doc/groups.dox
author Peter Kovacs <kpeter@inf.elte.hu>
Fri, 09 Jan 2009 12:54:27 +0100
changeset 474 fbd6e04acf44
parent 434 ad483acf1654
child 478 5a1e9fdcfd3a
permissions -rw-r--r--
Various doc improvements for graph adaptors (#67)

- Add notes about modifying the adapted graphs through adaptors
if it is possible.
- Add notes about the possible conversions between the Node, Arc and
Edge types of the adapted graphs and the adaptors.
- Hide the default values for template parameters (describe them
in the doc instead).
- More precise docs for template parameters.
- More precise docs for member functions.
- Add docs for important public typedefs.
- Unify the docs of the adaptors.
- Add \relates commands for the creator functions.
- Fixes and improvements the module documentation.
alpar@209
     1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
alpar@40
     2
 *
alpar@209
     3
 * This file is a part of LEMON, a generic C++ optimization library.
alpar@40
     4
 *
alpar@40
     5
 * Copyright (C) 2003-2008
alpar@40
     6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@40
     7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@40
     8
 *
alpar@40
     9
 * Permission to use, modify and distribute this software is granted
alpar@40
    10
 * provided that this copyright notice appears in all copies. For
alpar@40
    11
 * precise terms see the accompanying LICENSE file.
alpar@40
    12
 *
alpar@40
    13
 * This software is provided "AS IS" with no warranty of any kind,
alpar@40
    14
 * express or implied, and with no claim as to its suitability for any
alpar@40
    15
 * purpose.
alpar@40
    16
 *
alpar@40
    17
 */
alpar@40
    18
kpeter@422
    19
namespace lemon {
kpeter@422
    20
alpar@40
    21
/**
alpar@40
    22
@defgroup datas Data Structures
kpeter@50
    23
This group describes the several data structures implemented in LEMON.
alpar@40
    24
*/
alpar@40
    25
alpar@40
    26
/**
alpar@40
    27
@defgroup graphs Graph Structures
alpar@40
    28
@ingroup datas
alpar@40
    29
\brief Graph structures implemented in LEMON.
alpar@40
    30
alpar@209
    31
The implementation of combinatorial algorithms heavily relies on
alpar@209
    32
efficient graph implementations. LEMON offers data structures which are
alpar@209
    33
planned to be easily used in an experimental phase of implementation studies,
alpar@209
    34
and thereafter the program code can be made efficient by small modifications.
alpar@40
    35
alpar@40
    36
The most efficient implementation of diverse applications require the
alpar@40
    37
usage of different physical graph implementations. These differences
alpar@40
    38
appear in the size of graph we require to handle, memory or time usage
alpar@40
    39
limitations or in the set of operations through which the graph can be
alpar@40
    40
accessed.  LEMON provides several physical graph structures to meet
alpar@40
    41
the diverging requirements of the possible users.  In order to save on
alpar@40
    42
running time or on memory usage, some structures may fail to provide
kpeter@83
    43
some graph features like arc/edge or node deletion.
alpar@40
    44
alpar@209
    45
Alteration of standard containers need a very limited number of
alpar@209
    46
operations, these together satisfy the everyday requirements.
alpar@209
    47
In the case of graph structures, different operations are needed which do
alpar@209
    48
not alter the physical graph, but gives another view. If some nodes or
kpeter@83
    49
arcs have to be hidden or the reverse oriented graph have to be used, then
alpar@209
    50
this is the case. It also may happen that in a flow implementation
alpar@209
    51
the residual graph can be accessed by another algorithm, or a node-set
alpar@209
    52
is to be shrunk for another algorithm.
alpar@209
    53
LEMON also provides a variety of graphs for these requirements called
alpar@209
    54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
alpar@209
    55
in conjunction with other graph representations.
alpar@40
    56
alpar@40
    57
You are free to use the graph structure that fit your requirements
alpar@40
    58
the best, most graph algorithms and auxiliary data structures can be used
kpeter@314
    59
with any graph structure.
kpeter@314
    60
kpeter@314
    61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
alpar@40
    62
*/
alpar@40
    63
alpar@40
    64
/**
kpeter@474
    65
@defgroup graph_adaptors Adaptor Classes for Graphs
deba@432
    66
@ingroup graphs
kpeter@474
    67
\brief Adaptor classes for digraphs and graphs
kpeter@474
    68
kpeter@474
    69
This group contains several useful adaptor classes for digraphs and graphs.
deba@432
    70
deba@432
    71
The main parts of LEMON are the different graph structures, generic
kpeter@474
    72
graph algorithms, graph concepts, which couple them, and graph
deba@432
    73
adaptors. While the previous notions are more or less clear, the
deba@432
    74
latter one needs further explanation. Graph adaptors are graph classes
deba@432
    75
which serve for considering graph structures in different ways.
deba@432
    76
deba@432
    77
A short example makes this much clearer.  Suppose that we have an
kpeter@474
    78
instance \c g of a directed graph type, say ListDigraph and an algorithm
deba@432
    79
\code
deba@432
    80
template <typename Digraph>
deba@432
    81
int algorithm(const Digraph&);
deba@432
    82
\endcode
deba@432
    83
is needed to run on the reverse oriented graph.  It may be expensive
deba@432
    84
(in time or in memory usage) to copy \c g with the reversed
deba@432
    85
arcs.  In this case, an adaptor class is used, which (according
kpeter@474
    86
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
kpeter@474
    87
The adaptor uses the original digraph structure and digraph operations when
kpeter@474
    88
methods of the reversed oriented graph are called.  This means that the adaptor
kpeter@474
    89
have minor memory usage, and do not perform sophisticated algorithmic
deba@432
    90
actions.  The purpose of it is to give a tool for the cases when a
deba@432
    91
graph have to be used in a specific alteration.  If this alteration is
kpeter@474
    92
obtained by a usual construction like filtering the node or the arc set or
deba@432
    93
considering a new orientation, then an adaptor is worthwhile to use.
deba@432
    94
To come back to the reverse oriented graph, in this situation
deba@432
    95
\code
deba@432
    96
template<typename Digraph> class ReverseDigraph;
deba@432
    97
\endcode
deba@432
    98
template class can be used. The code looks as follows
deba@432
    99
\code
deba@432
   100
ListDigraph g;
kpeter@474
   101
ReverseDigraph<ListDigraph> rg(g);
deba@432
   102
int result = algorithm(rg);
deba@432
   103
\endcode
kpeter@474
   104
During running the algorithm, the original digraph \c g is untouched.
kpeter@474
   105
This techniques give rise to an elegant code, and based on stable
deba@432
   106
graph adaptors, complex algorithms can be implemented easily.
deba@432
   107
kpeter@474
   108
In flow, circulation and matching problems, the residual
deba@432
   109
graph is of particular importance. Combining an adaptor implementing
kpeter@474
   110
this with shortest path algorithms or minimum mean cycle algorithms,
deba@432
   111
a range of weighted and cardinality optimization algorithms can be
deba@432
   112
obtained. For other examples, the interested user is referred to the
deba@432
   113
detailed documentation of particular adaptors.
deba@432
   114
deba@432
   115
The behavior of graph adaptors can be very different. Some of them keep
deba@432
   116
capabilities of the original graph while in other cases this would be
kpeter@474
   117
meaningless. This means that the concepts that they meet depend
kpeter@474
   118
on the graph adaptor, and the wrapped graph.
kpeter@474
   119
For example, if an arc of a reversed digraph is deleted, this is carried
kpeter@474
   120
out by deleting the corresponding arc of the original digraph, thus the
kpeter@474
   121
adaptor modifies the original digraph.
kpeter@474
   122
However in case of a residual digraph, this operation has no sense.
deba@432
   123
deba@432
   124
Let us stand one more example here to simplify your work.
kpeter@474
   125
ReverseDigraph has constructor
deba@432
   126
\code
deba@432
   127
ReverseDigraph(Digraph& digraph);
deba@432
   128
\endcode
kpeter@474
   129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
deba@432
   130
reference to a graph is given, then it have to be instantiated with
kpeter@474
   131
<tt>Digraph=const %ListDigraph</tt>.
deba@432
   132
\code
deba@432
   133
int algorithm1(const ListDigraph& g) {
kpeter@474
   134
  ReverseDigraph<const ListDigraph> rg(g);
deba@432
   135
  return algorithm2(rg);
deba@432
   136
}
deba@432
   137
\endcode
deba@432
   138
*/
deba@432
   139
deba@432
   140
/**
kpeter@50
   141
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
alpar@40
   142
@ingroup graphs
alpar@40
   143
\brief Graph types between real graphs and graph adaptors.
alpar@40
   144
kpeter@50
   145
This group describes some graph types between real graphs and graph adaptors.
alpar@209
   146
These classes wrap graphs to give new functionality as the adaptors do it.
kpeter@50
   147
On the other hand they are not light-weight structures as the adaptors.
alpar@40
   148
*/
alpar@40
   149
alpar@40
   150
/**
alpar@209
   151
@defgroup maps Maps
alpar@40
   152
@ingroup datas
kpeter@50
   153
\brief Map structures implemented in LEMON.
alpar@40
   154
kpeter@50
   155
This group describes the map structures implemented in LEMON.
kpeter@50
   156
kpeter@314
   157
LEMON provides several special purpose maps and map adaptors that e.g. combine
alpar@40
   158
new maps from existing ones.
kpeter@314
   159
kpeter@314
   160
<b>See also:</b> \ref map_concepts "Map Concepts".
alpar@40
   161
*/
alpar@40
   162
alpar@40
   163
/**
alpar@209
   164
@defgroup graph_maps Graph Maps
alpar@40
   165
@ingroup maps
kpeter@83
   166
\brief Special graph-related maps.
alpar@40
   167
kpeter@50
   168
This group describes maps that are specifically designed to assign
kpeter@422
   169
values to the nodes and arcs/edges of graphs.
kpeter@422
   170
kpeter@422
   171
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
kpeter@422
   172
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
alpar@40
   173
*/
alpar@40
   174
alpar@40
   175
/**
alpar@40
   176
\defgroup map_adaptors Map Adaptors
alpar@40
   177
\ingroup maps
alpar@40
   178
\brief Tools to create new maps from existing ones
alpar@40
   179
kpeter@50
   180
This group describes map adaptors that are used to create "implicit"
kpeter@50
   181
maps from other maps.
alpar@40
   182
kpeter@422
   183
Most of them are \ref concepts::ReadMap "read-only maps".
kpeter@83
   184
They can make arithmetic and logical operations between one or two maps
kpeter@83
   185
(negation, shifting, addition, multiplication, logical 'and', 'or',
kpeter@83
   186
'not' etc.) or e.g. convert a map to another one of different Value type.
alpar@40
   187
kpeter@50
   188
The typical usage of this classes is passing implicit maps to
alpar@40
   189
algorithms.  If a function type algorithm is called then the function
alpar@40
   190
type map adaptors can be used comfortable. For example let's see the
kpeter@314
   191
usage of map adaptors with the \c graphToEps() function.
alpar@40
   192
\code
alpar@40
   193
  Color nodeColor(int deg) {
alpar@40
   194
    if (deg >= 2) {
alpar@40
   195
      return Color(0.5, 0.0, 0.5);
alpar@40
   196
    } else if (deg == 1) {
alpar@40
   197
      return Color(1.0, 0.5, 1.0);
alpar@40
   198
    } else {
alpar@40
   199
      return Color(0.0, 0.0, 0.0);
alpar@40
   200
    }
alpar@40
   201
  }
alpar@209
   202
kpeter@83
   203
  Digraph::NodeMap<int> degree_map(graph);
alpar@209
   204
kpeter@314
   205
  graphToEps(graph, "graph.eps")
alpar@40
   206
    .coords(coords).scaleToA4().undirected()
kpeter@83
   207
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
alpar@40
   208
    .run();
alpar@209
   209
\endcode
kpeter@83
   210
The \c functorToMap() function makes an \c int to \c Color map from the
kpeter@314
   211
\c nodeColor() function. The \c composeMap() compose the \c degree_map
kpeter@83
   212
and the previously created map. The composed map is a proper function to
kpeter@83
   213
get the color of each node.
alpar@40
   214
alpar@40
   215
The usage with class type algorithms is little bit harder. In this
alpar@40
   216
case the function type map adaptors can not be used, because the
kpeter@50
   217
function map adaptors give back temporary objects.
alpar@40
   218
\code
kpeter@83
   219
  Digraph graph;
kpeter@83
   220
kpeter@83
   221
  typedef Digraph::ArcMap<double> DoubleArcMap;
kpeter@83
   222
  DoubleArcMap length(graph);
kpeter@83
   223
  DoubleArcMap speed(graph);
kpeter@83
   224
kpeter@83
   225
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
alpar@40
   226
  TimeMap time(length, speed);
alpar@209
   227
kpeter@83
   228
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
alpar@40
   229
  dijkstra.run(source, target);
alpar@40
   230
\endcode
kpeter@83
   231
We have a length map and a maximum speed map on the arcs of a digraph.
kpeter@83
   232
The minimum time to pass the arc can be calculated as the division of
kpeter@83
   233
the two maps which can be done implicitly with the \c DivMap template
alpar@40
   234
class. We use the implicit minimum time map as the length map of the
alpar@40
   235
\c Dijkstra algorithm.
alpar@40
   236
*/
alpar@40
   237
alpar@40
   238
/**
alpar@209
   239
@defgroup matrices Matrices
alpar@40
   240
@ingroup datas
kpeter@50
   241
\brief Two dimensional data storages implemented in LEMON.
alpar@40
   242
kpeter@50
   243
This group describes two dimensional data storages implemented in LEMON.
alpar@40
   244
*/
alpar@40
   245
alpar@40
   246
/**
alpar@40
   247
@defgroup paths Path Structures
alpar@40
   248
@ingroup datas
kpeter@318
   249
\brief %Path structures implemented in LEMON.
alpar@40
   250
kpeter@50
   251
This group describes the path structures implemented in LEMON.
alpar@40
   252
kpeter@50
   253
LEMON provides flexible data structures to work with paths.
kpeter@50
   254
All of them have similar interfaces and they can be copied easily with
kpeter@50
   255
assignment operators and copy constructors. This makes it easy and
alpar@40
   256
efficient to have e.g. the Dijkstra algorithm to store its result in
alpar@40
   257
any kind of path structure.
alpar@40
   258
alpar@40
   259
\sa lemon::concepts::Path
alpar@40
   260
*/
alpar@40
   261
alpar@40
   262
/**
alpar@40
   263
@defgroup auxdat Auxiliary Data Structures
alpar@40
   264
@ingroup datas
kpeter@50
   265
\brief Auxiliary data structures implemented in LEMON.
alpar@40
   266
kpeter@50
   267
This group describes some data structures implemented in LEMON in
alpar@40
   268
order to make it easier to implement combinatorial algorithms.
alpar@40
   269
*/
alpar@40
   270
alpar@40
   271
/**
alpar@40
   272
@defgroup algs Algorithms
alpar@40
   273
\brief This group describes the several algorithms
alpar@40
   274
implemented in LEMON.
alpar@40
   275
alpar@40
   276
This group describes the several algorithms
alpar@40
   277
implemented in LEMON.
alpar@40
   278
*/
alpar@40
   279
alpar@40
   280
/**
alpar@40
   281
@defgroup search Graph Search
alpar@40
   282
@ingroup algs
kpeter@50
   283
\brief Common graph search algorithms.
alpar@40
   284
kpeter@422
   285
This group describes the common graph search algorithms, namely
kpeter@422
   286
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
alpar@40
   287
*/
alpar@40
   288
alpar@40
   289
/**
kpeter@314
   290
@defgroup shortest_path Shortest Path Algorithms
alpar@40
   291
@ingroup algs
kpeter@50
   292
\brief Algorithms for finding shortest paths.
alpar@40
   293
kpeter@422
   294
This group describes the algorithms for finding shortest paths in digraphs.
kpeter@422
   295
kpeter@422
   296
 - \ref Dijkstra algorithm for finding shortest paths from a source node
kpeter@422
   297
   when all arc lengths are non-negative.
kpeter@422
   298
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
kpeter@422
   299
   from a source node when arc lenghts can be either positive or negative,
kpeter@422
   300
   but the digraph should not contain directed cycles with negative total
kpeter@422
   301
   length.
kpeter@422
   302
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
kpeter@422
   303
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
kpeter@422
   304
   lenghts can be either positive or negative, but the digraph should
kpeter@422
   305
   not contain directed cycles with negative total length.
kpeter@422
   306
 - \ref Suurballe A successive shortest path algorithm for finding
kpeter@422
   307
   arc-disjoint paths between two nodes having minimum total length.
alpar@40
   308
*/
alpar@40
   309
alpar@209
   310
/**
kpeter@314
   311
@defgroup max_flow Maximum Flow Algorithms
alpar@209
   312
@ingroup algs
kpeter@50
   313
\brief Algorithms for finding maximum flows.
alpar@40
   314
alpar@40
   315
This group describes the algorithms for finding maximum flows and
alpar@40
   316
feasible circulations.
alpar@40
   317
kpeter@422
   318
The \e maximum \e flow \e problem is to find a flow of maximum value between
kpeter@422
   319
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
kpeter@422
   320
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and
kpeter@422
   321
\f$s, t \in V\f$ source and target nodes.
kpeter@422
   322
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the
kpeter@422
   323
following optimization problem.
alpar@40
   324
kpeter@422
   325
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f]
kpeter@422
   326
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a)
kpeter@422
   327
    \qquad \forall v\in V\setminus\{s,t\} \f]
kpeter@422
   328
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f]
alpar@40
   329
kpeter@50
   330
LEMON contains several algorithms for solving maximum flow problems:
kpeter@422
   331
- \ref EdmondsKarp Edmonds-Karp algorithm.
kpeter@422
   332
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
kpeter@422
   333
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
kpeter@422
   334
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
alpar@40
   335
kpeter@422
   336
In most cases the \ref Preflow "Preflow" algorithm provides the
kpeter@422
   337
fastest method for computing a maximum flow. All implementations
kpeter@422
   338
provides functions to also query the minimum cut, which is the dual
kpeter@422
   339
problem of the maximum flow.
alpar@40
   340
*/
alpar@40
   341
alpar@40
   342
/**
kpeter@314
   343
@defgroup min_cost_flow Minimum Cost Flow Algorithms
alpar@40
   344
@ingroup algs
alpar@40
   345
kpeter@50
   346
\brief Algorithms for finding minimum cost flows and circulations.
alpar@40
   347
alpar@40
   348
This group describes the algorithms for finding minimum cost flows and
alpar@209
   349
circulations.
kpeter@422
   350
kpeter@422
   351
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
kpeter@422
   352
minimum total cost from a set of supply nodes to a set of demand nodes
kpeter@422
   353
in a network with capacity constraints and arc costs.
kpeter@422
   354
Formally, let \f$G=(V,A)\f$ be a digraph,
kpeter@422
   355
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
kpeter@422
   356
upper bounds for the flow values on the arcs,
kpeter@422
   357
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
kpeter@422
   358
on the arcs, and
kpeter@422
   359
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values
kpeter@422
   360
of the nodes.
kpeter@422
   361
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of
kpeter@422
   362
the following optimization problem.
kpeter@422
   363
kpeter@422
   364
\f[ \min\sum_{a\in A} f(a) cost(a) \f]
kpeter@422
   365
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) =
kpeter@422
   366
    supply(v) \qquad \forall v\in V \f]
kpeter@422
   367
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f]
kpeter@422
   368
kpeter@422
   369
LEMON contains several algorithms for solving minimum cost flow problems:
kpeter@422
   370
 - \ref CycleCanceling Cycle-canceling algorithms.
kpeter@422
   371
 - \ref CapacityScaling Successive shortest path algorithm with optional
kpeter@422
   372
   capacity scaling.
kpeter@422
   373
 - \ref CostScaling Push-relabel and augment-relabel algorithms based on
kpeter@422
   374
   cost scaling.
kpeter@422
   375
 - \ref NetworkSimplex Primal network simplex algorithm with various
kpeter@422
   376
   pivot strategies.
alpar@40
   377
*/
alpar@40
   378
alpar@40
   379
/**
kpeter@314
   380
@defgroup min_cut Minimum Cut Algorithms
alpar@209
   381
@ingroup algs
alpar@40
   382
kpeter@50
   383
\brief Algorithms for finding minimum cut in graphs.
alpar@40
   384
alpar@40
   385
This group describes the algorithms for finding minimum cut in graphs.
alpar@40
   386
kpeter@422
   387
The \e minimum \e cut \e problem is to find a non-empty and non-complete
kpeter@422
   388
\f$X\f$ subset of the nodes with minimum overall capacity on
kpeter@422
   389
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
kpeter@422
   390
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
kpeter@50
   391
cut is the \f$X\f$ solution of the next optimization problem:
alpar@40
   392
alpar@210
   393
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
kpeter@422
   394
    \sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
alpar@40
   395
kpeter@50
   396
LEMON contains several algorithms related to minimum cut problems:
alpar@40
   397
kpeter@422
   398
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
kpeter@422
   399
  in directed graphs.
kpeter@422
   400
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
kpeter@422
   401
  calculating minimum cut in undirected graphs.
kpeter@422
   402
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating
kpeter@422
   403
  all-pairs minimum cut in undirected graphs.
alpar@40
   404
alpar@40
   405
If you want to find minimum cut just between two distinict nodes,
kpeter@422
   406
see the \ref max_flow "maximum flow problem".
alpar@40
   407
*/
alpar@40
   408
alpar@40
   409
/**
kpeter@314
   410
@defgroup graph_prop Connectivity and Other Graph Properties
alpar@40
   411
@ingroup algs
kpeter@50
   412
\brief Algorithms for discovering the graph properties
alpar@40
   413
kpeter@50
   414
This group describes the algorithms for discovering the graph properties
kpeter@50
   415
like connectivity, bipartiteness, euler property, simplicity etc.
alpar@40
   416
alpar@40
   417
\image html edge_biconnected_components.png
alpar@40
   418
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
alpar@40
   419
*/
alpar@40
   420
alpar@40
   421
/**
kpeter@314
   422
@defgroup planar Planarity Embedding and Drawing
alpar@40
   423
@ingroup algs
kpeter@50
   424
\brief Algorithms for planarity checking, embedding and drawing
alpar@40
   425
alpar@210
   426
This group describes the algorithms for planarity checking,
alpar@210
   427
embedding and drawing.
alpar@40
   428
alpar@40
   429
\image html planar.png
alpar@40
   430
\image latex planar.eps "Plane graph" width=\textwidth
alpar@40
   431
*/
alpar@40
   432
alpar@40
   433
/**
kpeter@314
   434
@defgroup matching Matching Algorithms
alpar@40
   435
@ingroup algs
kpeter@50
   436
\brief Algorithms for finding matchings in graphs and bipartite graphs.
alpar@40
   437
kpeter@50
   438
This group contains algorithm objects and functions to calculate
alpar@40
   439
matchings in graphs and bipartite graphs. The general matching problem is
kpeter@83
   440
finding a subset of the arcs which does not shares common endpoints.
alpar@209
   441
alpar@40
   442
There are several different algorithms for calculate matchings in
alpar@40
   443
graphs.  The matching problems in bipartite graphs are generally
alpar@40
   444
easier than in general graphs. The goal of the matching optimization
kpeter@422
   445
can be finding maximum cardinality, maximum weight or minimum cost
alpar@40
   446
matching. The search can be constrained to find perfect or
alpar@40
   447
maximum cardinality matching.
alpar@40
   448
kpeter@422
   449
The matching algorithms implemented in LEMON:
kpeter@422
   450
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
kpeter@422
   451
  for calculating maximum cardinality matching in bipartite graphs.
kpeter@422
   452
- \ref PrBipartiteMatching Push-relabel algorithm
kpeter@422
   453
  for calculating maximum cardinality matching in bipartite graphs.
kpeter@422
   454
- \ref MaxWeightedBipartiteMatching
kpeter@422
   455
  Successive shortest path algorithm for calculating maximum weighted
kpeter@422
   456
  matching and maximum weighted bipartite matching in bipartite graphs.
kpeter@422
   457
- \ref MinCostMaxBipartiteMatching
kpeter@422
   458
  Successive shortest path algorithm for calculating minimum cost maximum
kpeter@422
   459
  matching in bipartite graphs.
kpeter@422
   460
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
kpeter@422
   461
  maximum cardinality matching in general graphs.
kpeter@422
   462
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
kpeter@422
   463
  maximum weighted matching in general graphs.
kpeter@422
   464
- \ref MaxWeightedPerfectMatching
kpeter@422
   465
  Edmond's blossom shrinking algorithm for calculating maximum weighted
kpeter@422
   466
  perfect matching in general graphs.
alpar@40
   467
alpar@40
   468
\image html bipartite_matching.png
alpar@40
   469
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
alpar@40
   470
*/
alpar@40
   471
alpar@40
   472
/**
kpeter@314
   473
@defgroup spantree Minimum Spanning Tree Algorithms
alpar@40
   474
@ingroup algs
kpeter@50
   475
\brief Algorithms for finding a minimum cost spanning tree in a graph.
alpar@40
   476
kpeter@50
   477
This group describes the algorithms for finding a minimum cost spanning
kpeter@422
   478
tree in a graph.
alpar@40
   479
*/
alpar@40
   480
alpar@40
   481
/**
kpeter@314
   482
@defgroup auxalg Auxiliary Algorithms
alpar@40
   483
@ingroup algs
kpeter@50
   484
\brief Auxiliary algorithms implemented in LEMON.
alpar@40
   485
kpeter@50
   486
This group describes some algorithms implemented in LEMON
kpeter@50
   487
in order to make it easier to implement complex algorithms.
alpar@40
   488
*/
alpar@40
   489
alpar@40
   490
/**
kpeter@314
   491
@defgroup approx Approximation Algorithms
kpeter@314
   492
@ingroup algs
kpeter@50
   493
\brief Approximation algorithms.
alpar@40
   494
kpeter@50
   495
This group describes the approximation and heuristic algorithms
kpeter@50
   496
implemented in LEMON.
alpar@40
   497
*/
alpar@40
   498
alpar@40
   499
/**
alpar@40
   500
@defgroup gen_opt_group General Optimization Tools
alpar@40
   501
\brief This group describes some general optimization frameworks
alpar@40
   502
implemented in LEMON.
alpar@40
   503
alpar@40
   504
This group describes some general optimization frameworks
alpar@40
   505
implemented in LEMON.
alpar@40
   506
*/
alpar@40
   507
alpar@40
   508
/**
kpeter@314
   509
@defgroup lp_group Lp and Mip Solvers
alpar@40
   510
@ingroup gen_opt_group
alpar@40
   511
\brief Lp and Mip solver interfaces for LEMON.
alpar@40
   512
alpar@40
   513
This group describes Lp and Mip solver interfaces for LEMON. The
alpar@40
   514
various LP solvers could be used in the same manner with this
alpar@40
   515
interface.
alpar@40
   516
*/
alpar@40
   517
alpar@209
   518
/**
kpeter@314
   519
@defgroup lp_utils Tools for Lp and Mip Solvers
alpar@40
   520
@ingroup lp_group
kpeter@50
   521
\brief Helper tools to the Lp and Mip solvers.
alpar@40
   522
alpar@40
   523
This group adds some helper tools to general optimization framework
alpar@40
   524
implemented in LEMON.
alpar@40
   525
*/
alpar@40
   526
alpar@40
   527
/**
alpar@40
   528
@defgroup metah Metaheuristics
alpar@40
   529
@ingroup gen_opt_group
alpar@40
   530
\brief Metaheuristics for LEMON library.
alpar@40
   531
kpeter@50
   532
This group describes some metaheuristic optimization tools.
alpar@40
   533
*/
alpar@40
   534
alpar@40
   535
/**
alpar@209
   536
@defgroup utils Tools and Utilities
kpeter@50
   537
\brief Tools and utilities for programming in LEMON
alpar@40
   538
kpeter@50
   539
Tools and utilities for programming in LEMON.
alpar@40
   540
*/
alpar@40
   541
alpar@40
   542
/**
alpar@40
   543
@defgroup gutils Basic Graph Utilities
alpar@40
   544
@ingroup utils
kpeter@50
   545
\brief Simple basic graph utilities.
alpar@40
   546
alpar@40
   547
This group describes some simple basic graph utilities.
alpar@40
   548
*/
alpar@40
   549
alpar@40
   550
/**
alpar@40
   551
@defgroup misc Miscellaneous Tools
alpar@40
   552
@ingroup utils
kpeter@50
   553
\brief Tools for development, debugging and testing.
kpeter@50
   554
kpeter@50
   555
This group describes several useful tools for development,
alpar@40
   556
debugging and testing.
alpar@40
   557
*/
alpar@40
   558
alpar@40
   559
/**
kpeter@314
   560
@defgroup timecount Time Measuring and Counting
alpar@40
   561
@ingroup misc
kpeter@50
   562
\brief Simple tools for measuring the performance of algorithms.
kpeter@50
   563
kpeter@50
   564
This group describes simple tools for measuring the performance
alpar@40
   565
of algorithms.
alpar@40
   566
*/
alpar@40
   567
alpar@40
   568
/**
alpar@40
   569
@defgroup exceptions Exceptions
alpar@40
   570
@ingroup utils
kpeter@50
   571
\brief Exceptions defined in LEMON.
kpeter@50
   572
kpeter@50
   573
This group describes the exceptions defined in LEMON.
alpar@40
   574
*/
alpar@40
   575
alpar@40
   576
/**
alpar@40
   577
@defgroup io_group Input-Output
kpeter@50
   578
\brief Graph Input-Output methods
alpar@40
   579
alpar@209
   580
This group describes the tools for importing and exporting graphs
kpeter@314
   581
and graph related data. Now it supports the \ref lgf-format
kpeter@314
   582
"LEMON Graph Format", the \c DIMACS format and the encapsulated
kpeter@314
   583
postscript (EPS) format.
alpar@40
   584
*/
alpar@40
   585
alpar@40
   586
/**
kpeter@363
   587
@defgroup lemon_io LEMON Graph Format
alpar@40
   588
@ingroup io_group
kpeter@314
   589
\brief Reading and writing LEMON Graph Format.
alpar@40
   590
alpar@210
   591
This group describes methods for reading and writing
ladanyi@236
   592
\ref lgf-format "LEMON Graph Format".
alpar@40
   593
*/
alpar@40
   594
alpar@40
   595
/**
kpeter@314
   596
@defgroup eps_io Postscript Exporting
alpar@40
   597
@ingroup io_group
alpar@40
   598
\brief General \c EPS drawer and graph exporter
alpar@40
   599
kpeter@50
   600
This group describes general \c EPS drawing methods and special
alpar@209
   601
graph exporting tools.
alpar@40
   602
*/
alpar@40
   603
alpar@40
   604
/**
kpeter@403
   605
@defgroup dimacs_group DIMACS format
kpeter@403
   606
@ingroup io_group
kpeter@403
   607
\brief Read and write files in DIMACS format
kpeter@403
   608
kpeter@403
   609
Tools to read a digraph from or write it to a file in DIMACS format data.
kpeter@403
   610
*/
kpeter@403
   611
kpeter@403
   612
/**
kpeter@363
   613
@defgroup nauty_group NAUTY Format
kpeter@363
   614
@ingroup io_group
kpeter@363
   615
\brief Read \e Nauty format
kpeter@403
   616
kpeter@363
   617
Tool to read graphs from \e Nauty format data.
kpeter@363
   618
*/
kpeter@363
   619
kpeter@363
   620
/**
alpar@40
   621
@defgroup concept Concepts
alpar@40
   622
\brief Skeleton classes and concept checking classes
alpar@40
   623
alpar@40
   624
This group describes the data/algorithm skeletons and concept checking
alpar@40
   625
classes implemented in LEMON.
alpar@40
   626
alpar@40
   627
The purpose of the classes in this group is fourfold.
alpar@209
   628
kpeter@318
   629
- These classes contain the documentations of the %concepts. In order
alpar@40
   630
  to avoid document multiplications, an implementation of a concept
alpar@40
   631
  simply refers to the corresponding concept class.
alpar@40
   632
alpar@40
   633
- These classes declare every functions, <tt>typedef</tt>s etc. an
kpeter@318
   634
  implementation of the %concepts should provide, however completely
alpar@40
   635
  without implementations and real data structures behind the
alpar@40
   636
  interface. On the other hand they should provide nothing else. All
alpar@40
   637
  the algorithms working on a data structure meeting a certain concept
alpar@40
   638
  should compile with these classes. (Though it will not run properly,
alpar@40
   639
  of course.) In this way it is easily to check if an algorithm
alpar@40
   640
  doesn't use any extra feature of a certain implementation.
alpar@40
   641
alpar@40
   642
- The concept descriptor classes also provide a <em>checker class</em>
kpeter@50
   643
  that makes it possible to check whether a certain implementation of a
alpar@40
   644
  concept indeed provides all the required features.
alpar@40
   645
alpar@40
   646
- Finally, They can serve as a skeleton of a new implementation of a concept.
alpar@40
   647
*/
alpar@40
   648
alpar@40
   649
/**
alpar@40
   650
@defgroup graph_concepts Graph Structure Concepts
alpar@40
   651
@ingroup concept
alpar@40
   652
\brief Skeleton and concept checking classes for graph structures
alpar@40
   653
kpeter@50
   654
This group describes the skeletons and concept checking classes of LEMON's
alpar@40
   655
graph structures and helper classes used to implement these.
alpar@40
   656
*/
alpar@40
   657
kpeter@314
   658
/**
kpeter@314
   659
@defgroup map_concepts Map Concepts
kpeter@314
   660
@ingroup concept
kpeter@314
   661
\brief Skeleton and concept checking classes for maps
kpeter@314
   662
kpeter@314
   663
This group describes the skeletons and concept checking classes of maps.
alpar@40
   664
*/
alpar@40
   665
alpar@40
   666
/**
alpar@40
   667
\anchor demoprograms
alpar@40
   668
kpeter@422
   669
@defgroup demos Demo Programs
alpar@40
   670
alpar@40
   671
Some demo programs are listed here. Their full source codes can be found in
alpar@40
   672
the \c demo subdirectory of the source tree.
alpar@40
   673
alpar@41
   674
It order to compile them, use <tt>--enable-demo</tt> configure option when
alpar@41
   675
build the library.
alpar@40
   676
*/
alpar@40
   677
alpar@40
   678
/**
kpeter@422
   679
@defgroup tools Standalone Utility Applications
alpar@40
   680
alpar@209
   681
Some utility applications are listed here.
alpar@40
   682
alpar@40
   683
The standard compilation procedure (<tt>./configure;make</tt>) will compile
alpar@209
   684
them, as well.
alpar@40
   685
*/
alpar@40
   686
kpeter@422
   687
}