lemon/cycle_canceling.h
author Peter Kovacs <kpeter@inf.elte.hu>
Sat, 16 Mar 2013 16:20:41 +0100
changeset 1240 ee9bac10f58e
parent 1179 f6f6896a4724
child 1241 879fcb781086
child 1296 330264b171cf
permissions -rw-r--r--
Debug checking for capacity bounds in min cost flow algorithms (#454)
alpar@956
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
kpeter@880
     2
 *
alpar@956
     3
 * This file is a part of LEMON, a generic C++ optimization library.
kpeter@880
     4
 *
alpar@956
     5
 * Copyright (C) 2003-2010
kpeter@880
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
kpeter@880
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
kpeter@880
     8
 *
kpeter@880
     9
 * Permission to use, modify and distribute this software is granted
kpeter@880
    10
 * provided that this copyright notice appears in all copies. For
kpeter@880
    11
 * precise terms see the accompanying LICENSE file.
kpeter@880
    12
 *
kpeter@880
    13
 * This software is provided "AS IS" with no warranty of any kind,
kpeter@880
    14
 * express or implied, and with no claim as to its suitability for any
kpeter@880
    15
 * purpose.
kpeter@880
    16
 *
kpeter@880
    17
 */
kpeter@880
    18
kpeter@880
    19
#ifndef LEMON_CYCLE_CANCELING_H
kpeter@880
    20
#define LEMON_CYCLE_CANCELING_H
kpeter@880
    21
kpeter@881
    22
/// \ingroup min_cost_flow_algs
kpeter@880
    23
/// \file
kpeter@881
    24
/// \brief Cycle-canceling algorithms for finding a minimum cost flow.
kpeter@880
    25
kpeter@880
    26
#include <vector>
kpeter@881
    27
#include <limits>
kpeter@881
    28
kpeter@881
    29
#include <lemon/core.h>
kpeter@881
    30
#include <lemon/maps.h>
kpeter@881
    31
#include <lemon/path.h>
kpeter@881
    32
#include <lemon/math.h>
kpeter@881
    33
#include <lemon/static_graph.h>
kpeter@880
    34
#include <lemon/adaptors.h>
kpeter@880
    35
#include <lemon/circulation.h>
kpeter@880
    36
#include <lemon/bellman_ford.h>
kpeter@942
    37
#include <lemon/howard_mmc.h>
kpeter@1179
    38
#include <lemon/hartmann_orlin_mmc.h>
kpeter@880
    39
kpeter@880
    40
namespace lemon {
kpeter@880
    41
kpeter@881
    42
  /// \addtogroup min_cost_flow_algs
kpeter@880
    43
  /// @{
kpeter@880
    44
kpeter@881
    45
  /// \brief Implementation of cycle-canceling algorithms for
kpeter@881
    46
  /// finding a \ref min_cost_flow "minimum cost flow".
kpeter@880
    47
  ///
kpeter@881
    48
  /// \ref CycleCanceling implements three different cycle-canceling
kpeter@882
    49
  /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
kpeter@882
    50
  /// \ref amo93networkflows, \ref klein67primal,
kpeter@882
    51
  /// \ref goldberg89cyclecanceling.
kpeter@1165
    52
  /// The most efficent one is the \ref CANCEL_AND_TIGHTEN
kpeter@1165
    53
  /// "Cancel-and-Tighten" algorithm, thus it is the default method.
kpeter@1165
    54
  /// It runs in strongly polynomial time, but in practice, it is typically
kpeter@1165
    55
  /// orders of magnitude slower than the scaling algorithms and
kpeter@1165
    56
  /// \ref NetworkSimplex.
kpeter@1165
    57
  /// (For more information, see \ref min_cost_flow_algs "the module page".)
kpeter@880
    58
  ///
kpeter@881
    59
  /// Most of the parameters of the problem (except for the digraph)
kpeter@881
    60
  /// can be given using separate functions, and the algorithm can be
kpeter@881
    61
  /// executed using the \ref run() function. If some parameters are not
kpeter@881
    62
  /// specified, then default values will be used.
kpeter@880
    63
  ///
kpeter@881
    64
  /// \tparam GR The digraph type the algorithm runs on.
kpeter@881
    65
  /// \tparam V The number type used for flow amounts, capacity bounds
kpeter@881
    66
  /// and supply values in the algorithm. By default, it is \c int.
kpeter@881
    67
  /// \tparam C The number type used for costs and potentials in the
kpeter@881
    68
  /// algorithm. By default, it is the same as \c V.
kpeter@880
    69
  ///
kpeter@1025
    70
  /// \warning Both \c V and \c C must be signed number types.
kpeter@1025
    71
  /// \warning All input data (capacities, supply values, and costs) must
kpeter@881
    72
  /// be integer.
kpeter@1023
    73
  /// \warning This algorithm does not support negative costs for
kpeter@1023
    74
  /// arcs having infinite upper bound.
kpeter@880
    75
  ///
kpeter@881
    76
  /// \note For more information about the three available methods,
kpeter@881
    77
  /// see \ref Method.
kpeter@881
    78
#ifdef DOXYGEN
kpeter@881
    79
  template <typename GR, typename V, typename C>
kpeter@881
    80
#else
kpeter@881
    81
  template <typename GR, typename V = int, typename C = V>
kpeter@881
    82
#endif
kpeter@880
    83
  class CycleCanceling
kpeter@880
    84
  {
kpeter@881
    85
  public:
kpeter@880
    86
kpeter@881
    87
    /// The type of the digraph
kpeter@881
    88
    typedef GR Digraph;
kpeter@881
    89
    /// The type of the flow amounts, capacity bounds and supply values
kpeter@881
    90
    typedef V Value;
kpeter@881
    91
    /// The type of the arc costs
kpeter@881
    92
    typedef C Cost;
kpeter@880
    93
kpeter@880
    94
  public:
kpeter@880
    95
kpeter@881
    96
    /// \brief Problem type constants for the \c run() function.
kpeter@881
    97
    ///
kpeter@881
    98
    /// Enum type containing the problem type constants that can be
kpeter@881
    99
    /// returned by the \ref run() function of the algorithm.
kpeter@881
   100
    enum ProblemType {
kpeter@881
   101
      /// The problem has no feasible solution (flow).
kpeter@881
   102
      INFEASIBLE,
kpeter@881
   103
      /// The problem has optimal solution (i.e. it is feasible and
kpeter@881
   104
      /// bounded), and the algorithm has found optimal flow and node
kpeter@881
   105
      /// potentials (primal and dual solutions).
kpeter@881
   106
      OPTIMAL,
kpeter@881
   107
      /// The digraph contains an arc of negative cost and infinite
kpeter@881
   108
      /// upper bound. It means that the objective function is unbounded
kpeter@881
   109
      /// on that arc, however, note that it could actually be bounded
kpeter@881
   110
      /// over the feasible flows, but this algroithm cannot handle
kpeter@881
   111
      /// these cases.
kpeter@881
   112
      UNBOUNDED
kpeter@881
   113
    };
kpeter@881
   114
kpeter@881
   115
    /// \brief Constants for selecting the used method.
kpeter@881
   116
    ///
kpeter@881
   117
    /// Enum type containing constants for selecting the used method
kpeter@881
   118
    /// for the \ref run() function.
kpeter@881
   119
    ///
kpeter@881
   120
    /// \ref CycleCanceling provides three different cycle-canceling
kpeter@1165
   121
    /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel-and-Tighten"
kpeter@1023
   122
    /// is used, which is by far the most efficient and the most robust.
kpeter@881
   123
    /// However, the other methods can be selected using the \ref run()
kpeter@881
   124
    /// function with the proper parameter.
kpeter@881
   125
    enum Method {
kpeter@881
   126
      /// A simple cycle-canceling method, which uses the
kpeter@1165
   127
      /// \ref BellmanFord "Bellman-Ford" algorithm for detecting negative
kpeter@1165
   128
      /// cycles in the residual network.
kpeter@1165
   129
      /// The number of Bellman-Ford iterations is bounded by a successively
kpeter@1165
   130
      /// increased limit.
kpeter@881
   131
      SIMPLE_CYCLE_CANCELING,
kpeter@881
   132
      /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
kpeter@882
   133
      /// well-known strongly polynomial method
kpeter@882
   134
      /// \ref goldberg89cyclecanceling. It improves along a
kpeter@881
   135
      /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
kpeter@1165
   136
      /// Its running time complexity is O(n<sup>2</sup>e<sup>3</sup>log(n)).
kpeter@881
   137
      MINIMUM_MEAN_CYCLE_CANCELING,
kpeter@1165
   138
      /// The "Cancel-and-Tighten" algorithm, which can be viewed as an
kpeter@882
   139
      /// improved version of the previous method
kpeter@882
   140
      /// \ref goldberg89cyclecanceling.
kpeter@881
   141
      /// It is faster both in theory and in practice, its running time
kpeter@1165
   142
      /// complexity is O(n<sup>2</sup>e<sup>2</sup>log(n)).
kpeter@881
   143
      CANCEL_AND_TIGHTEN
kpeter@881
   144
    };
kpeter@880
   145
kpeter@880
   146
  private:
kpeter@880
   147
kpeter@881
   148
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
alpar@956
   149
kpeter@881
   150
    typedef std::vector<int> IntVector;
kpeter@881
   151
    typedef std::vector<double> DoubleVector;
kpeter@881
   152
    typedef std::vector<Value> ValueVector;
kpeter@881
   153
    typedef std::vector<Cost> CostVector;
kpeter@910
   154
    typedef std::vector<char> BoolVector;
kpeter@910
   155
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
kpeter@880
   156
kpeter@881
   157
  private:
alpar@956
   158
kpeter@881
   159
    template <typename KT, typename VT>
kpeter@886
   160
    class StaticVectorMap {
kpeter@880
   161
    public:
kpeter@881
   162
      typedef KT Key;
kpeter@881
   163
      typedef VT Value;
alpar@956
   164
kpeter@886
   165
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
alpar@956
   166
kpeter@881
   167
      const Value& operator[](const Key& key) const {
kpeter@881
   168
        return _v[StaticDigraph::id(key)];
kpeter@880
   169
      }
kpeter@880
   170
kpeter@881
   171
      Value& operator[](const Key& key) {
kpeter@881
   172
        return _v[StaticDigraph::id(key)];
kpeter@881
   173
      }
alpar@956
   174
kpeter@881
   175
      void set(const Key& key, const Value& val) {
kpeter@881
   176
        _v[StaticDigraph::id(key)] = val;
kpeter@881
   177
      }
kpeter@881
   178
kpeter@881
   179
    private:
kpeter@881
   180
      std::vector<Value>& _v;
kpeter@881
   181
    };
kpeter@881
   182
kpeter@886
   183
    typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
kpeter@886
   184
    typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
kpeter@880
   185
kpeter@880
   186
  private:
kpeter@880
   187
kpeter@880
   188
kpeter@881
   189
    // Data related to the underlying digraph
kpeter@881
   190
    const GR &_graph;
kpeter@881
   191
    int _node_num;
kpeter@881
   192
    int _arc_num;
kpeter@881
   193
    int _res_node_num;
kpeter@881
   194
    int _res_arc_num;
kpeter@881
   195
    int _root;
kpeter@880
   196
kpeter@881
   197
    // Parameters of the problem
kpeter@881
   198
    bool _have_lower;
kpeter@881
   199
    Value _sum_supply;
kpeter@880
   200
kpeter@881
   201
    // Data structures for storing the digraph
kpeter@881
   202
    IntNodeMap _node_id;
kpeter@881
   203
    IntArcMap _arc_idf;
kpeter@881
   204
    IntArcMap _arc_idb;
kpeter@881
   205
    IntVector _first_out;
kpeter@910
   206
    BoolVector _forward;
kpeter@881
   207
    IntVector _source;
kpeter@881
   208
    IntVector _target;
kpeter@881
   209
    IntVector _reverse;
kpeter@880
   210
kpeter@881
   211
    // Node and arc data
kpeter@881
   212
    ValueVector _lower;
kpeter@881
   213
    ValueVector _upper;
kpeter@881
   214
    CostVector _cost;
kpeter@881
   215
    ValueVector _supply;
kpeter@881
   216
kpeter@881
   217
    ValueVector _res_cap;
kpeter@881
   218
    CostVector _pi;
kpeter@881
   219
kpeter@881
   220
    // Data for a StaticDigraph structure
kpeter@881
   221
    typedef std::pair<int, int> IntPair;
kpeter@881
   222
    StaticDigraph _sgr;
kpeter@881
   223
    std::vector<IntPair> _arc_vec;
kpeter@881
   224
    std::vector<Cost> _cost_vec;
kpeter@881
   225
    IntVector _id_vec;
kpeter@881
   226
    CostArcMap _cost_map;
kpeter@881
   227
    CostNodeMap _pi_map;
alpar@956
   228
kpeter@881
   229
  public:
alpar@956
   230
kpeter@881
   231
    /// \brief Constant for infinite upper bounds (capacities).
kpeter@881
   232
    ///
kpeter@881
   233
    /// Constant for infinite upper bounds (capacities).
kpeter@881
   234
    /// It is \c std::numeric_limits<Value>::infinity() if available,
kpeter@881
   235
    /// \c std::numeric_limits<Value>::max() otherwise.
kpeter@881
   236
    const Value INF;
kpeter@880
   237
kpeter@880
   238
  public:
kpeter@880
   239
kpeter@881
   240
    /// \brief Constructor.
kpeter@880
   241
    ///
kpeter@881
   242
    /// The constructor of the class.
kpeter@880
   243
    ///
kpeter@881
   244
    /// \param graph The digraph the algorithm runs on.
kpeter@881
   245
    CycleCanceling(const GR& graph) :
kpeter@881
   246
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
kpeter@881
   247
      _cost_map(_cost_vec), _pi_map(_pi),
kpeter@881
   248
      INF(std::numeric_limits<Value>::has_infinity ?
kpeter@881
   249
          std::numeric_limits<Value>::infinity() :
kpeter@881
   250
          std::numeric_limits<Value>::max())
kpeter@880
   251
    {
kpeter@881
   252
      // Check the number types
kpeter@881
   253
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
kpeter@881
   254
        "The flow type of CycleCanceling must be signed");
kpeter@881
   255
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
kpeter@881
   256
        "The cost type of CycleCanceling must be signed");
kpeter@881
   257
kpeter@898
   258
      // Reset data structures
kpeter@881
   259
      reset();
kpeter@880
   260
    }
kpeter@880
   261
kpeter@881
   262
    /// \name Parameters
kpeter@881
   263
    /// The parameters of the algorithm can be specified using these
kpeter@881
   264
    /// functions.
kpeter@881
   265
kpeter@881
   266
    /// @{
kpeter@881
   267
kpeter@881
   268
    /// \brief Set the lower bounds on the arcs.
kpeter@880
   269
    ///
kpeter@881
   270
    /// This function sets the lower bounds on the arcs.
kpeter@881
   271
    /// If it is not used before calling \ref run(), the lower bounds
kpeter@881
   272
    /// will be set to zero on all arcs.
kpeter@880
   273
    ///
kpeter@881
   274
    /// \param map An arc map storing the lower bounds.
kpeter@881
   275
    /// Its \c Value type must be convertible to the \c Value type
kpeter@881
   276
    /// of the algorithm.
kpeter@881
   277
    ///
kpeter@881
   278
    /// \return <tt>(*this)</tt>
kpeter@881
   279
    template <typename LowerMap>
kpeter@881
   280
    CycleCanceling& lowerMap(const LowerMap& map) {
kpeter@881
   281
      _have_lower = true;
kpeter@881
   282
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   283
        _lower[_arc_idf[a]] = map[a];
kpeter@881
   284
        _lower[_arc_idb[a]] = map[a];
kpeter@880
   285
      }
kpeter@880
   286
      return *this;
kpeter@880
   287
    }
kpeter@880
   288
kpeter@881
   289
    /// \brief Set the upper bounds (capacities) on the arcs.
kpeter@880
   290
    ///
kpeter@881
   291
    /// This function sets the upper bounds (capacities) on the arcs.
kpeter@881
   292
    /// If it is not used before calling \ref run(), the upper bounds
kpeter@881
   293
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
kpeter@881
   294
    /// unbounded from above).
kpeter@880
   295
    ///
kpeter@881
   296
    /// \param map An arc map storing the upper bounds.
kpeter@881
   297
    /// Its \c Value type must be convertible to the \c Value type
kpeter@881
   298
    /// of the algorithm.
kpeter@881
   299
    ///
kpeter@881
   300
    /// \return <tt>(*this)</tt>
kpeter@881
   301
    template<typename UpperMap>
kpeter@881
   302
    CycleCanceling& upperMap(const UpperMap& map) {
kpeter@881
   303
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   304
        _upper[_arc_idf[a]] = map[a];
kpeter@880
   305
      }
kpeter@880
   306
      return *this;
kpeter@880
   307
    }
kpeter@880
   308
kpeter@881
   309
    /// \brief Set the costs of the arcs.
kpeter@881
   310
    ///
kpeter@881
   311
    /// This function sets the costs of the arcs.
kpeter@881
   312
    /// If it is not used before calling \ref run(), the costs
kpeter@881
   313
    /// will be set to \c 1 on all arcs.
kpeter@881
   314
    ///
kpeter@881
   315
    /// \param map An arc map storing the costs.
kpeter@881
   316
    /// Its \c Value type must be convertible to the \c Cost type
kpeter@881
   317
    /// of the algorithm.
kpeter@881
   318
    ///
kpeter@881
   319
    /// \return <tt>(*this)</tt>
kpeter@881
   320
    template<typename CostMap>
kpeter@881
   321
    CycleCanceling& costMap(const CostMap& map) {
kpeter@881
   322
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   323
        _cost[_arc_idf[a]] =  map[a];
kpeter@881
   324
        _cost[_arc_idb[a]] = -map[a];
kpeter@881
   325
      }
kpeter@881
   326
      return *this;
kpeter@881
   327
    }
kpeter@881
   328
kpeter@881
   329
    /// \brief Set the supply values of the nodes.
kpeter@881
   330
    ///
kpeter@881
   331
    /// This function sets the supply values of the nodes.
kpeter@881
   332
    /// If neither this function nor \ref stSupply() is used before
kpeter@881
   333
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@881
   334
    ///
kpeter@881
   335
    /// \param map A node map storing the supply values.
kpeter@881
   336
    /// Its \c Value type must be convertible to the \c Value type
kpeter@881
   337
    /// of the algorithm.
kpeter@881
   338
    ///
kpeter@881
   339
    /// \return <tt>(*this)</tt>
kpeter@881
   340
    template<typename SupplyMap>
kpeter@881
   341
    CycleCanceling& supplyMap(const SupplyMap& map) {
kpeter@881
   342
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@881
   343
        _supply[_node_id[n]] = map[n];
kpeter@881
   344
      }
kpeter@881
   345
      return *this;
kpeter@881
   346
    }
kpeter@881
   347
kpeter@881
   348
    /// \brief Set single source and target nodes and a supply value.
kpeter@881
   349
    ///
kpeter@881
   350
    /// This function sets a single source node and a single target node
kpeter@881
   351
    /// and the required flow value.
kpeter@881
   352
    /// If neither this function nor \ref supplyMap() is used before
kpeter@881
   353
    /// calling \ref run(), the supply of each node will be set to zero.
kpeter@881
   354
    ///
kpeter@881
   355
    /// Using this function has the same effect as using \ref supplyMap()
kpeter@1023
   356
    /// with a map in which \c k is assigned to \c s, \c -k is
kpeter@881
   357
    /// assigned to \c t and all other nodes have zero supply value.
kpeter@881
   358
    ///
kpeter@881
   359
    /// \param s The source node.
kpeter@881
   360
    /// \param t The target node.
kpeter@881
   361
    /// \param k The required amount of flow from node \c s to node \c t
kpeter@881
   362
    /// (i.e. the supply of \c s and the demand of \c t).
kpeter@881
   363
    ///
kpeter@881
   364
    /// \return <tt>(*this)</tt>
kpeter@881
   365
    CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
kpeter@881
   366
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@881
   367
        _supply[i] = 0;
kpeter@881
   368
      }
kpeter@881
   369
      _supply[_node_id[s]] =  k;
kpeter@881
   370
      _supply[_node_id[t]] = -k;
kpeter@881
   371
      return *this;
kpeter@881
   372
    }
alpar@956
   373
kpeter@881
   374
    /// @}
kpeter@881
   375
kpeter@880
   376
    /// \name Execution control
kpeter@881
   377
    /// The algorithm can be executed using \ref run().
kpeter@880
   378
kpeter@880
   379
    /// @{
kpeter@880
   380
kpeter@880
   381
    /// \brief Run the algorithm.
kpeter@880
   382
    ///
kpeter@881
   383
    /// This function runs the algorithm.
kpeter@881
   384
    /// The paramters can be specified using functions \ref lowerMap(),
kpeter@881
   385
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@881
   386
    /// For example,
kpeter@881
   387
    /// \code
kpeter@881
   388
    ///   CycleCanceling<ListDigraph> cc(graph);
kpeter@881
   389
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@881
   390
    ///     .supplyMap(sup).run();
kpeter@881
   391
    /// \endcode
kpeter@880
   392
    ///
kpeter@898
   393
    /// This function can be called more than once. All the given parameters
kpeter@898
   394
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
kpeter@898
   395
    /// is used, thus only the modified parameters have to be set again.
kpeter@898
   396
    /// If the underlying digraph was also modified after the construction
kpeter@898
   397
    /// of the class (or the last \ref reset() call), then the \ref reset()
kpeter@898
   398
    /// function must be called.
kpeter@880
   399
    ///
kpeter@881
   400
    /// \param method The cycle-canceling method that will be used.
kpeter@881
   401
    /// For more information, see \ref Method.
kpeter@881
   402
    ///
kpeter@881
   403
    /// \return \c INFEASIBLE if no feasible flow exists,
kpeter@881
   404
    /// \n \c OPTIMAL if the problem has optimal solution
kpeter@881
   405
    /// (i.e. it is feasible and bounded), and the algorithm has found
kpeter@881
   406
    /// optimal flow and node potentials (primal and dual solutions),
kpeter@881
   407
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
kpeter@881
   408
    /// and infinite upper bound. It means that the objective function
kpeter@881
   409
    /// is unbounded on that arc, however, note that it could actually be
kpeter@881
   410
    /// bounded over the feasible flows, but this algroithm cannot handle
kpeter@881
   411
    /// these cases.
kpeter@881
   412
    ///
kpeter@881
   413
    /// \see ProblemType, Method
kpeter@898
   414
    /// \see resetParams(), reset()
kpeter@881
   415
    ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
kpeter@881
   416
      ProblemType pt = init();
kpeter@881
   417
      if (pt != OPTIMAL) return pt;
kpeter@881
   418
      start(method);
kpeter@881
   419
      return OPTIMAL;
kpeter@881
   420
    }
kpeter@881
   421
kpeter@881
   422
    /// \brief Reset all the parameters that have been given before.
kpeter@881
   423
    ///
kpeter@881
   424
    /// This function resets all the paramaters that have been given
kpeter@881
   425
    /// before using functions \ref lowerMap(), \ref upperMap(),
kpeter@881
   426
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@881
   427
    ///
kpeter@898
   428
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@898
   429
    /// parameters are kept for the next \ref run() call, unless
kpeter@898
   430
    /// \ref resetParams() or \ref reset() is used.
kpeter@898
   431
    /// If the underlying digraph was also modified after the construction
kpeter@898
   432
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@898
   433
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@881
   434
    ///
kpeter@881
   435
    /// For example,
kpeter@881
   436
    /// \code
kpeter@881
   437
    ///   CycleCanceling<ListDigraph> cs(graph);
kpeter@881
   438
    ///
kpeter@881
   439
    ///   // First run
kpeter@881
   440
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
kpeter@881
   441
    ///     .supplyMap(sup).run();
kpeter@881
   442
    ///
kpeter@898
   443
    ///   // Run again with modified cost map (resetParams() is not called,
kpeter@881
   444
    ///   // so only the cost map have to be set again)
kpeter@881
   445
    ///   cost[e] += 100;
kpeter@881
   446
    ///   cc.costMap(cost).run();
kpeter@881
   447
    ///
kpeter@898
   448
    ///   // Run again from scratch using resetParams()
kpeter@881
   449
    ///   // (the lower bounds will be set to zero on all arcs)
kpeter@898
   450
    ///   cc.resetParams();
kpeter@881
   451
    ///   cc.upperMap(capacity).costMap(cost)
kpeter@881
   452
    ///     .supplyMap(sup).run();
kpeter@881
   453
    /// \endcode
kpeter@881
   454
    ///
kpeter@881
   455
    /// \return <tt>(*this)</tt>
kpeter@898
   456
    ///
kpeter@898
   457
    /// \see reset(), run()
kpeter@898
   458
    CycleCanceling& resetParams() {
kpeter@881
   459
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@881
   460
        _supply[i] = 0;
kpeter@881
   461
      }
kpeter@881
   462
      int limit = _first_out[_root];
kpeter@881
   463
      for (int j = 0; j != limit; ++j) {
kpeter@881
   464
        _lower[j] = 0;
kpeter@881
   465
        _upper[j] = INF;
kpeter@881
   466
        _cost[j] = _forward[j] ? 1 : -1;
kpeter@881
   467
      }
kpeter@881
   468
      for (int j = limit; j != _res_arc_num; ++j) {
kpeter@881
   469
        _lower[j] = 0;
kpeter@881
   470
        _upper[j] = INF;
kpeter@881
   471
        _cost[j] = 0;
kpeter@881
   472
        _cost[_reverse[j]] = 0;
alpar@956
   473
      }
kpeter@881
   474
      _have_lower = false;
kpeter@881
   475
      return *this;
kpeter@880
   476
    }
kpeter@880
   477
kpeter@898
   478
    /// \brief Reset the internal data structures and all the parameters
kpeter@898
   479
    /// that have been given before.
kpeter@898
   480
    ///
kpeter@898
   481
    /// This function resets the internal data structures and all the
kpeter@898
   482
    /// paramaters that have been given before using functions \ref lowerMap(),
kpeter@898
   483
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
kpeter@898
   484
    ///
kpeter@898
   485
    /// It is useful for multiple \ref run() calls. Basically, all the given
kpeter@898
   486
    /// parameters are kept for the next \ref run() call, unless
kpeter@898
   487
    /// \ref resetParams() or \ref reset() is used.
kpeter@898
   488
    /// If the underlying digraph was also modified after the construction
kpeter@898
   489
    /// of the class or the last \ref reset() call, then the \ref reset()
kpeter@898
   490
    /// function must be used, otherwise \ref resetParams() is sufficient.
kpeter@898
   491
    ///
kpeter@898
   492
    /// See \ref resetParams() for examples.
kpeter@898
   493
    ///
kpeter@898
   494
    /// \return <tt>(*this)</tt>
kpeter@898
   495
    ///
kpeter@898
   496
    /// \see resetParams(), run()
kpeter@898
   497
    CycleCanceling& reset() {
kpeter@898
   498
      // Resize vectors
kpeter@898
   499
      _node_num = countNodes(_graph);
kpeter@898
   500
      _arc_num = countArcs(_graph);
kpeter@898
   501
      _res_node_num = _node_num + 1;
kpeter@898
   502
      _res_arc_num = 2 * (_arc_num + _node_num);
kpeter@898
   503
      _root = _node_num;
kpeter@898
   504
kpeter@898
   505
      _first_out.resize(_res_node_num + 1);
kpeter@898
   506
      _forward.resize(_res_arc_num);
kpeter@898
   507
      _source.resize(_res_arc_num);
kpeter@898
   508
      _target.resize(_res_arc_num);
kpeter@898
   509
      _reverse.resize(_res_arc_num);
kpeter@898
   510
kpeter@898
   511
      _lower.resize(_res_arc_num);
kpeter@898
   512
      _upper.resize(_res_arc_num);
kpeter@898
   513
      _cost.resize(_res_arc_num);
kpeter@898
   514
      _supply.resize(_res_node_num);
alpar@956
   515
kpeter@898
   516
      _res_cap.resize(_res_arc_num);
kpeter@898
   517
      _pi.resize(_res_node_num);
kpeter@898
   518
kpeter@898
   519
      _arc_vec.reserve(_res_arc_num);
kpeter@898
   520
      _cost_vec.reserve(_res_arc_num);
kpeter@898
   521
      _id_vec.reserve(_res_arc_num);
kpeter@898
   522
kpeter@898
   523
      // Copy the graph
kpeter@898
   524
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
kpeter@898
   525
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@898
   526
        _node_id[n] = i;
kpeter@898
   527
      }
kpeter@898
   528
      i = 0;
kpeter@898
   529
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
kpeter@898
   530
        _first_out[i] = j;
kpeter@898
   531
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@898
   532
          _arc_idf[a] = j;
kpeter@898
   533
          _forward[j] = true;
kpeter@898
   534
          _source[j] = i;
kpeter@898
   535
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@898
   536
        }
kpeter@898
   537
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
kpeter@898
   538
          _arc_idb[a] = j;
kpeter@898
   539
          _forward[j] = false;
kpeter@898
   540
          _source[j] = i;
kpeter@898
   541
          _target[j] = _node_id[_graph.runningNode(a)];
kpeter@898
   542
        }
kpeter@898
   543
        _forward[j] = false;
kpeter@898
   544
        _source[j] = i;
kpeter@898
   545
        _target[j] = _root;
kpeter@898
   546
        _reverse[j] = k;
kpeter@898
   547
        _forward[k] = true;
kpeter@898
   548
        _source[k] = _root;
kpeter@898
   549
        _target[k] = i;
kpeter@898
   550
        _reverse[k] = j;
kpeter@898
   551
        ++j; ++k;
kpeter@898
   552
      }
kpeter@898
   553
      _first_out[i] = j;
kpeter@898
   554
      _first_out[_res_node_num] = k;
kpeter@898
   555
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@898
   556
        int fi = _arc_idf[a];
kpeter@898
   557
        int bi = _arc_idb[a];
kpeter@898
   558
        _reverse[fi] = bi;
kpeter@898
   559
        _reverse[bi] = fi;
kpeter@898
   560
      }
alpar@956
   561
kpeter@898
   562
      // Reset parameters
kpeter@898
   563
      resetParams();
kpeter@898
   564
      return *this;
kpeter@898
   565
    }
kpeter@898
   566
kpeter@880
   567
    /// @}
kpeter@880
   568
kpeter@880
   569
    /// \name Query Functions
kpeter@881
   570
    /// The results of the algorithm can be obtained using these
kpeter@880
   571
    /// functions.\n
kpeter@881
   572
    /// The \ref run() function must be called before using them.
kpeter@880
   573
kpeter@880
   574
    /// @{
kpeter@880
   575
kpeter@881
   576
    /// \brief Return the total cost of the found flow.
kpeter@880
   577
    ///
kpeter@881
   578
    /// This function returns the total cost of the found flow.
kpeter@881
   579
    /// Its complexity is O(e).
kpeter@881
   580
    ///
kpeter@881
   581
    /// \note The return type of the function can be specified as a
kpeter@881
   582
    /// template parameter. For example,
kpeter@881
   583
    /// \code
kpeter@881
   584
    ///   cc.totalCost<double>();
kpeter@881
   585
    /// \endcode
kpeter@881
   586
    /// It is useful if the total cost cannot be stored in the \c Cost
kpeter@881
   587
    /// type of the algorithm, which is the default return type of the
kpeter@881
   588
    /// function.
kpeter@880
   589
    ///
kpeter@880
   590
    /// \pre \ref run() must be called before using this function.
kpeter@881
   591
    template <typename Number>
kpeter@881
   592
    Number totalCost() const {
kpeter@881
   593
      Number c = 0;
kpeter@881
   594
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   595
        int i = _arc_idb[a];
kpeter@881
   596
        c += static_cast<Number>(_res_cap[i]) *
kpeter@881
   597
             (-static_cast<Number>(_cost[i]));
kpeter@881
   598
      }
kpeter@881
   599
      return c;
kpeter@880
   600
    }
kpeter@880
   601
kpeter@881
   602
#ifndef DOXYGEN
kpeter@881
   603
    Cost totalCost() const {
kpeter@881
   604
      return totalCost<Cost>();
kpeter@880
   605
    }
kpeter@881
   606
#endif
kpeter@880
   607
kpeter@880
   608
    /// \brief Return the flow on the given arc.
kpeter@880
   609
    ///
kpeter@881
   610
    /// This function returns the flow on the given arc.
kpeter@880
   611
    ///
kpeter@880
   612
    /// \pre \ref run() must be called before using this function.
kpeter@881
   613
    Value flow(const Arc& a) const {
kpeter@881
   614
      return _res_cap[_arc_idb[a]];
kpeter@880
   615
    }
kpeter@880
   616
kpeter@1165
   617
    /// \brief Copy the flow values (the primal solution) into the
kpeter@1165
   618
    /// given map.
kpeter@880
   619
    ///
kpeter@881
   620
    /// This function copies the flow value on each arc into the given
kpeter@881
   621
    /// map. The \c Value type of the algorithm must be convertible to
kpeter@881
   622
    /// the \c Value type of the map.
kpeter@880
   623
    ///
kpeter@880
   624
    /// \pre \ref run() must be called before using this function.
kpeter@881
   625
    template <typename FlowMap>
kpeter@881
   626
    void flowMap(FlowMap &map) const {
kpeter@881
   627
      for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   628
        map.set(a, _res_cap[_arc_idb[a]]);
kpeter@881
   629
      }
kpeter@880
   630
    }
kpeter@880
   631
kpeter@881
   632
    /// \brief Return the potential (dual value) of the given node.
kpeter@880
   633
    ///
kpeter@881
   634
    /// This function returns the potential (dual value) of the
kpeter@881
   635
    /// given node.
kpeter@880
   636
    ///
kpeter@880
   637
    /// \pre \ref run() must be called before using this function.
kpeter@881
   638
    Cost potential(const Node& n) const {
kpeter@881
   639
      return static_cast<Cost>(_pi[_node_id[n]]);
kpeter@881
   640
    }
kpeter@881
   641
kpeter@1165
   642
    /// \brief Copy the potential values (the dual solution) into the
kpeter@1165
   643
    /// given map.
kpeter@881
   644
    ///
kpeter@881
   645
    /// This function copies the potential (dual value) of each node
kpeter@881
   646
    /// into the given map.
kpeter@881
   647
    /// The \c Cost type of the algorithm must be convertible to the
kpeter@881
   648
    /// \c Value type of the map.
kpeter@881
   649
    ///
kpeter@881
   650
    /// \pre \ref run() must be called before using this function.
kpeter@881
   651
    template <typename PotentialMap>
kpeter@881
   652
    void potentialMap(PotentialMap &map) const {
kpeter@881
   653
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@881
   654
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
kpeter@881
   655
      }
kpeter@880
   656
    }
kpeter@880
   657
kpeter@880
   658
    /// @}
kpeter@880
   659
kpeter@880
   660
  private:
kpeter@880
   661
kpeter@881
   662
    // Initialize the algorithm
kpeter@881
   663
    ProblemType init() {
kpeter@881
   664
      if (_res_node_num <= 1) return INFEASIBLE;
kpeter@880
   665
kpeter@881
   666
      // Check the sum of supply values
kpeter@881
   667
      _sum_supply = 0;
kpeter@881
   668
      for (int i = 0; i != _root; ++i) {
kpeter@881
   669
        _sum_supply += _supply[i];
kpeter@880
   670
      }
kpeter@881
   671
      if (_sum_supply > 0) return INFEASIBLE;
alpar@956
   672
kpeter@1240
   673
      // Check lower and upper bounds
kpeter@1240
   674
      LEMON_DEBUG(checkBoundMaps(),
kpeter@1240
   675
          "Upper bounds must be greater or equal to the lower bounds");
kpeter@1240
   676
kpeter@881
   677
kpeter@881
   678
      // Initialize vectors
kpeter@881
   679
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@881
   680
        _pi[i] = 0;
kpeter@881
   681
      }
kpeter@881
   682
      ValueVector excess(_supply);
alpar@956
   683
kpeter@881
   684
      // Remove infinite upper bounds and check negative arcs
kpeter@881
   685
      const Value MAX = std::numeric_limits<Value>::max();
kpeter@881
   686
      int last_out;
kpeter@881
   687
      if (_have_lower) {
kpeter@881
   688
        for (int i = 0; i != _root; ++i) {
kpeter@881
   689
          last_out = _first_out[i+1];
kpeter@881
   690
          for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@881
   691
            if (_forward[j]) {
kpeter@881
   692
              Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
kpeter@881
   693
              if (c >= MAX) return UNBOUNDED;
kpeter@881
   694
              excess[i] -= c;
kpeter@881
   695
              excess[_target[j]] += c;
kpeter@881
   696
            }
kpeter@881
   697
          }
kpeter@881
   698
        }
kpeter@881
   699
      } else {
kpeter@881
   700
        for (int i = 0; i != _root; ++i) {
kpeter@881
   701
          last_out = _first_out[i+1];
kpeter@881
   702
          for (int j = _first_out[i]; j != last_out; ++j) {
kpeter@881
   703
            if (_forward[j] && _cost[j] < 0) {
kpeter@881
   704
              Value c = _upper[j];
kpeter@881
   705
              if (c >= MAX) return UNBOUNDED;
kpeter@881
   706
              excess[i] -= c;
kpeter@881
   707
              excess[_target[j]] += c;
kpeter@881
   708
            }
kpeter@881
   709
          }
kpeter@881
   710
        }
kpeter@881
   711
      }
kpeter@881
   712
      Value ex, max_cap = 0;
kpeter@881
   713
      for (int i = 0; i != _res_node_num; ++i) {
kpeter@881
   714
        ex = excess[i];
kpeter@881
   715
        if (ex < 0) max_cap -= ex;
kpeter@881
   716
      }
kpeter@881
   717
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@881
   718
        if (_upper[j] >= MAX) _upper[j] = max_cap;
kpeter@880
   719
      }
kpeter@880
   720
kpeter@881
   721
      // Initialize maps for Circulation and remove non-zero lower bounds
kpeter@881
   722
      ConstMap<Arc, Value> low(0);
kpeter@881
   723
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
kpeter@881
   724
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
kpeter@881
   725
      ValueArcMap cap(_graph), flow(_graph);
kpeter@881
   726
      ValueNodeMap sup(_graph);
kpeter@881
   727
      for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@881
   728
        sup[n] = _supply[_node_id[n]];
kpeter@881
   729
      }
kpeter@881
   730
      if (_have_lower) {
kpeter@881
   731
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   732
          int j = _arc_idf[a];
kpeter@881
   733
          Value c = _lower[j];
kpeter@881
   734
          cap[a] = _upper[j] - c;
kpeter@881
   735
          sup[_graph.source(a)] -= c;
kpeter@881
   736
          sup[_graph.target(a)] += c;
kpeter@881
   737
        }
kpeter@881
   738
      } else {
kpeter@881
   739
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   740
          cap[a] = _upper[_arc_idf[a]];
kpeter@881
   741
        }
kpeter@881
   742
      }
kpeter@880
   743
kpeter@881
   744
      // Find a feasible flow using Circulation
kpeter@881
   745
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
kpeter@881
   746
        circ(_graph, low, cap, sup);
kpeter@881
   747
      if (!circ.flowMap(flow).run()) return INFEASIBLE;
kpeter@881
   748
kpeter@881
   749
      // Set residual capacities and handle GEQ supply type
kpeter@881
   750
      if (_sum_supply < 0) {
kpeter@881
   751
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   752
          Value fa = flow[a];
kpeter@881
   753
          _res_cap[_arc_idf[a]] = cap[a] - fa;
kpeter@881
   754
          _res_cap[_arc_idb[a]] = fa;
kpeter@881
   755
          sup[_graph.source(a)] -= fa;
kpeter@881
   756
          sup[_graph.target(a)] += fa;
kpeter@881
   757
        }
kpeter@881
   758
        for (NodeIt n(_graph); n != INVALID; ++n) {
kpeter@881
   759
          excess[_node_id[n]] = sup[n];
kpeter@881
   760
        }
kpeter@881
   761
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@881
   762
          int u = _target[a];
kpeter@881
   763
          int ra = _reverse[a];
kpeter@881
   764
          _res_cap[a] = -_sum_supply + 1;
kpeter@881
   765
          _res_cap[ra] = -excess[u];
kpeter@881
   766
          _cost[a] = 0;
kpeter@881
   767
          _cost[ra] = 0;
kpeter@881
   768
        }
kpeter@881
   769
      } else {
kpeter@881
   770
        for (ArcIt a(_graph); a != INVALID; ++a) {
kpeter@881
   771
          Value fa = flow[a];
kpeter@881
   772
          _res_cap[_arc_idf[a]] = cap[a] - fa;
kpeter@881
   773
          _res_cap[_arc_idb[a]] = fa;
kpeter@881
   774
        }
kpeter@881
   775
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
kpeter@881
   776
          int ra = _reverse[a];
kpeter@881
   777
          _res_cap[a] = 1;
kpeter@881
   778
          _res_cap[ra] = 0;
kpeter@881
   779
          _cost[a] = 0;
kpeter@881
   780
          _cost[ra] = 0;
kpeter@881
   781
        }
kpeter@881
   782
      }
alpar@956
   783
kpeter@881
   784
      return OPTIMAL;
kpeter@881
   785
    }
kpeter@1240
   786
    
kpeter@1240
   787
    // Check if the upper bound is greater or equal to the lower bound
kpeter@1240
   788
    // on each arc.
kpeter@1240
   789
    bool checkBoundMaps() {
kpeter@1240
   790
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@1240
   791
        if (_upper[j] < _lower[j]) return false;
kpeter@1240
   792
      }
kpeter@1240
   793
      return true;
kpeter@1240
   794
    }
alpar@956
   795
kpeter@881
   796
    // Build a StaticDigraph structure containing the current
kpeter@881
   797
    // residual network
kpeter@881
   798
    void buildResidualNetwork() {
kpeter@881
   799
      _arc_vec.clear();
kpeter@881
   800
      _cost_vec.clear();
kpeter@881
   801
      _id_vec.clear();
kpeter@881
   802
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@881
   803
        if (_res_cap[j] > 0) {
kpeter@881
   804
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
kpeter@881
   805
          _cost_vec.push_back(_cost[j]);
kpeter@881
   806
          _id_vec.push_back(j);
kpeter@881
   807
        }
kpeter@881
   808
      }
kpeter@881
   809
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
kpeter@880
   810
    }
kpeter@880
   811
kpeter@881
   812
    // Execute the algorithm and transform the results
kpeter@881
   813
    void start(Method method) {
kpeter@881
   814
      // Execute the algorithm
kpeter@881
   815
      switch (method) {
kpeter@881
   816
        case SIMPLE_CYCLE_CANCELING:
kpeter@881
   817
          startSimpleCycleCanceling();
kpeter@881
   818
          break;
kpeter@881
   819
        case MINIMUM_MEAN_CYCLE_CANCELING:
kpeter@881
   820
          startMinMeanCycleCanceling();
kpeter@881
   821
          break;
kpeter@881
   822
        case CANCEL_AND_TIGHTEN:
kpeter@881
   823
          startCancelAndTighten();
kpeter@881
   824
          break;
kpeter@881
   825
      }
kpeter@880
   826
kpeter@881
   827
      // Compute node potentials
kpeter@881
   828
      if (method != SIMPLE_CYCLE_CANCELING) {
kpeter@881
   829
        buildResidualNetwork();
kpeter@881
   830
        typename BellmanFord<StaticDigraph, CostArcMap>
kpeter@881
   831
          ::template SetDistMap<CostNodeMap>::Create bf(_sgr, _cost_map);
kpeter@881
   832
        bf.distMap(_pi_map);
kpeter@881
   833
        bf.init(0);
kpeter@881
   834
        bf.start();
kpeter@880
   835
      }
kpeter@881
   836
kpeter@881
   837
      // Handle non-zero lower bounds
kpeter@881
   838
      if (_have_lower) {
kpeter@881
   839
        int limit = _first_out[_root];
kpeter@881
   840
        for (int j = 0; j != limit; ++j) {
kpeter@881
   841
          if (!_forward[j]) _res_cap[j] += _lower[j];
kpeter@881
   842
        }
kpeter@881
   843
      }
kpeter@880
   844
    }
kpeter@880
   845
kpeter@881
   846
    // Execute the "Simple Cycle Canceling" method
kpeter@881
   847
    void startSimpleCycleCanceling() {
kpeter@881
   848
      // Constants for computing the iteration limits
kpeter@881
   849
      const int BF_FIRST_LIMIT  = 2;
kpeter@881
   850
      const double BF_LIMIT_FACTOR = 1.5;
alpar@956
   851
kpeter@886
   852
      typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
kpeter@881
   853
      typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
kpeter@886
   854
      typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
kpeter@881
   855
      typedef typename BellmanFord<ResDigraph, CostArcMap>
kpeter@881
   856
        ::template SetDistMap<CostNodeMap>
kpeter@881
   857
        ::template SetPredMap<PredMap>::Create BF;
alpar@956
   858
kpeter@881
   859
      // Build the residual network
kpeter@881
   860
      _arc_vec.clear();
kpeter@881
   861
      _cost_vec.clear();
kpeter@881
   862
      for (int j = 0; j != _res_arc_num; ++j) {
kpeter@881
   863
        _arc_vec.push_back(IntPair(_source[j], _target[j]));
kpeter@881
   864
        _cost_vec.push_back(_cost[j]);
kpeter@881
   865
      }
kpeter@881
   866
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
kpeter@881
   867
kpeter@881
   868
      FilterMap filter_map(_res_cap);
kpeter@881
   869
      ResDigraph rgr(_sgr, filter_map);
kpeter@881
   870
      std::vector<int> cycle;
kpeter@881
   871
      std::vector<StaticDigraph::Arc> pred(_res_arc_num);
kpeter@881
   872
      PredMap pred_map(pred);
kpeter@881
   873
      BF bf(rgr, _cost_map);
kpeter@881
   874
      bf.distMap(_pi_map).predMap(pred_map);
kpeter@880
   875
kpeter@880
   876
      int length_bound = BF_FIRST_LIMIT;
kpeter@880
   877
      bool optimal = false;
kpeter@880
   878
      while (!optimal) {
kpeter@880
   879
        bf.init(0);
kpeter@880
   880
        int iter_num = 0;
kpeter@880
   881
        bool cycle_found = false;
kpeter@880
   882
        while (!cycle_found) {
kpeter@881
   883
          // Perform some iterations of the Bellman-Ford algorithm
kpeter@881
   884
          int curr_iter_num = iter_num + length_bound <= _node_num ?
kpeter@881
   885
            length_bound : _node_num - iter_num;
kpeter@880
   886
          iter_num += curr_iter_num;
kpeter@880
   887
          int real_iter_num = curr_iter_num;
kpeter@880
   888
          for (int i = 0; i < curr_iter_num; ++i) {
kpeter@880
   889
            if (bf.processNextWeakRound()) {
kpeter@880
   890
              real_iter_num = i;
kpeter@880
   891
              break;
kpeter@880
   892
            }
kpeter@880
   893
          }
kpeter@880
   894
          if (real_iter_num < curr_iter_num) {
kpeter@880
   895
            // Optimal flow is found
kpeter@880
   896
            optimal = true;
kpeter@880
   897
            break;
kpeter@880
   898
          } else {
kpeter@881
   899
            // Search for node disjoint negative cycles
kpeter@881
   900
            std::vector<int> state(_res_node_num, 0);
kpeter@880
   901
            int id = 0;
kpeter@881
   902
            for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
   903
              if (state[u] != 0) continue;
kpeter@881
   904
              ++id;
kpeter@881
   905
              int v = u;
kpeter@881
   906
              for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ?
kpeter@881
   907
                   -1 : rgr.id(rgr.source(pred[v]))) {
kpeter@881
   908
                state[v] = id;
kpeter@880
   909
              }
kpeter@881
   910
              if (v != -1 && state[v] == id) {
kpeter@881
   911
                // A negative cycle is found
kpeter@880
   912
                cycle_found = true;
kpeter@880
   913
                cycle.clear();
kpeter@881
   914
                StaticDigraph::Arc a = pred[v];
kpeter@881
   915
                Value d, delta = _res_cap[rgr.id(a)];
kpeter@881
   916
                cycle.push_back(rgr.id(a));
kpeter@881
   917
                while (rgr.id(rgr.source(a)) != v) {
kpeter@881
   918
                  a = pred_map[rgr.source(a)];
kpeter@881
   919
                  d = _res_cap[rgr.id(a)];
kpeter@881
   920
                  if (d < delta) delta = d;
kpeter@881
   921
                  cycle.push_back(rgr.id(a));
kpeter@880
   922
                }
kpeter@880
   923
kpeter@881
   924
                // Augment along the cycle
kpeter@881
   925
                for (int i = 0; i < int(cycle.size()); ++i) {
kpeter@881
   926
                  int j = cycle[i];
kpeter@881
   927
                  _res_cap[j] -= delta;
kpeter@881
   928
                  _res_cap[_reverse[j]] += delta;
kpeter@881
   929
                }
kpeter@880
   930
              }
kpeter@880
   931
            }
kpeter@880
   932
          }
kpeter@880
   933
kpeter@881
   934
          // Increase iteration limit if no cycle is found
kpeter@881
   935
          if (!cycle_found) {
kpeter@881
   936
            length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR);
kpeter@881
   937
          }
kpeter@880
   938
        }
kpeter@880
   939
      }
kpeter@880
   940
    }
kpeter@880
   941
kpeter@881
   942
    // Execute the "Minimum Mean Cycle Canceling" method
kpeter@881
   943
    void startMinMeanCycleCanceling() {
kpeter@1179
   944
      typedef Path<StaticDigraph> SPath;
kpeter@881
   945
      typedef typename SPath::ArcIt SPathArcIt;
kpeter@942
   946
      typedef typename HowardMmc<StaticDigraph, CostArcMap>
kpeter@1179
   947
        ::template SetPath<SPath>::Create HwMmc;
kpeter@1179
   948
      typedef typename HartmannOrlinMmc<StaticDigraph, CostArcMap>
kpeter@1179
   949
        ::template SetPath<SPath>::Create HoMmc;
kpeter@1179
   950
kpeter@1179
   951
      const double HW_ITER_LIMIT_FACTOR = 1.0;
kpeter@1179
   952
      const int HW_ITER_LIMIT_MIN_VALUE = 5;
kpeter@1179
   953
kpeter@1179
   954
      const int hw_iter_limit =
kpeter@1179
   955
          std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
kpeter@1179
   956
                   HW_ITER_LIMIT_MIN_VALUE);
alpar@956
   957
kpeter@881
   958
      SPath cycle;
kpeter@1179
   959
      HwMmc hw_mmc(_sgr, _cost_map);
kpeter@1179
   960
      hw_mmc.cycle(cycle);
kpeter@881
   961
      buildResidualNetwork();
kpeter@1179
   962
      while (true) {
kpeter@1179
   963
        
kpeter@1179
   964
        typename HwMmc::TerminationCause hw_tc =
kpeter@1179
   965
            hw_mmc.findCycleMean(hw_iter_limit);
kpeter@1179
   966
        if (hw_tc == HwMmc::ITERATION_LIMIT) {
kpeter@1179
   967
          // Howard's algorithm reached the iteration limit, start a
kpeter@1179
   968
          // strongly polynomial algorithm instead
kpeter@1179
   969
          HoMmc ho_mmc(_sgr, _cost_map);
kpeter@1179
   970
          ho_mmc.cycle(cycle);
kpeter@1179
   971
          // Find a minimum mean cycle (Hartmann-Orlin algorithm)
kpeter@1179
   972
          if (!(ho_mmc.findCycleMean() && ho_mmc.cycleCost() < 0)) break;
kpeter@1179
   973
          ho_mmc.findCycle();
kpeter@1179
   974
        } else {
kpeter@1179
   975
          // Find a minimum mean cycle (Howard algorithm)
kpeter@1179
   976
          if (!(hw_tc == HwMmc::OPTIMAL && hw_mmc.cycleCost() < 0)) break;
kpeter@1179
   977
          hw_mmc.findCycle();
kpeter@1179
   978
        }
kpeter@1179
   979
        
kpeter@881
   980
        // Compute delta value
kpeter@881
   981
        Value delta = INF;
kpeter@881
   982
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
kpeter@881
   983
          Value d = _res_cap[_id_vec[_sgr.id(a)]];
kpeter@881
   984
          if (d < delta) delta = d;
kpeter@881
   985
        }
kpeter@880
   986
kpeter@881
   987
        // Augment along the cycle
kpeter@881
   988
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
kpeter@881
   989
          int j = _id_vec[_sgr.id(a)];
kpeter@881
   990
          _res_cap[j] -= delta;
kpeter@881
   991
          _res_cap[_reverse[j]] += delta;
kpeter@881
   992
        }
kpeter@881
   993
alpar@956
   994
        // Rebuild the residual network
kpeter@881
   995
        buildResidualNetwork();
kpeter@881
   996
      }
kpeter@881
   997
    }
kpeter@881
   998
kpeter@1165
   999
    // Execute the "Cancel-and-Tighten" method
kpeter@881
  1000
    void startCancelAndTighten() {
kpeter@881
  1001
      // Constants for the min mean cycle computations
kpeter@881
  1002
      const double LIMIT_FACTOR = 1.0;
kpeter@881
  1003
      const int MIN_LIMIT = 5;
kpeter@1179
  1004
      const double HW_ITER_LIMIT_FACTOR = 1.0;
kpeter@1179
  1005
      const int HW_ITER_LIMIT_MIN_VALUE = 5;
kpeter@1179
  1006
kpeter@1179
  1007
      const int hw_iter_limit =
kpeter@1179
  1008
          std::max(static_cast<int>(HW_ITER_LIMIT_FACTOR * _node_num),
kpeter@1179
  1009
                   HW_ITER_LIMIT_MIN_VALUE);
kpeter@881
  1010
kpeter@881
  1011
      // Contruct auxiliary data vectors
kpeter@881
  1012
      DoubleVector pi(_res_node_num, 0.0);
kpeter@881
  1013
      IntVector level(_res_node_num);
kpeter@910
  1014
      BoolVector reached(_res_node_num);
kpeter@910
  1015
      BoolVector processed(_res_node_num);
kpeter@881
  1016
      IntVector pred_node(_res_node_num);
kpeter@881
  1017
      IntVector pred_arc(_res_node_num);
kpeter@881
  1018
      std::vector<int> stack(_res_node_num);
kpeter@881
  1019
      std::vector<int> proc_vector(_res_node_num);
kpeter@881
  1020
kpeter@881
  1021
      // Initialize epsilon
kpeter@881
  1022
      double epsilon = 0;
kpeter@881
  1023
      for (int a = 0; a != _res_arc_num; ++a) {
kpeter@881
  1024
        if (_res_cap[a] > 0 && -_cost[a] > epsilon)
kpeter@881
  1025
          epsilon = -_cost[a];
kpeter@881
  1026
      }
kpeter@881
  1027
kpeter@881
  1028
      // Start phases
kpeter@881
  1029
      Tolerance<double> tol;
kpeter@881
  1030
      tol.epsilon(1e-6);
kpeter@881
  1031
      int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num)));
kpeter@881
  1032
      if (limit < MIN_LIMIT) limit = MIN_LIMIT;
kpeter@881
  1033
      int iter = limit;
kpeter@881
  1034
      while (epsilon * _res_node_num >= 1) {
kpeter@881
  1035
        // Find and cancel cycles in the admissible network using DFS
kpeter@881
  1036
        for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1037
          reached[u] = false;
kpeter@881
  1038
          processed[u] = false;
kpeter@881
  1039
        }
kpeter@881
  1040
        int stack_head = -1;
kpeter@881
  1041
        int proc_head = -1;
kpeter@881
  1042
        for (int start = 0; start != _res_node_num; ++start) {
kpeter@881
  1043
          if (reached[start]) continue;
kpeter@881
  1044
kpeter@881
  1045
          // New start node
kpeter@881
  1046
          reached[start] = true;
kpeter@881
  1047
          pred_arc[start] = -1;
kpeter@881
  1048
          pred_node[start] = -1;
kpeter@881
  1049
kpeter@881
  1050
          // Find the first admissible outgoing arc
kpeter@881
  1051
          double p = pi[start];
kpeter@881
  1052
          int a = _first_out[start];
kpeter@881
  1053
          int last_out = _first_out[start+1];
kpeter@881
  1054
          for (; a != last_out && (_res_cap[a] == 0 ||
kpeter@881
  1055
               !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
kpeter@881
  1056
          if (a == last_out) {
kpeter@881
  1057
            processed[start] = true;
kpeter@881
  1058
            proc_vector[++proc_head] = start;
kpeter@881
  1059
            continue;
kpeter@881
  1060
          }
kpeter@881
  1061
          stack[++stack_head] = a;
kpeter@881
  1062
kpeter@881
  1063
          while (stack_head >= 0) {
kpeter@881
  1064
            int sa = stack[stack_head];
kpeter@881
  1065
            int u = _source[sa];
kpeter@881
  1066
            int v = _target[sa];
kpeter@881
  1067
kpeter@881
  1068
            if (!reached[v]) {
kpeter@881
  1069
              // A new node is reached
kpeter@881
  1070
              reached[v] = true;
kpeter@881
  1071
              pred_node[v] = u;
kpeter@881
  1072
              pred_arc[v] = sa;
kpeter@881
  1073
              p = pi[v];
kpeter@881
  1074
              a = _first_out[v];
kpeter@881
  1075
              last_out = _first_out[v+1];
kpeter@881
  1076
              for (; a != last_out && (_res_cap[a] == 0 ||
kpeter@881
  1077
                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
kpeter@881
  1078
              stack[++stack_head] = a == last_out ? -1 : a;
kpeter@881
  1079
            } else {
kpeter@881
  1080
              if (!processed[v]) {
kpeter@881
  1081
                // A cycle is found
kpeter@881
  1082
                int n, w = u;
kpeter@881
  1083
                Value d, delta = _res_cap[sa];
kpeter@881
  1084
                for (n = u; n != v; n = pred_node[n]) {
kpeter@881
  1085
                  d = _res_cap[pred_arc[n]];
kpeter@881
  1086
                  if (d <= delta) {
kpeter@881
  1087
                    delta = d;
kpeter@881
  1088
                    w = pred_node[n];
kpeter@881
  1089
                  }
kpeter@881
  1090
                }
kpeter@881
  1091
kpeter@881
  1092
                // Augment along the cycle
kpeter@881
  1093
                _res_cap[sa] -= delta;
kpeter@881
  1094
                _res_cap[_reverse[sa]] += delta;
kpeter@881
  1095
                for (n = u; n != v; n = pred_node[n]) {
kpeter@881
  1096
                  int pa = pred_arc[n];
kpeter@881
  1097
                  _res_cap[pa] -= delta;
kpeter@881
  1098
                  _res_cap[_reverse[pa]] += delta;
kpeter@881
  1099
                }
kpeter@881
  1100
                for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
kpeter@881
  1101
                  --stack_head;
kpeter@881
  1102
                  reached[n] = false;
kpeter@881
  1103
                }
kpeter@881
  1104
                u = w;
kpeter@881
  1105
              }
kpeter@881
  1106
              v = u;
kpeter@881
  1107
kpeter@881
  1108
              // Find the next admissible outgoing arc
kpeter@881
  1109
              p = pi[v];
kpeter@881
  1110
              a = stack[stack_head] + 1;
kpeter@881
  1111
              last_out = _first_out[v+1];
kpeter@881
  1112
              for (; a != last_out && (_res_cap[a] == 0 ||
kpeter@881
  1113
                   !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
kpeter@881
  1114
              stack[stack_head] = a == last_out ? -1 : a;
kpeter@881
  1115
            }
kpeter@881
  1116
kpeter@881
  1117
            while (stack_head >= 0 && stack[stack_head] == -1) {
kpeter@881
  1118
              processed[v] = true;
kpeter@881
  1119
              proc_vector[++proc_head] = v;
kpeter@881
  1120
              if (--stack_head >= 0) {
kpeter@881
  1121
                // Find the next admissible outgoing arc
kpeter@881
  1122
                v = _source[stack[stack_head]];
kpeter@881
  1123
                p = pi[v];
kpeter@881
  1124
                a = stack[stack_head] + 1;
kpeter@881
  1125
                last_out = _first_out[v+1];
kpeter@881
  1126
                for (; a != last_out && (_res_cap[a] == 0 ||
kpeter@881
  1127
                     !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ;
kpeter@881
  1128
                stack[stack_head] = a == last_out ? -1 : a;
kpeter@881
  1129
              }
kpeter@881
  1130
            }
kpeter@881
  1131
          }
kpeter@881
  1132
        }
kpeter@881
  1133
kpeter@881
  1134
        // Tighten potentials and epsilon
kpeter@881
  1135
        if (--iter > 0) {
kpeter@881
  1136
          for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1137
            level[u] = 0;
kpeter@881
  1138
          }
kpeter@881
  1139
          for (int i = proc_head; i > 0; --i) {
kpeter@881
  1140
            int u = proc_vector[i];
kpeter@881
  1141
            double p = pi[u];
kpeter@881
  1142
            int l = level[u] + 1;
kpeter@881
  1143
            int last_out = _first_out[u+1];
kpeter@881
  1144
            for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@881
  1145
              int v = _target[a];
kpeter@881
  1146
              if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) &&
kpeter@881
  1147
                  l > level[v]) level[v] = l;
kpeter@881
  1148
            }
kpeter@880
  1149
          }
kpeter@880
  1150
kpeter@881
  1151
          // Modify potentials
kpeter@881
  1152
          double q = std::numeric_limits<double>::max();
kpeter@881
  1153
          for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1154
            int lu = level[u];
kpeter@881
  1155
            double p, pu = pi[u];
kpeter@881
  1156
            int last_out = _first_out[u+1];
kpeter@881
  1157
            for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@881
  1158
              if (_res_cap[a] == 0) continue;
kpeter@881
  1159
              int v = _target[a];
kpeter@881
  1160
              int ld = lu - level[v];
kpeter@881
  1161
              if (ld > 0) {
kpeter@881
  1162
                p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1);
kpeter@881
  1163
                if (p < q) q = p;
kpeter@881
  1164
              }
kpeter@881
  1165
            }
kpeter@881
  1166
          }
kpeter@881
  1167
          for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1168
            pi[u] -= q * level[u];
kpeter@881
  1169
          }
kpeter@880
  1170
kpeter@881
  1171
          // Modify epsilon
kpeter@881
  1172
          epsilon = 0;
kpeter@881
  1173
          for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1174
            double curr, pu = pi[u];
kpeter@881
  1175
            int last_out = _first_out[u+1];
kpeter@881
  1176
            for (int a = _first_out[u]; a != last_out; ++a) {
kpeter@881
  1177
              if (_res_cap[a] == 0) continue;
kpeter@881
  1178
              curr = _cost[a] + pu - pi[_target[a]];
kpeter@881
  1179
              if (-curr > epsilon) epsilon = -curr;
kpeter@881
  1180
            }
kpeter@881
  1181
          }
kpeter@881
  1182
        } else {
kpeter@1179
  1183
          typedef HowardMmc<StaticDigraph, CostArcMap> HwMmc;
kpeter@1179
  1184
          typedef HartmannOrlinMmc<StaticDigraph, CostArcMap> HoMmc;
kpeter@881
  1185
          typedef typename BellmanFord<StaticDigraph, CostArcMap>
kpeter@881
  1186
            ::template SetDistMap<CostNodeMap>::Create BF;
kpeter@881
  1187
kpeter@881
  1188
          // Set epsilon to the minimum cycle mean
kpeter@1179
  1189
          Cost cycle_cost = 0;
kpeter@1179
  1190
          int cycle_size = 1;
kpeter@881
  1191
          buildResidualNetwork();
kpeter@1179
  1192
          HwMmc hw_mmc(_sgr, _cost_map);
kpeter@1179
  1193
          if (hw_mmc.findCycleMean(hw_iter_limit) == HwMmc::ITERATION_LIMIT) {
kpeter@1179
  1194
            // Howard's algorithm reached the iteration limit, start a
kpeter@1179
  1195
            // strongly polynomial algorithm instead
kpeter@1179
  1196
            HoMmc ho_mmc(_sgr, _cost_map);
kpeter@1179
  1197
            ho_mmc.findCycleMean();
kpeter@1179
  1198
            epsilon = -ho_mmc.cycleMean();
kpeter@1179
  1199
            cycle_cost = ho_mmc.cycleCost();
kpeter@1179
  1200
            cycle_size = ho_mmc.cycleSize();
kpeter@1179
  1201
          } else {
kpeter@1179
  1202
            // Set epsilon
kpeter@1179
  1203
            epsilon = -hw_mmc.cycleMean();
kpeter@1179
  1204
            cycle_cost = hw_mmc.cycleCost();
kpeter@1179
  1205
            cycle_size = hw_mmc.cycleSize();
kpeter@1179
  1206
          }
alpar@956
  1207
kpeter@881
  1208
          // Compute feasible potentials for the current epsilon
kpeter@881
  1209
          for (int i = 0; i != int(_cost_vec.size()); ++i) {
kpeter@881
  1210
            _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
kpeter@881
  1211
          }
kpeter@881
  1212
          BF bf(_sgr, _cost_map);
kpeter@881
  1213
          bf.distMap(_pi_map);
kpeter@881
  1214
          bf.init(0);
kpeter@881
  1215
          bf.start();
kpeter@881
  1216
          for (int u = 0; u != _res_node_num; ++u) {
kpeter@881
  1217
            pi[u] = static_cast<double>(_pi[u]) / cycle_size;
kpeter@881
  1218
          }
alpar@956
  1219
kpeter@881
  1220
          iter = limit;
kpeter@880
  1221
        }
kpeter@880
  1222
      }
kpeter@880
  1223
    }
kpeter@880
  1224
kpeter@880
  1225
  }; //class CycleCanceling
kpeter@880
  1226
kpeter@880
  1227
  ///@}
kpeter@880
  1228
kpeter@880
  1229
} //namespace lemon
kpeter@880
  1230
kpeter@880
  1231
#endif //LEMON_CYCLE_CANCELING_H