar@484
   205
      values.push_back(it->second);
alpar@484
   206
      rowlist.push_back(i);
alpar@484
   207
    }
alpar@484
   208
alpar@484
   209
    CPXchgcoeflist(cplexEnv(), _prob, values.size(),
alpar@484
   210
                   &rowlist.front(), &indices.front(), &values.front());
alpar@484
   211
  }
alpar@484
   212
alpar@484
   213
  void CplexBase::_getRowCoeffs(int i, InsertIterator b) const {
alpar@484
   214
    int tmp1, tmp2, tmp3, length;
alpar@484
   215
    CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i);
alpar@484
   216
alpar@484
   217
    length = -length;
alpar@484
   218
    std::vector<int> indices(length);
alpar@484
   219
    std::vector<double> values(length);
alpar@484
   220
alpar@484
   221
    CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2,
alpar@484
   222
               &indices.front(), &values.front(),
alpar@484
   223
               length, &tmp3, i, i);
alpar@484
   224
alpar@484
   225
    for (int i = 0; i < length; ++i) {
alpar@484
   226
      *b = std::make_pair(indices[i], values[i]);
alpar@484
   227
      ++b;
alpar@484
   228
    }
alpar@484
   229
  }
alpar@484
   230
alpar@484
   231
  void CplexBase::_setColCoeffs(int i, ExprIterator b, ExprIterator e) {
alpar@484
   232
    std::vector<int> indices;
alpar@484
   233
    std::vector<int> collist;
alpar@484
   234
    std::vector<Value> values;
alpar@484
   235
alpar@484
   236
    for(ExprIterator it=b; it!=e; ++it) {
alpar@484
   237
      indices.push_back(it->first);
alpar@484
   238
      values.push_back(it->second);
alpar@484
   239
      collist.push_back(i);
alpar@484
   240
    }
alpar@484
   241
alpar@484
   242
    CPXchgcoeflist(cplexEnv(), _prob, values.size(),
alpar@484
   243
                   &indices.front(), &collist.front(), &values.front());
alpar@484
   244
  }
alpar@484
   245
alpar@484
   246
  void CplexBase::_getColCoeffs(int i, InsertIterator b) const {
alpar@484
   247
alpar@484
   248
    int tmp1, tmp2, tmp3, length;
alpar@484
   249
    CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i);
alpar@484
   250
alpar@484
   251
    length = -length;
alpar@484
   252
    std::vector<int> indices(length);
alpar@484
   253
    std::vector<double> values(length);
alpar@484
   254
alpar@484
   255
    CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2,
alpar@484
   256
               &indices.front(), &values.front(),
alpar@484
   257
               length, &tmp3, i, i);
alpar@484
   258
alpar@484
   259
    for (int i = 0; i < length; ++i) {
alpar@484
   260
      *b = std::make_pair(indices[i], values[i]);
alpar@484
   261
      ++b;
alpar@484
   262
    }
alpar@484
   263
alpar@484
   264
  }
alpar@484
   265
alpar@484
   266
  void CplexBase::_setCoeff(int row, int col, Value value) {
alpar@484
   267
    CPXchgcoef(cplexEnv(), _prob, row, col, value);
alpar@484
   268
  }
alpar@484
   269
alpar@484
   270
  CplexBase::Value CplexBase::_getCoeff(int row, int col) const {
alpar@484
   271
    CplexBase::Value value;
alpar@484
   272
    CPXgetcoef(cplexEnv(), _prob, row, col, &value);
alpar@484
   273
    return value;
alpar@484
   274
  }
alpar@484
   275
alpar@484
   276
  void CplexBase::_setColLowerBound(int i, Value value) {
alpar@484
   277
    const char s = 'L';
alpar@484
   278
    CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value);
alpar@484
   279
  }
alpar@484
   280
alpar@484
   281
  CplexBase::Value CplexBase::_getColLowerBound(int i) const {
alpar@484
   282
    CplexBase::Value res;
alpar@484
   283
    CPXgetlb(cplexEnv(), _prob, &res, i, i);
alpar@484
   284
    return res <= -CPX_INFBOUND ? -INF : res;
alpar@484
   285
  }
alpar@484
   286
alpar@484
   287
  void CplexBase::_setColUpperBound(int i, Value value)
alpar@484
   288
  {
alpar@484
   289
    const char s = 'U';
alpar@484
   290
    CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value);
alpar@484
   291
  }
alpar@484
   292
alpar@484
   293
  CplexBase::Value CplexBase::_getColUpperBound(int i) const {
alpar@484
   294
    CplexBase::Value res;
alpar@484
   295
    CPXgetub(cplexEnv(), _prob, &res, i, i);
alpar@484
   296
    return res >= CPX_INFBOUND ? INF : res;
alpar@484
   297
  }
alpar@484
   298
alpar@484
   299
  CplexBase::Value CplexBase::_getRowLowerBound(int i) const {
alpar@484
   300
    char s;
alpar@484
   301
    CPXgetsense(cplexEnv(), _prob, &s, i, i);
alpar@484
   302
    CplexBase::Value res;
alpar@484
   303
alpar@484
   304
    switch (s) {
alpar@484
   305
    case 'G':
alpar@484
   306
    case 'R':
alpar@484
   307
    case 'E':
alpar@484
   308
      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
alpar@484
   309
      return res <= -CPX_INFBOUND ? -INF : res;
alpar@484
   310
    default:
alpar@484
   311
      return -INF;
alpar@484
   312
    }
alpar@484
   313
  }
alpar@484
   314
alpar@484
   315
  CplexBase::Value CplexBase::_getRowUpperBound(int i) const {
alpar@484
   316
    char s;
alpar@484
   317
    CPXgetsense(cplexEnv(), _prob, &s, i, i);
alpar@484
   318
    CplexBase::Value res;
alpar@484
   319
alpar@484
   320
    switch (s) {
alpar@484
   321
    case 'L':
alpar@484
   322
    case 'E':
alpar@484
   323
      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
alpar@484
   324
      return res >= CPX_INFBOUND ? INF : res;
alpar@484
   325
    case 'R':
alpar@484
   326
      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
alpar@484
   327
      {
alpar@484
   328
        double rng;
alpar@484
   329
        CPXgetrngval(cplexEnv(), _prob, &rng, i, i);
alpar@484
   330
        res += rng;
alpar@484
   331
      }
alpar@484
   332
      return res >= CPX_INFBOUND ? INF : res;
alpar@484
   333
    default:
alpar@484
   334
      return INF;
alpar@484
   335
    }
alpar@484
   336
  }
alpar@484
   337
alpar@484
   338
  //This is easier to implement
alpar@484
   339
  void CplexBase::_set_row_bounds(int i, Value lb, Value ub) {
alpar@484
   340
    if (lb == -INF) {
alpar@484
   341
      const char s = 'L';
alpar@484
   342
      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
alpar@484
   343
      CPXchgrhs(cplexEnv(), _prob, 1, &i, &ub);
alpar@484
   344
    } else if (ub == INF) {
alpar@484
   345
      const char s = 'G';
alpar@484
   346
      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
alpar@484
   347
      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
alpar@484
   348
    } else if (lb == ub){
alpar@484
   349
      const char s = 'E';
alpar@484
   350
      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
alpar@484
   351
      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
alpar@484
   352
    } else {
alpar@484
   353
      const char s = 'R';
alpar@484
   354
      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
alpar@484
   355
      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
alpar@484
   356
      double len = ub - lb;
alpar@484
   357
      CPXchgrngval(cplexEnv(), _prob, 1, &i, &len);
alpar@484
   358
    }
alpar@484
   359
  }
alpar@484
   360
alpar@484
   361
  void CplexBase::_setRowLowerBound(int i, Value lb)
alpar@484
   362
  {
alpar@484
   363
    LEMON_ASSERT(lb != INF, "Invalid bound");
alpar@484
   364
    _set_row_bounds(i, lb, CplexBase::_getRowUpperBound(i));
alpar@484
   365
  }
alpar@484
   366
alpar@484
   367
  void CplexBase::_setRowUpperBound(int i, Value ub)
alpar@484
   368
  {
alpar@484
   369
alpar@484
   370
    LEMON_ASSERT(ub != -INF, "Invalid bound");
alpar@484
   371
    _set_row_bounds(i, CplexBase::_getRowLowerBound(i), ub);
alpar@484
   372
  }
alpar@484
   373
alpar@484
   374
  void CplexBase::_setObjCoeffs(ExprIterator b, ExprIterator e)
alpar@484
   375
  {
alpar@484
   376
    std::vector<int> indices;
alpar@484
   377
    std::vector<Value> values;
alpar@484
   378
    for(ExprIterator it=b; it!=e; ++it) {
alpar@484
   379
      indices.push_back(it->first);
alpar@484
   380
      values.push_back(it->second);
alpar@484
   381
    }
alpar@484
   382
    CPXchgobj(cplexEnv(), _prob, values.size(),
alpar@484
   383
              &indices.front(), &values.front());
alpar@484
   384
alpar@484
   385
  }
alpar@484
   386
alpar@484
   387
  void CplexBase::_getObjCoeffs(InsertIterator b) const
alpar@484
   388
  {
alpar@484
   389
    int num = CPXgetnumcols(cplexEnv(), _prob);
alpar@484
   390
    std::vector<Value> x(num);
alpar@484
   391
alpar@484
   392
    CPXgetobj(cplexEnv(), _prob, &x.front(), 0, num - 1);
alpar@484
   393
    for (int i = 0; i < num; ++i) {
alpar@484
   394
      if (x[i] != 0.0) {
alpar@484
   395
        *b = std::make_pair(i, x[i]);
alpar@484
   396
        ++b;
alpar@484
   397
      }
alpar@484
   398
    }
alpar@484
   399
  }
alpar@484
   400
alpar@484
   401
  void CplexBase::_setObjCoeff(int i, Value obj_coef)
alpar@484
   402
  {
alpar@484
   403
    CPXchgobj(cplexEnv(), _prob, 1, &i, &obj_coef);
alpar@484
   404
  }
alpar@484
   405
alpar@484
   406
  CplexBase::Value CplexBase::_getObjCoeff(int i) const
alpar@484
   407
  {
alpar@484
   408
    Value x;
alpar@484
   409
    CPXgetobj(cplexEnv(), _prob, &x, i, i);
alpar@484
   410
    return x;
alpar@484
   411
  }
alpar@484
   412
alpar@484
   413
  void CplexBase::_setSense(CplexBase::Sense sense) {
alpar@484
   414
    switch (sense) {
alpar@484
   415
    case MIN:
alpar@484
   416
      CPXchgobjsen(cplexEnv(), _prob, CPX_MIN);
alpar@484
   417
      break;
alpar@484
   418
    case MAX:
alpar@484
   419
      CPXchgobjsen(cplexEnv(), _prob, CPX_MAX);
alpar@484
   420
      break;
alpar@484
   421
    }
alpar@484
   422
  }
alpar@484
   423
alpar@484
   424
  CplexBase::Sense CplexBase::_getSense() const {
alpar@484
   425
    switch (CPXgetobjsen(cplexEnv(), _prob)) {
alpar@484
   426
    case CPX_MIN:
alpar@484
   427
      return MIN;
alpar@484
   428
    case CPX_MAX:
alpar@484
   429
      return MAX;
alpar@484
   430
    default:
alpar@484
   431
      LEMON_ASSERT(false, "Invalid sense");
alpar@484
   432
      return CplexBase::Sense();
alpar@484
   433
    }
alpar@484
   434
  }
alpar@484
   435
alpar@484
   436
  void CplexBase::_clear() {
alpar@484
   437
    CPXfreeprob(cplexEnv(),&_prob);
alpar@484
   438
    int status;
alpar@484
   439
    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
alpar@484
   440
    rows.clear();
alpar@484
   441
    cols.clear();
alpar@484
   442
  }
alpar@484
   443
deba@623
   444
  void CplexBase::_messageLevel(MessageLevel level) {
deba@623
   445
    switch (level) {
deba@623
   446
    case MESSAGE_NOTHING:
deba@623
   447
      _message_enabled = false;
deba@623
   448
      break;
deba@623
   449
    case MESSAGE_ERROR:
deba@623
   450
    case MESSAGE_WARNING:
deba@623
   451
    case MESSAGE_NORMAL:
deba@623
   452
    case MESSAGE_VERBOSE:
deba@623
   453
      _message_enabled = true;
deba@623
   454
      break;
deba@623
   455
    }
deba@623
   456
  }
deba@623
   457
deba@623
   458
  void CplexBase::_applyMessageLevel() {
deba@623
   459
    CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, 
deba@623
   460
                   _message_enabled ? CPX_ON : CPX_OFF);
deba@623
   461
  }
deba@623
   462
alpar@485
   463
  // CplexLp members
alpar@484
   464
alpar@485
   465
  CplexLp::CplexLp()
deba@598
   466
    : LpBase(), LpSolver(), CplexBase() {}
alpar@484
   467
alpar@485
   468
  CplexLp::CplexLp(const CplexEnv& env)
deba@598
   469
    : LpBase(), LpSolver(), CplexBase(env) {}
alpar@484
   470
alpar@485
   471
  CplexLp::CplexLp(const CplexLp& other)
deba@598
   472
    : LpBase(), LpSolver(), CplexBase(other) {}
alpar@484
   473
alpar@485
   474
  CplexLp::~CplexLp() {}
alpar@484
   475
alpar@587
   476
  CplexLp* CplexLp::newSolver() const { return new CplexLp; }
alpar@587
   477
  CplexLp* CplexLp::cloneSolver() const {return new CplexLp(*this); }
alpar@484
   478
alpar@485
   479
  const char* CplexLp::_solverName() const { return "CplexLp"; }
alpar@484
   480
alpar@485
   481
  void CplexLp::_clear_temporals() {
alpar@484
   482
    _col_status.clear();
alpar@484
   483
    _row_status.clear();
alpar@484
   484
    _primal_ray.clear();
alpar@484
   485
    _dual_ray.clear();
alpar@484
   486
  }
alpar@484
   487
alpar@484
   488
  // The routine returns zero unless an error occurred during the
alpar@484
   489
  // optimization. Examples of errors include exhausting available
alpar@484
   490
  // memory (CPXERR_NO_MEMORY) or encountering invalid data in the
alpar@484
   491
  // CPLEX problem object (CPXERR_NO_PROBLEM). Exceeding a
alpar@484
   492
  // user-specified CPLEX limit, or proving the model infeasible or
alpar@484
   493
  // unbounded, are not considered errors. Note that a zero return
alpar@484
   494
  // value does not necessarily mean that a solution exists. Use query
alpar@484
   495
  // routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain
alpar@484
   496
  // further information about the status of the optimization.
alpar@485
   497
  CplexLp::SolveExitStatus CplexLp::convertStatus(int status) {
alpar@484
   498
#if CPX_VERSION >= 800
alpar@484
   499
    if (status == 0) {
alpar@484
   500
      switch (CPXgetstat(cplexEnv(), _prob)) {
alpar@484
   501
      case CPX_STAT_OPTIMAL:
alpar@484
   502
      case CPX_STAT_INFEASIBLE:
alpar@484
   503
      case CPX_STAT_UNBOUNDED:
alpar@484
   504
        return SOLVED;
alpar@484
   505
      default:
alpar@484
   506
        return UNSOLVED;
alpar@484
   507
      }
alpar@484
   508
    } else {
alpar@484
   509
      return UNSOLVED;
alpar@484
   510
    }
alpar@484
   511
#else
alpar@484
   512
    if (status == 0) {
alpar@484
   513
      //We want to exclude some cases
alpar@484
   514
      switch (CPXgetstat(cplexEnv(), _prob)) {
alpar@484
   515
      case CPX_OBJ_LIM:
alpar@484
   516
      case CPX_IT_LIM_FEAS:
alpar@484
   517
      case CPX_IT_LIM_INFEAS:
alpar@484
   518
      case CPX_TIME_LIM_FEAS:
alpar@484
   519
      case CPX_TIME_LIM_INFEAS:
alpar@484
   520
        return UNSOLVED;
alpar@484
   521
      default:
alpar@484
   522
        return SOLVED;
alpar@484
   523
      }
alpar@484
   524
    } else {
alpar@484
   525
      return UNSOLVED;
alpar@484
   526
    }
alpar@484
   527
#endif
alpar@484
   528
  }
alpar@484
   529
alpar@485
   530
  CplexLp::SolveExitStatus CplexLp::_solve() {
alpar@484
   531
    _clear_temporals();
deba@623
   532
    _applyMessageLevel();
alpar@484
   533
    return convertStatus(CPXlpopt(cplexEnv(), _prob));
alpar@484
   534
  }
alpar@484
   535
alpar@485
   536
  CplexLp::SolveExitStatus CplexLp::solvePrimal() {
alpar@484
   537
    _clear_temporals();
deba@623
   538
    _applyMessageLevel();
alpar@484
   539
    return convertStatus(CPXprimopt(cplexEnv(), _prob));
alpar@484
   540
  }
alpar@484
   541
alpar@485
   542
  CplexLp::SolveExitStatus CplexLp::solveDual() {
alpar@484
   543
    _clear_temporals();
deba@623
   544
    _applyMessageLevel();
alpar@484
   545
    return convertStatus(CPXdualopt(cplexEnv(), _prob));
alpar@484
   546
  }
alpar@484
   547
alpar@485
   548
  CplexLp::SolveExitStatus CplexLp::solveBarrier() {
alpar@484
   549
    _clear_temporals();
deba@623
   550
    _applyMessageLevel();
alpar@484
   551
    return convertStatus(CPXbaropt(cplexEnv(), _prob));
alpar@484
   552
  }
alpar@484
   553
alpar@485
   554
  CplexLp::Value CplexLp::_getPrimal(int i) const {
alpar@484
   555
    Value x;
alpar@484
   556
    CPXgetx(cplexEnv(), _prob, &x, i, i);
alpar@484
   557
    return x;
alpar@484
   558
  }
alpar@484
   559
alpar@485
   560
  CplexLp::Value CplexLp::_getDual(int i) const {
alpar@484
   561
    Value y;
alpar@484
   562
    CPXgetpi(cplexEnv(), _prob, &y, i, i);
alpar@484
   563
    return y;
alpar@484
   564
  }
alpar@484
   565
alpar@485
   566
  CplexLp::Value CplexLp::_getPrimalValue() const {
alpar@484
   567
    Value objval;
alpar@484
   568
    CPXgetobjval(cplexEnv(), _prob, &objval);
alpar@484
   569
    return objval;
alpar@484
   570
  }
alpar@484
   571
alpar@485
   572
  CplexLp::VarStatus CplexLp::_getColStatus(int i) const {
alpar@484
   573
    if (_col_status.empty()) {
alpar@484
   574
      _col_status.resize(CPXgetnumcols(cplexEnv(), _prob));
alpar@484
   575
      CPXgetbase(cplexEnv(), _prob, &_col_status.front(), 0);
alpar@484
   576
    }
alpar@484
   577
    switch (_col_status[i]) {
alpar@484
   578
    case CPX_BASIC:
alpar@484
   579
      return BASIC;
alpar@484
   580
    case CPX_FREE_SUPER:
alpar@484
   581
      return FREE;
alpar@484
   582
    case CPX_AT_LOWER:
alpar@484
   583
      return LOWER;
alpar@484
   584
    case CPX_AT_UPPER:
alpar@484
   585
      return UPPER;
alpar@484
   586
    default:
alpar@484
   587
      LEMON_ASSERT(false, "Wrong column status");
alpar@485
   588
      return CplexLp::VarStatus();
alpar@484
   589
    }
alpar@484
   590
  }
alpar@484
   591
alpar@485
   592
  CplexLp::VarStatus CplexLp::_getRowStatus(int i) const {
alpar@484
   593
    if (_row_status.empty()) {
alpar@484
   594
      _row_status.resize(CPXgetnumrows(cplexEnv(), _prob));
alpar@484
   595
      CPXgetbase(cplexEnv(), _prob, 0, &_row_status.front());
alpar@484
   596
    }
alpar@484
   597
    switch (_row_status[i]) {
alpar@484
   598
    case CPX_BASIC:
alpar@484
   599
      return BASIC;
alpar@484
   600
    case CPX_AT_LOWER:
alpar@484
   601
      {
alpar@484
   602
        char s;
alpar@484
   603
        CPXgetsense(cplexEnv(), _prob, &s, i, i);
alpar@484
   604
        return s != 'L' ? LOWER : UPPER;
alpar@484
   605
      }
alpar@484
   606
    case CPX_AT_UPPER:
alpar@484
   607
      return UPPER;
alpar@484
   608
    default:
alpar@484
   609
      LEMON_ASSERT(false, "Wrong row status");
alpar@485
   610
      return CplexLp::VarStatus();
alpar@484
   611
    }
alpar@484
   612
  }
alpar@484
   613
alpar@485
   614
  CplexLp::Value CplexLp::_getPrimalRay(int i) const {
alpar@484
   615
    if (_primal_ray.empty()) {
alpar@484
   616
      _primal_ray.resize(CPXgetnumcols(cplexEnv(), _prob));
alpar@484
   617
      CPXgetray(cplexEnv(), _prob, &_primal_ray.front());
alpar@484
   618
    }
alpar@484
   619
    return _primal_ray[i];
alpar@484
   620
  }
alpar@484
   621
alpar@485
   622
  CplexLp::Value CplexLp::_getDualRay(int i) const {
alpar@484
   623
    if (_dual_ray.empty()) {
alpar@484
   624
alpar@484
   625
    }
alpar@484
   626
    return _dual_ray[i];
alpar@484
   627
  }
alpar@484
   628
deba@623
   629
  // Cplex 7.0 status values
alpar@484
   630
  // This table lists the statuses, returned by the CPXgetstat()
alpar@484
   631
  // routine, for solutions to LP problems or mixed integer problems. If
alpar@484
   632
  // no solution exists, the return value is zero.
alpar@484
   633
alpar@484
   634
  // For Simplex, Barrier
alpar@484
   635
  // 1          CPX_OPTIMAL
alpar@484
   636
  //          Optimal solution found
alpar@484
   637
  // 2          CPX_INFEASIBLE
alpar@484
   638
  //          Problem infeasible
alpar@484
   639
  // 3    CPX_UNBOUNDED
alpar@484
   640
  //          Problem unbounded
alpar@484
   641
  // 4          CPX_OBJ_LIM
alpar@484
   642
  //          Objective limit exceeded in Phase II
alpar@484
   643
  // 5          CPX_IT_LIM_FEAS
alpar@484
   644
  //          Iteration limit exceeded in Phase II
alpar@484
   645
  // 6          CPX_IT_LIM_INFEAS
alpar@484
   646
  //          Iteration limit exceeded in Phase I
alpar@484
   647
  // 7          CPX_TIME_LIM_FEAS
alpar@484
   648
  //          Time limit exceeded in Phase II
alpar@484
   649
  // 8          CPX_TIME_LIM_INFEAS
alpar@484
   650
  //          Time limit exceeded in Phase I
alpar@484
   651
  // 9          CPX_NUM_BEST_FEAS
alpar@484
   652
  //          Problem non-optimal, singularities in Phase II
alpar@484
   653
  // 10         CPX_NUM_BEST_INFEAS
alpar@484
   654
  //          Problem non-optimal, singularities in Phase I
alpar@484
   655
  // 11         CPX_OPTIMAL_INFEAS
alpar@484
   656
  //          Optimal solution found, unscaled infeasibilities
alpar@484
   657
  // 12         CPX_ABORT_FEAS
alpar@484
   658
  //          Aborted in Phase II
alpar@484
   659
  // 13         CPX_ABORT_INFEAS
alpar@484
   660
  //          Aborted in Phase I
alpar@484
   661
  // 14          CPX_ABORT_DUAL_INFEAS
alpar@484
   662
  //          Aborted in barrier, dual infeasible
alpar@484
   663
  // 15          CPX_ABORT_PRIM_INFEAS
alpar@484
   664
  //          Aborted in barrier, primal infeasible
alpar@484
   665
  // 16          CPX_ABORT_PRIM_DUAL_INFEAS
alpar@484
   666
  //          Aborted in barrier, primal and dual infeasible
alpar@484
   667
  // 17          CPX_ABORT_PRIM_DUAL_FEAS
alpar@484
   668
  //          Aborted in barrier, primal and dual feasible
alpar@484
   669
  // 18          CPX_ABORT_CROSSOVER
alpar@484
   670
  //          Aborted in crossover
alpar@484
   671
  // 19          CPX_INForUNBD
alpar@484
   672
  //          Infeasible or unbounded
alpar@484
   673
  // 20   CPX_PIVOT
alpar@484
   674
  //       User pivot used
alpar@484
   675
  //
deba@623
   676
  // Pending return values
alpar@484
   677
  // ??case CPX_ABORT_DUAL_INFEAS
alpar@484
   678
  // ??case CPX_ABORT_CROSSOVER
alpar@484
   679
  // ??case CPX_INForUNBD
alpar@484
   680
  // ??case CPX_PIVOT
alpar@484
   681
alpar@484
   682
  //Some more interesting stuff:
alpar@484
   683
alpar@484
   684
  // CPX_PARAM_PROBMETHOD  1062  int  LPMETHOD
alpar@484
   685
  // 0 Automatic
alpar@484
   686
  // 1 Primal Simplex
alpar@484
   687
  // 2 Dual Simplex
alpar@484
   688
  // 3 Network Simplex
alpar@484
   689
  // 4 Standard Barrier
alpar@484
   690
  // Default: 0
alpar@484
   691
  // Description: Method for linear optimization.
alpar@484
   692
  // Determines which algorithm is used when CPXlpopt() (or "optimize"
alpar@484
   693
  // in the Interactive Optimizer) is called. Currently the behavior of
alpar@484
   694
  // the "Automatic" setting is that CPLEX simply invokes the dual
alpar@484
   695
  // simplex method, but this capability may be expanded in the future
alpar@484
   696
  // so that CPLEX chooses the method based on problem characteristics
alpar@484
   697
#if CPX_VERSION < 900
alpar@484
   698
  void statusSwitch(CPXENVptr cplexEnv(),int& stat){
alpar@484
   699
    int lpmethod;
alpar@484
   700
    CPXgetintparam (cplexEnv(),CPX_PARAM_PROBMETHOD,&lpmethod);
alpar@484
   701
    if (lpmethod==2){
alpar@484
   702
      if (stat==CPX_UNBOUNDED){
alpar@484
   703
        stat=CPX_INFEASIBLE;
alpar@484
   704
      }
alpar@484
   705
      else{
alpar@484
   706
        if (stat==CPX_INFEASIBLE)
alpar@484
   707
          stat=CPX_UNBOUNDED;
alpar@484
   708
      }
alpar@484
   709
    }
alpar@484
   710
  }
alpar@484
   711
#else
alpar@484
   712
  void statusSwitch(CPXENVptr,int&){}
alpar@484
   713
#endif
alpar@484
   714
alpar@485
   715
  CplexLp::ProblemType CplexLp::_getPrimalType() const {
alpar@484
   716
    // Unboundedness not treated well: the following is from cplex 9.0 doc
alpar@484
   717
    // About Unboundedness
alpar@484
   718
alpar@484
   719
    // The treatment of models that are unbounded involves a few
alpar@484
   720
    // subtleties. Specifically, a declaration of unboundedness means that
alpar@484
   721
    // ILOG CPLEX has determined that the model has an unbounded
alpar@484
   722
    // ray. Given any feasible solution x with objective z, a multiple of
alpar@484
   723
    // the unbounded ray can be added to x to give a feasible solution
alpar@484
   724
    // with objective z-1 (or z+1 for maximization models). Thus, if a
alpar@484
   725
    // feasible solution exists, then the optimal objective is
alpar@484
   726
    // unbounded. Note that ILOG CPLEX has not necessarily concluded that
alpar@484
   727
    // a feasible solution exists. Users can call the routine CPXsolninfo
alpar@484
   728
    // to determine whether ILOG CPLEX has also concluded that the model
alpar@484
   729
    // has a feasible solution.
alpar@484
   730
alpar@484
   731
    int stat = CPXgetstat(cplexEnv(), _prob);
alpar@484
   732
#if CPX_VERSION >= 800
alpar@484
   733
    switch (stat)
alpar@484
   734
      {
alpar@484
   735
      case CPX_STAT_OPTIMAL:
alpar@484
   736
        return OPTIMAL;
alpar@484
   737
      case CPX_STAT_UNBOUNDED:
alpar@484
   738
        return UNBOUNDED;
alpar@484
   739
      case CPX_STAT_INFEASIBLE:
alpar@484
   740
        return INFEASIBLE;
alpar@484
   741
      default:
alpar@484
   742
        return UNDEFINED;
alpar@484
   743
      }
alpar@484
   744
#else
alpar@484
   745
    statusSwitch(cplexEnv(),stat);
alpar@484
   746
    //CPXgetstat(cplexEnv(), _prob);
alpar@484
   747
    switch (stat) {
alpar@484
   748
    case 0:
alpar@484
   749
      return UNDEFINED; //Undefined
alpar@484
   750
    case CPX_OPTIMAL://Optimal
alpar@484
   751
      return OPTIMAL;
alpar@484
   752
    case CPX_UNBOUNDED://Unbounded
alpar@484
   753
      return INFEASIBLE;//In case of dual simplex
alpar@484
   754
      //return UNBOUNDED;
alpar@484
   755
    case CPX_INFEASIBLE://Infeasible
alpar@484
   756
      //    case CPX_IT_LIM_INFEAS:
alpar@484
   757
      //     case CPX_TIME_LIM_INFEAS:
alpar@484
   758
      //     case CPX_NUM_BEST_INFEAS:
alpar@484
   759
      //     case CPX_OPTIMAL_INFEAS:
alpar@484
   760
      //     case CPX_ABORT_INFEAS:
alpar@484
   761
      //     case CPX_ABORT_PRIM_INFEAS:
alpar@484
   762
      //     case CPX_ABORT_PRIM_DUAL_INFEAS:
alpar@484
   763
      return UNBOUNDED;//In case of dual simplex
alpar@484
   764
      //return INFEASIBLE;
alpar@484
   765
      //     case CPX_OBJ_LIM:
alpar@484
   766
      //     case CPX_IT_LIM_FEAS:
alpar@484
   767
      //     case CPX_TIME_LIM_FEAS:
alpar@484
   768
      //     case CPX_NUM_BEST_FEAS:
alpar@484
   769
      //     case CPX_ABORT_FEAS:
alpar@484
   770
      //     case CPX_ABORT_PRIM_DUAL_FEAS:
alpar@484
   771
      //       return FEASIBLE;
alpar@484
   772
    default:
alpar@484
   773
      return UNDEFINED; //Everything else comes here
alpar@484
   774
      //FIXME error
alpar@484
   775
    }
alpar@484
   776
#endif
alpar@484
   777
  }
alpar@484
   778
deba@623
   779
  // Cplex 9.0 status values
alpar@484
   780
  // CPX_STAT_ABORT_DUAL_OBJ_LIM
alpar@484
   781
  // CPX_STAT_ABORT_IT_LIM
alpar@484
   782
  // CPX_STAT_ABORT_OBJ_LIM
alpar@484
   783
  // CPX_STAT_ABORT_PRIM_OBJ_LIM
alpar@484
   784
  // CPX_STAT_ABORT_TIME_LIM
alpar@484
   785
  // CPX_STAT_ABORT_USER
alpar@484
   786
  // CPX_STAT_FEASIBLE_RELAXED
alpar@484
   787
  // CPX_STAT_INFEASIBLE
alpar@484
   788
  // CPX_STAT_INForUNBD
alpar@484
   789
  // CPX_STAT_NUM_BEST
alpar@484
   790
  // CPX_STAT_OPTIMAL
alpar@484
   791
  // CPX_STAT_OPTIMAL_FACE_UNBOUNDED
alpar@484
   792
  // CPX_STAT_OPTIMAL_INFEAS
alpar@484
   793
  // CPX_STAT_OPTIMAL_RELAXED
alpar@484
   794
  // CPX_STAT_UNBOUNDED
alpar@484
   795
alpar@485
   796
  CplexLp::ProblemType CplexLp::_getDualType() const {
alpar@484
   797
    int stat = CPXgetstat(cplexEnv(), _prob);
alpar@484
   798
#if CPX_VERSION >= 800
alpar@484
   799
    switch (stat) {
alpar@484
   800
    case CPX_STAT_OPTIMAL:
alpar@484
   801
      return OPTIMAL;
alpar@484
   802
    case CPX_STAT_UNBOUNDED:
alpar@484
   803
      return INFEASIBLE;
alpar@484
   804
    default:
alpar@484
   805
      return UNDEFINED;
alpar@484
   806
    }
alpar@484
   807
#else
alpar@484
   808
    statusSwitch(cplexEnv(),stat);
alpar@484
   809
    switch (stat) {
alpar@484
   810
    case 0:
alpar@484
   811
      return UNDEFINED; //Undefined
alpar@484
   812
    case CPX_OPTIMAL://Optimal
alpar@484
   813
      return OPTIMAL;
alpar@484
   814
    case CPX_UNBOUNDED:
alpar@484
   815
      return INFEASIBLE;
alpar@484
   816
    default:
alpar@484
   817
      return UNDEFINED; //Everything else comes here
alpar@484
   818
      //FIXME error
alpar@484
   819
    }
alpar@484
   820
#endif
alpar@484
   821
  }
alpar@484
   822
alpar@485
   823
  // CplexMip members
alpar@484
   824
alpar@485
   825
  CplexMip::CplexMip()
deba@598
   826
    : LpBase(), MipSolver(), CplexBase() {
alpar@484
   827
alpar@484
   828
#if CPX_VERSION < 800
alpar@484
   829
    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MIP);
alpar@484
   830
#else
alpar@484
   831
    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MILP);
alpar@484
   832
#endif
alpar@484
   833
  }
alpar@484
   834
alpar@485
   835
  CplexMip::CplexMip(const CplexEnv& env)
deba@598
   836
    : LpBase(), MipSolver(), CplexBase(env) {
alpar@484
   837
alpar@484
   838
#if CPX_VERSION < 800
alpar@484
   839
    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MIP);
alpar@484
   840
#else
alpar@484
   841
    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MILP);
alpar@484
   842
#endif
alpar@484
   843
alpar@484
   844
  }
alpar@484
   845
alpar@485
   846
  CplexMip::CplexMip(const CplexMip& other)
deba@598
   847
    : LpBase(), MipSolver(), CplexBase(other) {}
alpar@484
   848
alpar@485
   849
  CplexMip::~CplexMip() {}
alpar@484
   850
alpar@587
   851
  CplexMip* CplexMip::newSolver() const { return new CplexMip; }
alpar@587
   852
  CplexMip* CplexMip::cloneSolver() const {return new CplexMip(*this); }
alpar@484
   853
alpar@485
   854
  const char* CplexMip::_solverName() const { return "CplexMip"; }
alpar@484
   855
alpar@485
   856
  void CplexMip::_setColType(int i, CplexMip::ColTypes col_type) {
alpar@484
   857
alpar@484
   858
    // Note If a variable is to be changed to binary, a call to CPXchgbds
alpar@484
   859
    // should also be made to change the bounds to 0 and 1.
alpar@484
   860
alpar@484
   861
    switch (col_type){
alpar@484
   862
    case INTEGER: {
alpar@484
   863
      const char t = 'I';
alpar@484
   864
      CPXchgctype (cplexEnv(), _prob, 1, &i, &t);
alpar@484
   865
    } break;
alpar@484
   866
    case REAL: {
alpar@484
   867
      const char t = 'C';
alpar@484
   868
      CPXchgctype (cplexEnv(), _prob, 1, &i, &t);
alpar@484
   869
    } break;
alpar@484
   870
    default:
alpar@484
   871
      break;
alpar@484
   872
    }
alpar@484
   873
  }
alpar@484
   874
alpar@485
   875
  CplexMip::ColTypes CplexMip::_getColType(int i) const {
alpar@484
   876
    char t;
alpar@484
   877
    CPXgetctype (cplexEnv(), _prob, &t, i, i);
alpar@484
   878
    switch (t) {
alpar@484
   879
    case 'I':
alpar@484
   880
      return INTEGER;
alpar@484
   881
    case 'C':
alpar@484
   882
      return REAL;
alpar@484
   883
    default:
alpar@484
   884
      LEMON_ASSERT(false, "Invalid column type");
alpar@484
   885
      return ColTypes();
alpar@484
   886
    }
alpar@484
   887
alpar@484
   888
  }
alpar@484
   889
alpar@485
   890
  CplexMip::SolveExitStatus CplexMip::_solve() {
alpar@484
   891
    int status;
deba@623
   892
    _applyMessageLevel();
alpar@484
   893
    status = CPXmipopt (cplexEnv(), _prob);
alpar@484
   894
    if (status==0)
alpar@484
   895
      return SOLVED;
alpar@484
   896
    else
alpar@484
   897
      return UNSOLVED;
alpar@484
   898
alpar@484
   899
  }
alpar@484
   900
alpar@484
   901
alpar@485
   902
  CplexMip::ProblemType CplexMip::_getType() const {
alpar@484
   903
alpar@484
   904
    int stat = CPXgetstat(cplexEnv(), _prob);
alpar@484
   905
alpar@484
   906
    //Fortunately, MIP statuses did not change for cplex 8.0
alpar@484
   907
    switch (stat) {
alpar@484
   908
    case CPXMIP_OPTIMAL:
alpar@484
   909
      // Optimal integer solution has been found.
alpar@484
   910
    case CPXMIP_OPTIMAL_TOL:
alpar@484
   911
      // Optimal soluton with the tolerance defined by epgap or epagap has
alpar@484
   912
      // been found.
alpar@484
   913
      return OPTIMAL;
alpar@484
   914
      //This also exists in later issues
alpar@484
   915
      //    case CPXMIP_UNBOUNDED:
alpar@484
   916
      //return UNBOUNDED;
alpar@484
   917
      case CPXMIP_INFEASIBLE:
alpar@484
   918
        return INFEASIBLE;
alpar@484
   919
    default:
alpar@484
   920
      return UNDEFINED;
alpar@484
   921
    }
alpar@484
   922
    //Unboundedness not treated well: the following is from cplex 9.0 doc
alpar@484
   923
    // About Unboundedness
alpar@484
   924
alpar@484
   925
    // The treatment of models that are unbounded involves a few
alpar@484
   926
    // subtleties. Specifically, a declaration of unboundedness means that
alpar@484
   927
    // ILOG CPLEX has determined that the model has an unbounded
alpar@484
   928
    // ray. Given any feasible solution x with objective z, a multiple of
alpar@484
   929
    // the unbounded ray can be added to x to give a feasible solution
alpar@484
   930
    // with objective z-1 (or z+1 for maximization models). Thus, if a
alpar@484
   931
    // feasible solution exists, then the optimal objective is
alpar@484
   932
    // unbounded. Note that ILOG CPLEX has not necessarily concluded that
alpar@484
   933
    // a feasible solution exists. Users can call the routine CPXsolninfo
alpar@484
   934
    // to determine whether ILOG CPLEX has also concluded that the model
alpar@484
   935
    // has a feasible solution.
alpar@484
   936
  }
alpar@484
   937
alpar@485
   938
  CplexMip::Value CplexMip::_getSol(int i) const {
alpar@484
   939
    Value x;
alpar@484
   940
    CPXgetmipx(cplexEnv(), _prob, &x, i, i);
alpar@484
   941
    return x;
alpar@484
   942
  }
alpar@484
   943
alpar@485
   944
  CplexMip::Value CplexMip::_getSolValue() const {
alpar@484
   945
    Value objval;
alpar@484
   946
    CPXgetmipobjval(cplexEnv(), _prob, &objval);
alpar@484
   947
    return objval;
alpar@484
   948
  }
alpar@484
   949
alpar@484
   950
} //namespace lemon
alpar@484
   951