lemon/cplex.cc
changeset 484 08d495d48089
child 485 9b082b3fb33f
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/cplex.cc	Mon Jan 12 12:26:01 2009 +0000
     1.3 @@ -0,0 +1,925 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#include <iostream>
    1.23 +#include <vector>
    1.24 +#include <cstring>
    1.25 +
    1.26 +#include <lemon/cplex.h>
    1.27 +
    1.28 +extern "C" {
    1.29 +#include <ilcplex/cplex.h>
    1.30 +}
    1.31 +
    1.32 +
    1.33 +///\file
    1.34 +///\brief Implementation of the LEMON-CPLEX lp solver interface.
    1.35 +namespace lemon {
    1.36 +
    1.37 +  CplexEnv::LicenseError::LicenseError(int status) {
    1.38 +    if (!CPXgeterrorstring(0, status, _message)) {
    1.39 +      std::strcpy(_message, "Cplex unknown error");
    1.40 +    }
    1.41 +  }
    1.42 +
    1.43 +  CplexEnv::CplexEnv() {
    1.44 +    int status;
    1.45 +    _cnt = new int;
    1.46 +    _env = CPXopenCPLEX(&status);
    1.47 +    if (_env == 0) {
    1.48 +      delete _cnt;
    1.49 +      _cnt = 0;
    1.50 +      throw LicenseError(status);
    1.51 +    }
    1.52 +  }
    1.53 +
    1.54 +  CplexEnv::CplexEnv(const CplexEnv& other) {
    1.55 +    _env = other._env;
    1.56 +    _cnt = other._cnt;
    1.57 +    ++(*_cnt);
    1.58 +  }
    1.59 +
    1.60 +  CplexEnv& CplexEnv::operator=(const CplexEnv& other) {
    1.61 +    _env = other._env;
    1.62 +    _cnt = other._cnt;
    1.63 +    ++(*_cnt);
    1.64 +    return *this;
    1.65 +  }
    1.66 +
    1.67 +  CplexEnv::~CplexEnv() {
    1.68 +    --(*_cnt);
    1.69 +    if (*_cnt == 0) {
    1.70 +      delete _cnt;
    1.71 +      CPXcloseCPLEX(&_env);
    1.72 +    }
    1.73 +  }
    1.74 +
    1.75 +  CplexBase::CplexBase() : LpBase() {
    1.76 +    int status;
    1.77 +    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
    1.78 +  }
    1.79 +
    1.80 +  CplexBase::CplexBase(const CplexEnv& env)
    1.81 +    : LpBase(), _env(env) {
    1.82 +    int status;
    1.83 +    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
    1.84 +  }
    1.85 +
    1.86 +  CplexBase::CplexBase(const CplexBase& cplex)
    1.87 +    : LpBase() {
    1.88 +    int status;
    1.89 +    _prob = CPXcloneprob(cplexEnv(), cplex._prob, &status);
    1.90 +    rows = cplex.rows;
    1.91 +    cols = cplex.cols;
    1.92 +  }
    1.93 +
    1.94 +  CplexBase::~CplexBase() {
    1.95 +    CPXfreeprob(cplexEnv(),&_prob);
    1.96 +  }
    1.97 +
    1.98 +  int CplexBase::_addCol() {
    1.99 +    int i = CPXgetnumcols(cplexEnv(), _prob);
   1.100 +    double lb = -INF, ub = INF;
   1.101 +    CPXnewcols(cplexEnv(), _prob, 1, 0, &lb, &ub, 0, 0);
   1.102 +    return i;
   1.103 +  }
   1.104 +
   1.105 +
   1.106 +  int CplexBase::_addRow() {
   1.107 +    int i = CPXgetnumrows(cplexEnv(), _prob);
   1.108 +    const double ub = INF;
   1.109 +    const char s = 'L';
   1.110 +    CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0);
   1.111 +    return i;
   1.112 +  }
   1.113 +
   1.114 +
   1.115 +  void CplexBase::_eraseCol(int i) {
   1.116 +    CPXdelcols(cplexEnv(), _prob, i, i);
   1.117 +  }
   1.118 +
   1.119 +  void CplexBase::_eraseRow(int i) {
   1.120 +    CPXdelrows(cplexEnv(), _prob, i, i);
   1.121 +  }
   1.122 +
   1.123 +  void CplexBase::_eraseColId(int i) {
   1.124 +    cols.eraseIndex(i);
   1.125 +    cols.shiftIndices(i);
   1.126 +  }
   1.127 +  void CplexBase::_eraseRowId(int i) {
   1.128 +    rows.eraseIndex(i);
   1.129 +    rows.shiftIndices(i);
   1.130 +  }
   1.131 +
   1.132 +  void CplexBase::_getColName(int col, std::string &name) const {
   1.133 +    int size;
   1.134 +    CPXgetcolname(cplexEnv(), _prob, 0, 0, 0, &size, col, col);
   1.135 +    if (size == 0) {
   1.136 +      name.clear();
   1.137 +      return;
   1.138 +    }
   1.139 +
   1.140 +    size *= -1;
   1.141 +    std::vector<char> buf(size);
   1.142 +    char *cname;
   1.143 +    int tmp;
   1.144 +    CPXgetcolname(cplexEnv(), _prob, &cname, &buf.front(), size,
   1.145 +                  &tmp, col, col);
   1.146 +    name = cname;
   1.147 +  }
   1.148 +
   1.149 +  void CplexBase::_setColName(int col, const std::string &name) {
   1.150 +    char *cname;
   1.151 +    cname = const_cast<char*>(name.c_str());
   1.152 +    CPXchgcolname(cplexEnv(), _prob, 1, &col, &cname);
   1.153 +  }
   1.154 +
   1.155 +  int CplexBase::_colByName(const std::string& name) const {
   1.156 +    int index;
   1.157 +    if (CPXgetcolindex(cplexEnv(), _prob,
   1.158 +                       const_cast<char*>(name.c_str()), &index) == 0) {
   1.159 +      return index;
   1.160 +    }
   1.161 +    return -1;
   1.162 +  }
   1.163 +
   1.164 +  void CplexBase::_getRowName(int row, std::string &name) const {
   1.165 +    int size;
   1.166 +    CPXgetrowname(cplexEnv(), _prob, 0, 0, 0, &size, row, row);
   1.167 +    if (size == 0) {
   1.168 +      name.clear();
   1.169 +      return;
   1.170 +    }
   1.171 +
   1.172 +    size *= -1;
   1.173 +    std::vector<char> buf(size);
   1.174 +    char *cname;
   1.175 +    int tmp;
   1.176 +    CPXgetrowname(cplexEnv(), _prob, &cname, &buf.front(), size,
   1.177 +                  &tmp, row, row);
   1.178 +    name = cname;
   1.179 +  }
   1.180 +
   1.181 +  void CplexBase::_setRowName(int row, const std::string &name) {
   1.182 +    char *cname;
   1.183 +    cname = const_cast<char*>(name.c_str());
   1.184 +    CPXchgrowname(cplexEnv(), _prob, 1, &row, &cname);
   1.185 +  }
   1.186 +
   1.187 +  int CplexBase::_rowByName(const std::string& name) const {
   1.188 +    int index;
   1.189 +    if (CPXgetrowindex(cplexEnv(), _prob,
   1.190 +                       const_cast<char*>(name.c_str()), &index) == 0) {
   1.191 +      return index;
   1.192 +    }
   1.193 +    return -1;
   1.194 +  }
   1.195 +
   1.196 +  void CplexBase::_setRowCoeffs(int i, ExprIterator b,
   1.197 +                                      ExprIterator e)
   1.198 +  {
   1.199 +    std::vector<int> indices;
   1.200 +    std::vector<int> rowlist;
   1.201 +    std::vector<Value> values;
   1.202 +
   1.203 +    for(ExprIterator it=b; it!=e; ++it) {
   1.204 +      indices.push_back(it->first);
   1.205 +      values.push_back(it->second);
   1.206 +      rowlist.push_back(i);
   1.207 +    }
   1.208 +
   1.209 +    CPXchgcoeflist(cplexEnv(), _prob, values.size(),
   1.210 +                   &rowlist.front(), &indices.front(), &values.front());
   1.211 +  }
   1.212 +
   1.213 +  void CplexBase::_getRowCoeffs(int i, InsertIterator b) const {
   1.214 +    int tmp1, tmp2, tmp3, length;
   1.215 +    CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i);
   1.216 +
   1.217 +    length = -length;
   1.218 +    std::vector<int> indices(length);
   1.219 +    std::vector<double> values(length);
   1.220 +
   1.221 +    CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2,
   1.222 +               &indices.front(), &values.front(),
   1.223 +               length, &tmp3, i, i);
   1.224 +
   1.225 +    for (int i = 0; i < length; ++i) {
   1.226 +      *b = std::make_pair(indices[i], values[i]);
   1.227 +      ++b;
   1.228 +    }
   1.229 +  }
   1.230 +
   1.231 +  void CplexBase::_setColCoeffs(int i, ExprIterator b, ExprIterator e) {
   1.232 +    std::vector<int> indices;
   1.233 +    std::vector<int> collist;
   1.234 +    std::vector<Value> values;
   1.235 +
   1.236 +    for(ExprIterator it=b; it!=e; ++it) {
   1.237 +      indices.push_back(it->first);
   1.238 +      values.push_back(it->second);
   1.239 +      collist.push_back(i);
   1.240 +    }
   1.241 +
   1.242 +    CPXchgcoeflist(cplexEnv(), _prob, values.size(),
   1.243 +                   &indices.front(), &collist.front(), &values.front());
   1.244 +  }
   1.245 +
   1.246 +  void CplexBase::_getColCoeffs(int i, InsertIterator b) const {
   1.247 +
   1.248 +    int tmp1, tmp2, tmp3, length;
   1.249 +    CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i);
   1.250 +
   1.251 +    length = -length;
   1.252 +    std::vector<int> indices(length);
   1.253 +    std::vector<double> values(length);
   1.254 +
   1.255 +    CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2,
   1.256 +               &indices.front(), &values.front(),
   1.257 +               length, &tmp3, i, i);
   1.258 +
   1.259 +    for (int i = 0; i < length; ++i) {
   1.260 +      *b = std::make_pair(indices[i], values[i]);
   1.261 +      ++b;
   1.262 +    }
   1.263 +
   1.264 +  }
   1.265 +
   1.266 +  void CplexBase::_setCoeff(int row, int col, Value value) {
   1.267 +    CPXchgcoef(cplexEnv(), _prob, row, col, value);
   1.268 +  }
   1.269 +
   1.270 +  CplexBase::Value CplexBase::_getCoeff(int row, int col) const {
   1.271 +    CplexBase::Value value;
   1.272 +    CPXgetcoef(cplexEnv(), _prob, row, col, &value);
   1.273 +    return value;
   1.274 +  }
   1.275 +
   1.276 +  void CplexBase::_setColLowerBound(int i, Value value) {
   1.277 +    const char s = 'L';
   1.278 +    CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value);
   1.279 +  }
   1.280 +
   1.281 +  CplexBase::Value CplexBase::_getColLowerBound(int i) const {
   1.282 +    CplexBase::Value res;
   1.283 +    CPXgetlb(cplexEnv(), _prob, &res, i, i);
   1.284 +    return res <= -CPX_INFBOUND ? -INF : res;
   1.285 +  }
   1.286 +
   1.287 +  void CplexBase::_setColUpperBound(int i, Value value)
   1.288 +  {
   1.289 +    const char s = 'U';
   1.290 +    CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value);
   1.291 +  }
   1.292 +
   1.293 +  CplexBase::Value CplexBase::_getColUpperBound(int i) const {
   1.294 +    CplexBase::Value res;
   1.295 +    CPXgetub(cplexEnv(), _prob, &res, i, i);
   1.296 +    return res >= CPX_INFBOUND ? INF : res;
   1.297 +  }
   1.298 +
   1.299 +  CplexBase::Value CplexBase::_getRowLowerBound(int i) const {
   1.300 +    char s;
   1.301 +    CPXgetsense(cplexEnv(), _prob, &s, i, i);
   1.302 +    CplexBase::Value res;
   1.303 +
   1.304 +    switch (s) {
   1.305 +    case 'G':
   1.306 +    case 'R':
   1.307 +    case 'E':
   1.308 +      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
   1.309 +      return res <= -CPX_INFBOUND ? -INF : res;
   1.310 +    default:
   1.311 +      return -INF;
   1.312 +    }
   1.313 +  }
   1.314 +
   1.315 +  CplexBase::Value CplexBase::_getRowUpperBound(int i) const {
   1.316 +    char s;
   1.317 +    CPXgetsense(cplexEnv(), _prob, &s, i, i);
   1.318 +    CplexBase::Value res;
   1.319 +
   1.320 +    switch (s) {
   1.321 +    case 'L':
   1.322 +    case 'E':
   1.323 +      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
   1.324 +      return res >= CPX_INFBOUND ? INF : res;
   1.325 +    case 'R':
   1.326 +      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
   1.327 +      {
   1.328 +        double rng;
   1.329 +        CPXgetrngval(cplexEnv(), _prob, &rng, i, i);
   1.330 +        res += rng;
   1.331 +      }
   1.332 +      return res >= CPX_INFBOUND ? INF : res;
   1.333 +    default:
   1.334 +      return INF;
   1.335 +    }
   1.336 +  }
   1.337 +
   1.338 +  //This is easier to implement
   1.339 +  void CplexBase::_set_row_bounds(int i, Value lb, Value ub) {
   1.340 +    if (lb == -INF) {
   1.341 +      const char s = 'L';
   1.342 +      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
   1.343 +      CPXchgrhs(cplexEnv(), _prob, 1, &i, &ub);
   1.344 +    } else if (ub == INF) {
   1.345 +      const char s = 'G';
   1.346 +      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
   1.347 +      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
   1.348 +    } else if (lb == ub){
   1.349 +      const char s = 'E';
   1.350 +      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
   1.351 +      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
   1.352 +    } else {
   1.353 +      const char s = 'R';
   1.354 +      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
   1.355 +      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
   1.356 +      double len = ub - lb;
   1.357 +      CPXchgrngval(cplexEnv(), _prob, 1, &i, &len);
   1.358 +    }
   1.359 +  }
   1.360 +
   1.361 +  void CplexBase::_setRowLowerBound(int i, Value lb)
   1.362 +  {
   1.363 +    LEMON_ASSERT(lb != INF, "Invalid bound");
   1.364 +    _set_row_bounds(i, lb, CplexBase::_getRowUpperBound(i));
   1.365 +  }
   1.366 +
   1.367 +  void CplexBase::_setRowUpperBound(int i, Value ub)
   1.368 +  {
   1.369 +
   1.370 +    LEMON_ASSERT(ub != -INF, "Invalid bound");
   1.371 +    _set_row_bounds(i, CplexBase::_getRowLowerBound(i), ub);
   1.372 +  }
   1.373 +
   1.374 +  void CplexBase::_setObjCoeffs(ExprIterator b, ExprIterator e)
   1.375 +  {
   1.376 +    std::vector<int> indices;
   1.377 +    std::vector<Value> values;
   1.378 +    for(ExprIterator it=b; it!=e; ++it) {
   1.379 +      indices.push_back(it->first);
   1.380 +      values.push_back(it->second);
   1.381 +    }
   1.382 +    CPXchgobj(cplexEnv(), _prob, values.size(),
   1.383 +              &indices.front(), &values.front());
   1.384 +
   1.385 +  }
   1.386 +
   1.387 +  void CplexBase::_getObjCoeffs(InsertIterator b) const
   1.388 +  {
   1.389 +    int num = CPXgetnumcols(cplexEnv(), _prob);
   1.390 +    std::vector<Value> x(num);
   1.391 +
   1.392 +    CPXgetobj(cplexEnv(), _prob, &x.front(), 0, num - 1);
   1.393 +    for (int i = 0; i < num; ++i) {
   1.394 +      if (x[i] != 0.0) {
   1.395 +        *b = std::make_pair(i, x[i]);
   1.396 +        ++b;
   1.397 +      }
   1.398 +    }
   1.399 +  }
   1.400 +
   1.401 +  void CplexBase::_setObjCoeff(int i, Value obj_coef)
   1.402 +  {
   1.403 +    CPXchgobj(cplexEnv(), _prob, 1, &i, &obj_coef);
   1.404 +  }
   1.405 +
   1.406 +  CplexBase::Value CplexBase::_getObjCoeff(int i) const
   1.407 +  {
   1.408 +    Value x;
   1.409 +    CPXgetobj(cplexEnv(), _prob, &x, i, i);
   1.410 +    return x;
   1.411 +  }
   1.412 +
   1.413 +  void CplexBase::_setSense(CplexBase::Sense sense) {
   1.414 +    switch (sense) {
   1.415 +    case MIN:
   1.416 +      CPXchgobjsen(cplexEnv(), _prob, CPX_MIN);
   1.417 +      break;
   1.418 +    case MAX:
   1.419 +      CPXchgobjsen(cplexEnv(), _prob, CPX_MAX);
   1.420 +      break;
   1.421 +    }
   1.422 +  }
   1.423 +
   1.424 +  CplexBase::Sense CplexBase::_getSense() const {
   1.425 +    switch (CPXgetobjsen(cplexEnv(), _prob)) {
   1.426 +    case CPX_MIN:
   1.427 +      return MIN;
   1.428 +    case CPX_MAX:
   1.429 +      return MAX;
   1.430 +    default:
   1.431 +      LEMON_ASSERT(false, "Invalid sense");
   1.432 +      return CplexBase::Sense();
   1.433 +    }
   1.434 +  }
   1.435 +
   1.436 +  void CplexBase::_clear() {
   1.437 +    CPXfreeprob(cplexEnv(),&_prob);
   1.438 +    int status;
   1.439 +    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
   1.440 +    rows.clear();
   1.441 +    cols.clear();
   1.442 +  }
   1.443 +
   1.444 +  // LpCplex members
   1.445 +
   1.446 +  LpCplex::LpCplex()
   1.447 +    : LpBase(), CplexBase(), LpSolver() {}
   1.448 +
   1.449 +  LpCplex::LpCplex(const CplexEnv& env)
   1.450 +    : LpBase(), CplexBase(env), LpSolver() {}
   1.451 +
   1.452 +  LpCplex::LpCplex(const LpCplex& other)
   1.453 +    : LpBase(), CplexBase(other), LpSolver() {}
   1.454 +
   1.455 +  LpCplex::~LpCplex() {}
   1.456 +
   1.457 +  LpCplex* LpCplex::_newSolver() const { return new LpCplex; }
   1.458 +  LpCplex* LpCplex::_cloneSolver() const {return new LpCplex(*this); }
   1.459 +
   1.460 +  const char* LpCplex::_solverName() const { return "LpCplex"; }
   1.461 +
   1.462 +  void LpCplex::_clear_temporals() {
   1.463 +    _col_status.clear();
   1.464 +    _row_status.clear();
   1.465 +    _primal_ray.clear();
   1.466 +    _dual_ray.clear();
   1.467 +  }
   1.468 +
   1.469 +  // The routine returns zero unless an error occurred during the
   1.470 +  // optimization. Examples of errors include exhausting available
   1.471 +  // memory (CPXERR_NO_MEMORY) or encountering invalid data in the
   1.472 +  // CPLEX problem object (CPXERR_NO_PROBLEM). Exceeding a
   1.473 +  // user-specified CPLEX limit, or proving the model infeasible or
   1.474 +  // unbounded, are not considered errors. Note that a zero return
   1.475 +  // value does not necessarily mean that a solution exists. Use query
   1.476 +  // routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain
   1.477 +  // further information about the status of the optimization.
   1.478 +  LpCplex::SolveExitStatus LpCplex::convertStatus(int status) {
   1.479 +#if CPX_VERSION >= 800
   1.480 +    if (status == 0) {
   1.481 +      switch (CPXgetstat(cplexEnv(), _prob)) {
   1.482 +      case CPX_STAT_OPTIMAL:
   1.483 +      case CPX_STAT_INFEASIBLE:
   1.484 +      case CPX_STAT_UNBOUNDED:
   1.485 +        return SOLVED;
   1.486 +      default:
   1.487 +        return UNSOLVED;
   1.488 +      }
   1.489 +    } else {
   1.490 +      return UNSOLVED;
   1.491 +    }
   1.492 +#else
   1.493 +    if (status == 0) {
   1.494 +      //We want to exclude some cases
   1.495 +      switch (CPXgetstat(cplexEnv(), _prob)) {
   1.496 +      case CPX_OBJ_LIM:
   1.497 +      case CPX_IT_LIM_FEAS:
   1.498 +      case CPX_IT_LIM_INFEAS:
   1.499 +      case CPX_TIME_LIM_FEAS:
   1.500 +      case CPX_TIME_LIM_INFEAS:
   1.501 +        return UNSOLVED;
   1.502 +      default:
   1.503 +        return SOLVED;
   1.504 +      }
   1.505 +    } else {
   1.506 +      return UNSOLVED;
   1.507 +    }
   1.508 +#endif
   1.509 +  }
   1.510 +
   1.511 +  LpCplex::SolveExitStatus LpCplex::_solve() {
   1.512 +    _clear_temporals();
   1.513 +    return convertStatus(CPXlpopt(cplexEnv(), _prob));
   1.514 +  }
   1.515 +
   1.516 +  LpCplex::SolveExitStatus LpCplex::solvePrimal() {
   1.517 +    _clear_temporals();
   1.518 +    return convertStatus(CPXprimopt(cplexEnv(), _prob));
   1.519 +  }
   1.520 +
   1.521 +  LpCplex::SolveExitStatus LpCplex::solveDual() {
   1.522 +    _clear_temporals();
   1.523 +    return convertStatus(CPXdualopt(cplexEnv(), _prob));
   1.524 +  }
   1.525 +
   1.526 +  LpCplex::SolveExitStatus LpCplex::solveBarrier() {
   1.527 +    _clear_temporals();
   1.528 +    return convertStatus(CPXbaropt(cplexEnv(), _prob));
   1.529 +  }
   1.530 +
   1.531 +  LpCplex::Value LpCplex::_getPrimal(int i) const {
   1.532 +    Value x;
   1.533 +    CPXgetx(cplexEnv(), _prob, &x, i, i);
   1.534 +    return x;
   1.535 +  }
   1.536 +
   1.537 +  LpCplex::Value LpCplex::_getDual(int i) const {
   1.538 +    Value y;
   1.539 +    CPXgetpi(cplexEnv(), _prob, &y, i, i);
   1.540 +    return y;
   1.541 +  }
   1.542 +
   1.543 +  LpCplex::Value LpCplex::_getPrimalValue() const {
   1.544 +    Value objval;
   1.545 +    CPXgetobjval(cplexEnv(), _prob, &objval);
   1.546 +    return objval;
   1.547 +  }
   1.548 +
   1.549 +  LpCplex::VarStatus LpCplex::_getColStatus(int i) const {
   1.550 +    if (_col_status.empty()) {
   1.551 +      _col_status.resize(CPXgetnumcols(cplexEnv(), _prob));
   1.552 +      CPXgetbase(cplexEnv(), _prob, &_col_status.front(), 0);
   1.553 +    }
   1.554 +    switch (_col_status[i]) {
   1.555 +    case CPX_BASIC:
   1.556 +      return BASIC;
   1.557 +    case CPX_FREE_SUPER:
   1.558 +      return FREE;
   1.559 +    case CPX_AT_LOWER:
   1.560 +      return LOWER;
   1.561 +    case CPX_AT_UPPER:
   1.562 +      return UPPER;
   1.563 +    default:
   1.564 +      LEMON_ASSERT(false, "Wrong column status");
   1.565 +      return LpCplex::VarStatus();
   1.566 +    }
   1.567 +  }
   1.568 +
   1.569 +  LpCplex::VarStatus LpCplex::_getRowStatus(int i) const {
   1.570 +    if (_row_status.empty()) {
   1.571 +      _row_status.resize(CPXgetnumrows(cplexEnv(), _prob));
   1.572 +      CPXgetbase(cplexEnv(), _prob, 0, &_row_status.front());
   1.573 +    }
   1.574 +    switch (_row_status[i]) {
   1.575 +    case CPX_BASIC:
   1.576 +      return BASIC;
   1.577 +    case CPX_AT_LOWER:
   1.578 +      {
   1.579 +        char s;
   1.580 +        CPXgetsense(cplexEnv(), _prob, &s, i, i);
   1.581 +        return s != 'L' ? LOWER : UPPER;
   1.582 +      }
   1.583 +    case CPX_AT_UPPER:
   1.584 +      return UPPER;
   1.585 +    default:
   1.586 +      LEMON_ASSERT(false, "Wrong row status");
   1.587 +      return LpCplex::VarStatus();
   1.588 +    }
   1.589 +  }
   1.590 +
   1.591 +  LpCplex::Value LpCplex::_getPrimalRay(int i) const {
   1.592 +    if (_primal_ray.empty()) {
   1.593 +      _primal_ray.resize(CPXgetnumcols(cplexEnv(), _prob));
   1.594 +      CPXgetray(cplexEnv(), _prob, &_primal_ray.front());
   1.595 +    }
   1.596 +    return _primal_ray[i];
   1.597 +  }
   1.598 +
   1.599 +  LpCplex::Value LpCplex::_getDualRay(int i) const {
   1.600 +    if (_dual_ray.empty()) {
   1.601 +
   1.602 +    }
   1.603 +    return _dual_ray[i];
   1.604 +  }
   1.605 +
   1.606 +  //7.5-os cplex statusai (Vigyazat: a 9.0-asei masok!)
   1.607 +  // This table lists the statuses, returned by the CPXgetstat()
   1.608 +  // routine, for solutions to LP problems or mixed integer problems. If
   1.609 +  // no solution exists, the return value is zero.
   1.610 +
   1.611 +  // For Simplex, Barrier
   1.612 +  // 1          CPX_OPTIMAL
   1.613 +  //          Optimal solution found
   1.614 +  // 2          CPX_INFEASIBLE
   1.615 +  //          Problem infeasible
   1.616 +  // 3    CPX_UNBOUNDED
   1.617 +  //          Problem unbounded
   1.618 +  // 4          CPX_OBJ_LIM
   1.619 +  //          Objective limit exceeded in Phase II
   1.620 +  // 5          CPX_IT_LIM_FEAS
   1.621 +  //          Iteration limit exceeded in Phase II
   1.622 +  // 6          CPX_IT_LIM_INFEAS
   1.623 +  //          Iteration limit exceeded in Phase I
   1.624 +  // 7          CPX_TIME_LIM_FEAS
   1.625 +  //          Time limit exceeded in Phase II
   1.626 +  // 8          CPX_TIME_LIM_INFEAS
   1.627 +  //          Time limit exceeded in Phase I
   1.628 +  // 9          CPX_NUM_BEST_FEAS
   1.629 +  //          Problem non-optimal, singularities in Phase II
   1.630 +  // 10         CPX_NUM_BEST_INFEAS
   1.631 +  //          Problem non-optimal, singularities in Phase I
   1.632 +  // 11         CPX_OPTIMAL_INFEAS
   1.633 +  //          Optimal solution found, unscaled infeasibilities
   1.634 +  // 12         CPX_ABORT_FEAS
   1.635 +  //          Aborted in Phase II
   1.636 +  // 13         CPX_ABORT_INFEAS
   1.637 +  //          Aborted in Phase I
   1.638 +  // 14          CPX_ABORT_DUAL_INFEAS
   1.639 +  //          Aborted in barrier, dual infeasible
   1.640 +  // 15          CPX_ABORT_PRIM_INFEAS
   1.641 +  //          Aborted in barrier, primal infeasible
   1.642 +  // 16          CPX_ABORT_PRIM_DUAL_INFEAS
   1.643 +  //          Aborted in barrier, primal and dual infeasible
   1.644 +  // 17          CPX_ABORT_PRIM_DUAL_FEAS
   1.645 +  //          Aborted in barrier, primal and dual feasible
   1.646 +  // 18          CPX_ABORT_CROSSOVER
   1.647 +  //          Aborted in crossover
   1.648 +  // 19          CPX_INForUNBD
   1.649 +  //          Infeasible or unbounded
   1.650 +  // 20   CPX_PIVOT
   1.651 +  //       User pivot used
   1.652 +  //
   1.653 +  //     Ezeket hova tegyem:
   1.654 +  // ??case CPX_ABORT_DUAL_INFEAS
   1.655 +  // ??case CPX_ABORT_CROSSOVER
   1.656 +  // ??case CPX_INForUNBD
   1.657 +  // ??case CPX_PIVOT
   1.658 +
   1.659 +  //Some more interesting stuff:
   1.660 +
   1.661 +  // CPX_PARAM_PROBMETHOD  1062  int  LPMETHOD
   1.662 +  // 0 Automatic
   1.663 +  // 1 Primal Simplex
   1.664 +  // 2 Dual Simplex
   1.665 +  // 3 Network Simplex
   1.666 +  // 4 Standard Barrier
   1.667 +  // Default: 0
   1.668 +  // Description: Method for linear optimization.
   1.669 +  // Determines which algorithm is used when CPXlpopt() (or "optimize"
   1.670 +  // in the Interactive Optimizer) is called. Currently the behavior of
   1.671 +  // the "Automatic" setting is that CPLEX simply invokes the dual
   1.672 +  // simplex method, but this capability may be expanded in the future
   1.673 +  // so that CPLEX chooses the method based on problem characteristics
   1.674 +#if CPX_VERSION < 900
   1.675 +  void statusSwitch(CPXENVptr cplexEnv(),int& stat){
   1.676 +    int lpmethod;
   1.677 +    CPXgetintparam (cplexEnv(),CPX_PARAM_PROBMETHOD,&lpmethod);
   1.678 +    if (lpmethod==2){
   1.679 +      if (stat==CPX_UNBOUNDED){
   1.680 +        stat=CPX_INFEASIBLE;
   1.681 +      }
   1.682 +      else{
   1.683 +        if (stat==CPX_INFEASIBLE)
   1.684 +          stat=CPX_UNBOUNDED;
   1.685 +      }
   1.686 +    }
   1.687 +  }
   1.688 +#else
   1.689 +  void statusSwitch(CPXENVptr,int&){}
   1.690 +#endif
   1.691 +
   1.692 +  LpCplex::ProblemType LpCplex::_getPrimalType() const {
   1.693 +    // Unboundedness not treated well: the following is from cplex 9.0 doc
   1.694 +    // About Unboundedness
   1.695 +
   1.696 +    // The treatment of models that are unbounded involves a few
   1.697 +    // subtleties. Specifically, a declaration of unboundedness means that
   1.698 +    // ILOG CPLEX has determined that the model has an unbounded
   1.699 +    // ray. Given any feasible solution x with objective z, a multiple of
   1.700 +    // the unbounded ray can be added to x to give a feasible solution
   1.701 +    // with objective z-1 (or z+1 for maximization models). Thus, if a
   1.702 +    // feasible solution exists, then the optimal objective is
   1.703 +    // unbounded. Note that ILOG CPLEX has not necessarily concluded that
   1.704 +    // a feasible solution exists. Users can call the routine CPXsolninfo
   1.705 +    // to determine whether ILOG CPLEX has also concluded that the model
   1.706 +    // has a feasible solution.
   1.707 +
   1.708 +    int stat = CPXgetstat(cplexEnv(), _prob);
   1.709 +#if CPX_VERSION >= 800
   1.710 +    switch (stat)
   1.711 +      {
   1.712 +      case CPX_STAT_OPTIMAL:
   1.713 +        return OPTIMAL;
   1.714 +      case CPX_STAT_UNBOUNDED:
   1.715 +        return UNBOUNDED;
   1.716 +      case CPX_STAT_INFEASIBLE:
   1.717 +        return INFEASIBLE;
   1.718 +      default:
   1.719 +        return UNDEFINED;
   1.720 +      }
   1.721 +#else
   1.722 +    statusSwitch(cplexEnv(),stat);
   1.723 +    //CPXgetstat(cplexEnv(), _prob);
   1.724 +    //printf("A primal status: %d, CPX_OPTIMAL=%d \n",stat,CPX_OPTIMAL);
   1.725 +    switch (stat) {
   1.726 +    case 0:
   1.727 +      return UNDEFINED; //Undefined
   1.728 +    case CPX_OPTIMAL://Optimal
   1.729 +      return OPTIMAL;
   1.730 +    case CPX_UNBOUNDED://Unbounded
   1.731 +      return INFEASIBLE;//In case of dual simplex
   1.732 +      //return UNBOUNDED;
   1.733 +    case CPX_INFEASIBLE://Infeasible
   1.734 +      //    case CPX_IT_LIM_INFEAS:
   1.735 +      //     case CPX_TIME_LIM_INFEAS:
   1.736 +      //     case CPX_NUM_BEST_INFEAS:
   1.737 +      //     case CPX_OPTIMAL_INFEAS:
   1.738 +      //     case CPX_ABORT_INFEAS:
   1.739 +      //     case CPX_ABORT_PRIM_INFEAS:
   1.740 +      //     case CPX_ABORT_PRIM_DUAL_INFEAS:
   1.741 +      return UNBOUNDED;//In case of dual simplex
   1.742 +      //return INFEASIBLE;
   1.743 +      //     case CPX_OBJ_LIM:
   1.744 +      //     case CPX_IT_LIM_FEAS:
   1.745 +      //     case CPX_TIME_LIM_FEAS:
   1.746 +      //     case CPX_NUM_BEST_FEAS:
   1.747 +      //     case CPX_ABORT_FEAS:
   1.748 +      //     case CPX_ABORT_PRIM_DUAL_FEAS:
   1.749 +      //       return FEASIBLE;
   1.750 +    default:
   1.751 +      return UNDEFINED; //Everything else comes here
   1.752 +      //FIXME error
   1.753 +    }
   1.754 +#endif
   1.755 +  }
   1.756 +
   1.757 +  //9.0-as cplex verzio statusai
   1.758 +  // CPX_STAT_ABORT_DUAL_OBJ_LIM
   1.759 +  // CPX_STAT_ABORT_IT_LIM
   1.760 +  // CPX_STAT_ABORT_OBJ_LIM
   1.761 +  // CPX_STAT_ABORT_PRIM_OBJ_LIM
   1.762 +  // CPX_STAT_ABORT_TIME_LIM
   1.763 +  // CPX_STAT_ABORT_USER
   1.764 +  // CPX_STAT_FEASIBLE_RELAXED
   1.765 +  // CPX_STAT_INFEASIBLE
   1.766 +  // CPX_STAT_INForUNBD
   1.767 +  // CPX_STAT_NUM_BEST
   1.768 +  // CPX_STAT_OPTIMAL
   1.769 +  // CPX_STAT_OPTIMAL_FACE_UNBOUNDED
   1.770 +  // CPX_STAT_OPTIMAL_INFEAS
   1.771 +  // CPX_STAT_OPTIMAL_RELAXED
   1.772 +  // CPX_STAT_UNBOUNDED
   1.773 +
   1.774 +  LpCplex::ProblemType LpCplex::_getDualType() const {
   1.775 +    int stat = CPXgetstat(cplexEnv(), _prob);
   1.776 +#if CPX_VERSION >= 800
   1.777 +    switch (stat) {
   1.778 +    case CPX_STAT_OPTIMAL:
   1.779 +      return OPTIMAL;
   1.780 +    case CPX_STAT_UNBOUNDED:
   1.781 +      return INFEASIBLE;
   1.782 +    default:
   1.783 +      return UNDEFINED;
   1.784 +    }
   1.785 +#else
   1.786 +    statusSwitch(cplexEnv(),stat);
   1.787 +    switch (stat) {
   1.788 +    case 0:
   1.789 +      return UNDEFINED; //Undefined
   1.790 +    case CPX_OPTIMAL://Optimal
   1.791 +      return OPTIMAL;
   1.792 +    case CPX_UNBOUNDED:
   1.793 +      return INFEASIBLE;
   1.794 +    default:
   1.795 +      return UNDEFINED; //Everything else comes here
   1.796 +      //FIXME error
   1.797 +    }
   1.798 +#endif
   1.799 +  }
   1.800 +
   1.801 +  // MipCplex members
   1.802 +
   1.803 +  MipCplex::MipCplex()
   1.804 +    : LpBase(), CplexBase(), MipSolver() {
   1.805 +
   1.806 +#if CPX_VERSION < 800
   1.807 +    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MIP);
   1.808 +#else
   1.809 +    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MILP);
   1.810 +#endif
   1.811 +  }
   1.812 +
   1.813 +  MipCplex::MipCplex(const CplexEnv& env)
   1.814 +    : LpBase(), CplexBase(env), MipSolver() {
   1.815 +
   1.816 +#if CPX_VERSION < 800
   1.817 +    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MIP);
   1.818 +#else
   1.819 +    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MILP);
   1.820 +#endif
   1.821 +
   1.822 +  }
   1.823 +
   1.824 +  MipCplex::MipCplex(const MipCplex& other)
   1.825 +    : LpBase(), CplexBase(other), MipSolver() {}
   1.826 +
   1.827 +  MipCplex::~MipCplex() {}
   1.828 +
   1.829 +  MipCplex* MipCplex::_newSolver() const { return new MipCplex; }
   1.830 +  MipCplex* MipCplex::_cloneSolver() const {return new MipCplex(*this); }
   1.831 +
   1.832 +  const char* MipCplex::_solverName() const { return "MipCplex"; }
   1.833 +
   1.834 +  void MipCplex::_setColType(int i, MipCplex::ColTypes col_type) {
   1.835 +
   1.836 +    // Note If a variable is to be changed to binary, a call to CPXchgbds
   1.837 +    // should also be made to change the bounds to 0 and 1.
   1.838 +
   1.839 +    switch (col_type){
   1.840 +    case INTEGER: {
   1.841 +      const char t = 'I';
   1.842 +      CPXchgctype (cplexEnv(), _prob, 1, &i, &t);
   1.843 +    } break;
   1.844 +    case REAL: {
   1.845 +      const char t = 'C';
   1.846 +      CPXchgctype (cplexEnv(), _prob, 1, &i, &t);
   1.847 +    } break;
   1.848 +    default:
   1.849 +      break;
   1.850 +    }
   1.851 +  }
   1.852 +
   1.853 +  MipCplex::ColTypes MipCplex::_getColType(int i) const {
   1.854 +    char t;
   1.855 +    CPXgetctype (cplexEnv(), _prob, &t, i, i);
   1.856 +    switch (t) {
   1.857 +    case 'I':
   1.858 +      return INTEGER;
   1.859 +    case 'C':
   1.860 +      return REAL;
   1.861 +    default:
   1.862 +      LEMON_ASSERT(false, "Invalid column type");
   1.863 +      return ColTypes();
   1.864 +    }
   1.865 +
   1.866 +  }
   1.867 +
   1.868 +  MipCplex::SolveExitStatus MipCplex::_solve() {
   1.869 +    int status;
   1.870 +    status = CPXmipopt (cplexEnv(), _prob);
   1.871 +    if (status==0)
   1.872 +      return SOLVED;
   1.873 +    else
   1.874 +      return UNSOLVED;
   1.875 +
   1.876 +  }
   1.877 +
   1.878 +
   1.879 +  MipCplex::ProblemType MipCplex::_getType() const {
   1.880 +
   1.881 +    int stat = CPXgetstat(cplexEnv(), _prob);
   1.882 +
   1.883 +    //Fortunately, MIP statuses did not change for cplex 8.0
   1.884 +    switch (stat) {
   1.885 +    case CPXMIP_OPTIMAL:
   1.886 +      // Optimal integer solution has been found.
   1.887 +    case CPXMIP_OPTIMAL_TOL:
   1.888 +      // Optimal soluton with the tolerance defined by epgap or epagap has
   1.889 +      // been found.
   1.890 +      return OPTIMAL;
   1.891 +      //This also exists in later issues
   1.892 +      //    case CPXMIP_UNBOUNDED:
   1.893 +      //return UNBOUNDED;
   1.894 +      case CPXMIP_INFEASIBLE:
   1.895 +        return INFEASIBLE;
   1.896 +    default:
   1.897 +      return UNDEFINED;
   1.898 +    }
   1.899 +    //Unboundedness not treated well: the following is from cplex 9.0 doc
   1.900 +    // About Unboundedness
   1.901 +
   1.902 +    // The treatment of models that are unbounded involves a few
   1.903 +    // subtleties. Specifically, a declaration of unboundedness means that
   1.904 +    // ILOG CPLEX has determined that the model has an unbounded
   1.905 +    // ray. Given any feasible solution x with objective z, a multiple of
   1.906 +    // the unbounded ray can be added to x to give a feasible solution
   1.907 +    // with objective z-1 (or z+1 for maximization models). Thus, if a
   1.908 +    // feasible solution exists, then the optimal objective is
   1.909 +    // unbounded. Note that ILOG CPLEX has not necessarily concluded that
   1.910 +    // a feasible solution exists. Users can call the routine CPXsolninfo
   1.911 +    // to determine whether ILOG CPLEX has also concluded that the model
   1.912 +    // has a feasible solution.
   1.913 +  }
   1.914 +
   1.915 +  MipCplex::Value MipCplex::_getSol(int i) const {
   1.916 +    Value x;
   1.917 +    CPXgetmipx(cplexEnv(), _prob, &x, i, i);
   1.918 +    return x;
   1.919 +  }
   1.920 +
   1.921 +  MipCplex::Value MipCplex::_getSolValue() const {
   1.922 +    Value objval;
   1.923 +    CPXgetmipobjval(cplexEnv(), _prob, &objval);
   1.924 +    return objval;
   1.925 +  }
   1.926 +
   1.927 +} //namespace lemon
   1.928 +