lemon/lp_cplex.cc
changeset 484 08d495d48089
parent 483 76ec7bd57026
child 485 9b082b3fb33f
     1.1 --- a/lemon/lp_cplex.cc	Mon Jan 12 12:25:55 2009 +0000
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,925 +0,0 @@
     1.4 -/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 - *
     1.6 - * This file is a part of LEMON, a generic C++ optimization library.
     1.7 - *
     1.8 - * Copyright (C) 2003-2008
     1.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 - *
    1.12 - * Permission to use, modify and distribute this software is granted
    1.13 - * provided that this copyright notice appears in all copies. For
    1.14 - * precise terms see the accompanying LICENSE file.
    1.15 - *
    1.16 - * This software is provided "AS IS" with no warranty of any kind,
    1.17 - * express or implied, and with no claim as to its suitability for any
    1.18 - * purpose.
    1.19 - *
    1.20 - */
    1.21 -
    1.22 -#include <iostream>
    1.23 -#include <vector>
    1.24 -#include <cstring>
    1.25 -
    1.26 -#include <lemon/lp_cplex.h>
    1.27 -
    1.28 -extern "C" {
    1.29 -#include <ilcplex/cplex.h>
    1.30 -}
    1.31 -
    1.32 -
    1.33 -///\file
    1.34 -///\brief Implementation of the LEMON-CPLEX lp solver interface.
    1.35 -namespace lemon {
    1.36 -
    1.37 -  CplexEnv::LicenseError::LicenseError(int status) {
    1.38 -    if (!CPXgeterrorstring(0, status, _message)) {
    1.39 -      std::strcpy(_message, "Cplex unknown error");
    1.40 -    }
    1.41 -  }
    1.42 -
    1.43 -  CplexEnv::CplexEnv() {
    1.44 -    int status;
    1.45 -    _cnt = new int;
    1.46 -    _env = CPXopenCPLEX(&status);
    1.47 -    if (_env == 0) {
    1.48 -      delete _cnt;
    1.49 -      _cnt = 0;
    1.50 -      throw LicenseError(status);
    1.51 -    }
    1.52 -  }
    1.53 -
    1.54 -  CplexEnv::CplexEnv(const CplexEnv& other) {
    1.55 -    _env = other._env;
    1.56 -    _cnt = other._cnt;
    1.57 -    ++(*_cnt);
    1.58 -  }
    1.59 -
    1.60 -  CplexEnv& CplexEnv::operator=(const CplexEnv& other) {
    1.61 -    _env = other._env;
    1.62 -    _cnt = other._cnt;
    1.63 -    ++(*_cnt);
    1.64 -    return *this;
    1.65 -  }
    1.66 -
    1.67 -  CplexEnv::~CplexEnv() {
    1.68 -    --(*_cnt);
    1.69 -    if (*_cnt == 0) {
    1.70 -      delete _cnt;
    1.71 -      CPXcloseCPLEX(&_env);
    1.72 -    }
    1.73 -  }
    1.74 -
    1.75 -  CplexBase::CplexBase() : LpBase() {
    1.76 -    int status;
    1.77 -    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
    1.78 -  }
    1.79 -
    1.80 -  CplexBase::CplexBase(const CplexEnv& env)
    1.81 -    : LpBase(), _env(env) {
    1.82 -    int status;
    1.83 -    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
    1.84 -  }
    1.85 -
    1.86 -  CplexBase::CplexBase(const CplexBase& cplex)
    1.87 -    : LpBase() {
    1.88 -    int status;
    1.89 -    _prob = CPXcloneprob(cplexEnv(), cplex._prob, &status);
    1.90 -    rows = cplex.rows;
    1.91 -    cols = cplex.cols;
    1.92 -  }
    1.93 -
    1.94 -  CplexBase::~CplexBase() {
    1.95 -    CPXfreeprob(cplexEnv(),&_prob);
    1.96 -  }
    1.97 -
    1.98 -  int CplexBase::_addCol() {
    1.99 -    int i = CPXgetnumcols(cplexEnv(), _prob);
   1.100 -    double lb = -INF, ub = INF;
   1.101 -    CPXnewcols(cplexEnv(), _prob, 1, 0, &lb, &ub, 0, 0);
   1.102 -    return i;
   1.103 -  }
   1.104 -
   1.105 -
   1.106 -  int CplexBase::_addRow() {
   1.107 -    int i = CPXgetnumrows(cplexEnv(), _prob);
   1.108 -    const double ub = INF;
   1.109 -    const char s = 'L';
   1.110 -    CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0);
   1.111 -    return i;
   1.112 -  }
   1.113 -
   1.114 -
   1.115 -  void CplexBase::_eraseCol(int i) {
   1.116 -    CPXdelcols(cplexEnv(), _prob, i, i);
   1.117 -  }
   1.118 -
   1.119 -  void CplexBase::_eraseRow(int i) {
   1.120 -    CPXdelrows(cplexEnv(), _prob, i, i);
   1.121 -  }
   1.122 -
   1.123 -  void CplexBase::_eraseColId(int i) {
   1.124 -    cols.eraseIndex(i);
   1.125 -    cols.shiftIndices(i);
   1.126 -  }
   1.127 -  void CplexBase::_eraseRowId(int i) {
   1.128 -    rows.eraseIndex(i);
   1.129 -    rows.shiftIndices(i);
   1.130 -  }
   1.131 -
   1.132 -  void CplexBase::_getColName(int col, std::string &name) const {
   1.133 -    int size;
   1.134 -    CPXgetcolname(cplexEnv(), _prob, 0, 0, 0, &size, col, col);
   1.135 -    if (size == 0) {
   1.136 -      name.clear();
   1.137 -      return;
   1.138 -    }
   1.139 -
   1.140 -    size *= -1;
   1.141 -    std::vector<char> buf(size);
   1.142 -    char *cname;
   1.143 -    int tmp;
   1.144 -    CPXgetcolname(cplexEnv(), _prob, &cname, &buf.front(), size,
   1.145 -                  &tmp, col, col);
   1.146 -    name = cname;
   1.147 -  }
   1.148 -
   1.149 -  void CplexBase::_setColName(int col, const std::string &name) {
   1.150 -    char *cname;
   1.151 -    cname = const_cast<char*>(name.c_str());
   1.152 -    CPXchgcolname(cplexEnv(), _prob, 1, &col, &cname);
   1.153 -  }
   1.154 -
   1.155 -  int CplexBase::_colByName(const std::string& name) const {
   1.156 -    int index;
   1.157 -    if (CPXgetcolindex(cplexEnv(), _prob,
   1.158 -                       const_cast<char*>(name.c_str()), &index) == 0) {
   1.159 -      return index;
   1.160 -    }
   1.161 -    return -1;
   1.162 -  }
   1.163 -
   1.164 -  void CplexBase::_getRowName(int row, std::string &name) const {
   1.165 -    int size;
   1.166 -    CPXgetrowname(cplexEnv(), _prob, 0, 0, 0, &size, row, row);
   1.167 -    if (size == 0) {
   1.168 -      name.clear();
   1.169 -      return;
   1.170 -    }
   1.171 -
   1.172 -    size *= -1;
   1.173 -    std::vector<char> buf(size);
   1.174 -    char *cname;
   1.175 -    int tmp;
   1.176 -    CPXgetrowname(cplexEnv(), _prob, &cname, &buf.front(), size,
   1.177 -                  &tmp, row, row);
   1.178 -    name = cname;
   1.179 -  }
   1.180 -
   1.181 -  void CplexBase::_setRowName(int row, const std::string &name) {
   1.182 -    char *cname;
   1.183 -    cname = const_cast<char*>(name.c_str());
   1.184 -    CPXchgrowname(cplexEnv(), _prob, 1, &row, &cname);
   1.185 -  }
   1.186 -
   1.187 -  int CplexBase::_rowByName(const std::string& name) const {
   1.188 -    int index;
   1.189 -    if (CPXgetrowindex(cplexEnv(), _prob,
   1.190 -                       const_cast<char*>(name.c_str()), &index) == 0) {
   1.191 -      return index;
   1.192 -    }
   1.193 -    return -1;
   1.194 -  }
   1.195 -
   1.196 -  void CplexBase::_setRowCoeffs(int i, ExprIterator b,
   1.197 -                                      ExprIterator e)
   1.198 -  {
   1.199 -    std::vector<int> indices;
   1.200 -    std::vector<int> rowlist;
   1.201 -    std::vector<Value> values;
   1.202 -
   1.203 -    for(ExprIterator it=b; it!=e; ++it) {
   1.204 -      indices.push_back(it->first);
   1.205 -      values.push_back(it->second);
   1.206 -      rowlist.push_back(i);
   1.207 -    }
   1.208 -
   1.209 -    CPXchgcoeflist(cplexEnv(), _prob, values.size(),
   1.210 -                   &rowlist.front(), &indices.front(), &values.front());
   1.211 -  }
   1.212 -
   1.213 -  void CplexBase::_getRowCoeffs(int i, InsertIterator b) const {
   1.214 -    int tmp1, tmp2, tmp3, length;
   1.215 -    CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i);
   1.216 -
   1.217 -    length = -length;
   1.218 -    std::vector<int> indices(length);
   1.219 -    std::vector<double> values(length);
   1.220 -
   1.221 -    CPXgetrows(cplexEnv(), _prob, &tmp1, &tmp2,
   1.222 -               &indices.front(), &values.front(),
   1.223 -               length, &tmp3, i, i);
   1.224 -
   1.225 -    for (int i = 0; i < length; ++i) {
   1.226 -      *b = std::make_pair(indices[i], values[i]);
   1.227 -      ++b;
   1.228 -    }
   1.229 -  }
   1.230 -
   1.231 -  void CplexBase::_setColCoeffs(int i, ExprIterator b, ExprIterator e) {
   1.232 -    std::vector<int> indices;
   1.233 -    std::vector<int> collist;
   1.234 -    std::vector<Value> values;
   1.235 -
   1.236 -    for(ExprIterator it=b; it!=e; ++it) {
   1.237 -      indices.push_back(it->first);
   1.238 -      values.push_back(it->second);
   1.239 -      collist.push_back(i);
   1.240 -    }
   1.241 -
   1.242 -    CPXchgcoeflist(cplexEnv(), _prob, values.size(),
   1.243 -                   &indices.front(), &collist.front(), &values.front());
   1.244 -  }
   1.245 -
   1.246 -  void CplexBase::_getColCoeffs(int i, InsertIterator b) const {
   1.247 -
   1.248 -    int tmp1, tmp2, tmp3, length;
   1.249 -    CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2, 0, 0, 0, &length, i, i);
   1.250 -
   1.251 -    length = -length;
   1.252 -    std::vector<int> indices(length);
   1.253 -    std::vector<double> values(length);
   1.254 -
   1.255 -    CPXgetcols(cplexEnv(), _prob, &tmp1, &tmp2,
   1.256 -               &indices.front(), &values.front(),
   1.257 -               length, &tmp3, i, i);
   1.258 -
   1.259 -    for (int i = 0; i < length; ++i) {
   1.260 -      *b = std::make_pair(indices[i], values[i]);
   1.261 -      ++b;
   1.262 -    }
   1.263 -
   1.264 -  }
   1.265 -
   1.266 -  void CplexBase::_setCoeff(int row, int col, Value value) {
   1.267 -    CPXchgcoef(cplexEnv(), _prob, row, col, value);
   1.268 -  }
   1.269 -
   1.270 -  CplexBase::Value CplexBase::_getCoeff(int row, int col) const {
   1.271 -    CplexBase::Value value;
   1.272 -    CPXgetcoef(cplexEnv(), _prob, row, col, &value);
   1.273 -    return value;
   1.274 -  }
   1.275 -
   1.276 -  void CplexBase::_setColLowerBound(int i, Value value) {
   1.277 -    const char s = 'L';
   1.278 -    CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value);
   1.279 -  }
   1.280 -
   1.281 -  CplexBase::Value CplexBase::_getColLowerBound(int i) const {
   1.282 -    CplexBase::Value res;
   1.283 -    CPXgetlb(cplexEnv(), _prob, &res, i, i);
   1.284 -    return res <= -CPX_INFBOUND ? -INF : res;
   1.285 -  }
   1.286 -
   1.287 -  void CplexBase::_setColUpperBound(int i, Value value)
   1.288 -  {
   1.289 -    const char s = 'U';
   1.290 -    CPXchgbds(cplexEnv(), _prob, 1, &i, &s, &value);
   1.291 -  }
   1.292 -
   1.293 -  CplexBase::Value CplexBase::_getColUpperBound(int i) const {
   1.294 -    CplexBase::Value res;
   1.295 -    CPXgetub(cplexEnv(), _prob, &res, i, i);
   1.296 -    return res >= CPX_INFBOUND ? INF : res;
   1.297 -  }
   1.298 -
   1.299 -  CplexBase::Value CplexBase::_getRowLowerBound(int i) const {
   1.300 -    char s;
   1.301 -    CPXgetsense(cplexEnv(), _prob, &s, i, i);
   1.302 -    CplexBase::Value res;
   1.303 -
   1.304 -    switch (s) {
   1.305 -    case 'G':
   1.306 -    case 'R':
   1.307 -    case 'E':
   1.308 -      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
   1.309 -      return res <= -CPX_INFBOUND ? -INF : res;
   1.310 -    default:
   1.311 -      return -INF;
   1.312 -    }
   1.313 -  }
   1.314 -
   1.315 -  CplexBase::Value CplexBase::_getRowUpperBound(int i) const {
   1.316 -    char s;
   1.317 -    CPXgetsense(cplexEnv(), _prob, &s, i, i);
   1.318 -    CplexBase::Value res;
   1.319 -
   1.320 -    switch (s) {
   1.321 -    case 'L':
   1.322 -    case 'E':
   1.323 -      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
   1.324 -      return res >= CPX_INFBOUND ? INF : res;
   1.325 -    case 'R':
   1.326 -      CPXgetrhs(cplexEnv(), _prob, &res, i, i);
   1.327 -      {
   1.328 -        double rng;
   1.329 -        CPXgetrngval(cplexEnv(), _prob, &rng, i, i);
   1.330 -        res += rng;
   1.331 -      }
   1.332 -      return res >= CPX_INFBOUND ? INF : res;
   1.333 -    default:
   1.334 -      return INF;
   1.335 -    }
   1.336 -  }
   1.337 -
   1.338 -  //This is easier to implement
   1.339 -  void CplexBase::_set_row_bounds(int i, Value lb, Value ub) {
   1.340 -    if (lb == -INF) {
   1.341 -      const char s = 'L';
   1.342 -      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
   1.343 -      CPXchgrhs(cplexEnv(), _prob, 1, &i, &ub);
   1.344 -    } else if (ub == INF) {
   1.345 -      const char s = 'G';
   1.346 -      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
   1.347 -      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
   1.348 -    } else if (lb == ub){
   1.349 -      const char s = 'E';
   1.350 -      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
   1.351 -      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
   1.352 -    } else {
   1.353 -      const char s = 'R';
   1.354 -      CPXchgsense(cplexEnv(), _prob, 1, &i, &s);
   1.355 -      CPXchgrhs(cplexEnv(), _prob, 1, &i, &lb);
   1.356 -      double len = ub - lb;
   1.357 -      CPXchgrngval(cplexEnv(), _prob, 1, &i, &len);
   1.358 -    }
   1.359 -  }
   1.360 -
   1.361 -  void CplexBase::_setRowLowerBound(int i, Value lb)
   1.362 -  {
   1.363 -    LEMON_ASSERT(lb != INF, "Invalid bound");
   1.364 -    _set_row_bounds(i, lb, CplexBase::_getRowUpperBound(i));
   1.365 -  }
   1.366 -
   1.367 -  void CplexBase::_setRowUpperBound(int i, Value ub)
   1.368 -  {
   1.369 -
   1.370 -    LEMON_ASSERT(ub != -INF, "Invalid bound");
   1.371 -    _set_row_bounds(i, CplexBase::_getRowLowerBound(i), ub);
   1.372 -  }
   1.373 -
   1.374 -  void CplexBase::_setObjCoeffs(ExprIterator b, ExprIterator e)
   1.375 -  {
   1.376 -    std::vector<int> indices;
   1.377 -    std::vector<Value> values;
   1.378 -    for(ExprIterator it=b; it!=e; ++it) {
   1.379 -      indices.push_back(it->first);
   1.380 -      values.push_back(it->second);
   1.381 -    }
   1.382 -    CPXchgobj(cplexEnv(), _prob, values.size(),
   1.383 -              &indices.front(), &values.front());
   1.384 -
   1.385 -  }
   1.386 -
   1.387 -  void CplexBase::_getObjCoeffs(InsertIterator b) const
   1.388 -  {
   1.389 -    int num = CPXgetnumcols(cplexEnv(), _prob);
   1.390 -    std::vector<Value> x(num);
   1.391 -
   1.392 -    CPXgetobj(cplexEnv(), _prob, &x.front(), 0, num - 1);
   1.393 -    for (int i = 0; i < num; ++i) {
   1.394 -      if (x[i] != 0.0) {
   1.395 -        *b = std::make_pair(i, x[i]);
   1.396 -        ++b;
   1.397 -      }
   1.398 -    }
   1.399 -  }
   1.400 -
   1.401 -  void CplexBase::_setObjCoeff(int i, Value obj_coef)
   1.402 -  {
   1.403 -    CPXchgobj(cplexEnv(), _prob, 1, &i, &obj_coef);
   1.404 -  }
   1.405 -
   1.406 -  CplexBase::Value CplexBase::_getObjCoeff(int i) const
   1.407 -  {
   1.408 -    Value x;
   1.409 -    CPXgetobj(cplexEnv(), _prob, &x, i, i);
   1.410 -    return x;
   1.411 -  }
   1.412 -
   1.413 -  void CplexBase::_setSense(CplexBase::Sense sense) {
   1.414 -    switch (sense) {
   1.415 -    case MIN:
   1.416 -      CPXchgobjsen(cplexEnv(), _prob, CPX_MIN);
   1.417 -      break;
   1.418 -    case MAX:
   1.419 -      CPXchgobjsen(cplexEnv(), _prob, CPX_MAX);
   1.420 -      break;
   1.421 -    }
   1.422 -  }
   1.423 -
   1.424 -  CplexBase::Sense CplexBase::_getSense() const {
   1.425 -    switch (CPXgetobjsen(cplexEnv(), _prob)) {
   1.426 -    case CPX_MIN:
   1.427 -      return MIN;
   1.428 -    case CPX_MAX:
   1.429 -      return MAX;
   1.430 -    default:
   1.431 -      LEMON_ASSERT(false, "Invalid sense");
   1.432 -      return CplexBase::Sense();
   1.433 -    }
   1.434 -  }
   1.435 -
   1.436 -  void CplexBase::_clear() {
   1.437 -    CPXfreeprob(cplexEnv(),&_prob);
   1.438 -    int status;
   1.439 -    _prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem");
   1.440 -    rows.clear();
   1.441 -    cols.clear();
   1.442 -  }
   1.443 -
   1.444 -  // LpCplex members
   1.445 -
   1.446 -  LpCplex::LpCplex()
   1.447 -    : LpBase(), CplexBase(), LpSolver() {}
   1.448 -
   1.449 -  LpCplex::LpCplex(const CplexEnv& env)
   1.450 -    : LpBase(), CplexBase(env), LpSolver() {}
   1.451 -
   1.452 -  LpCplex::LpCplex(const LpCplex& other)
   1.453 -    : LpBase(), CplexBase(other), LpSolver() {}
   1.454 -
   1.455 -  LpCplex::~LpCplex() {}
   1.456 -
   1.457 -  LpCplex* LpCplex::_newSolver() const { return new LpCplex; }
   1.458 -  LpCplex* LpCplex::_cloneSolver() const {return new LpCplex(*this); }
   1.459 -
   1.460 -  const char* LpCplex::_solverName() const { return "LpCplex"; }
   1.461 -
   1.462 -  void LpCplex::_clear_temporals() {
   1.463 -    _col_status.clear();
   1.464 -    _row_status.clear();
   1.465 -    _primal_ray.clear();
   1.466 -    _dual_ray.clear();
   1.467 -  }
   1.468 -
   1.469 -  // The routine returns zero unless an error occurred during the
   1.470 -  // optimization. Examples of errors include exhausting available
   1.471 -  // memory (CPXERR_NO_MEMORY) or encountering invalid data in the
   1.472 -  // CPLEX problem object (CPXERR_NO_PROBLEM). Exceeding a
   1.473 -  // user-specified CPLEX limit, or proving the model infeasible or
   1.474 -  // unbounded, are not considered errors. Note that a zero return
   1.475 -  // value does not necessarily mean that a solution exists. Use query
   1.476 -  // routines CPXsolninfo, CPXgetstat, and CPXsolution to obtain
   1.477 -  // further information about the status of the optimization.
   1.478 -  LpCplex::SolveExitStatus LpCplex::convertStatus(int status) {
   1.479 -#if CPX_VERSION >= 800
   1.480 -    if (status == 0) {
   1.481 -      switch (CPXgetstat(cplexEnv(), _prob)) {
   1.482 -      case CPX_STAT_OPTIMAL:
   1.483 -      case CPX_STAT_INFEASIBLE:
   1.484 -      case CPX_STAT_UNBOUNDED:
   1.485 -        return SOLVED;
   1.486 -      default:
   1.487 -        return UNSOLVED;
   1.488 -      }
   1.489 -    } else {
   1.490 -      return UNSOLVED;
   1.491 -    }
   1.492 -#else
   1.493 -    if (status == 0) {
   1.494 -      //We want to exclude some cases
   1.495 -      switch (CPXgetstat(cplexEnv(), _prob)) {
   1.496 -      case CPX_OBJ_LIM:
   1.497 -      case CPX_IT_LIM_FEAS:
   1.498 -      case CPX_IT_LIM_INFEAS:
   1.499 -      case CPX_TIME_LIM_FEAS:
   1.500 -      case CPX_TIME_LIM_INFEAS:
   1.501 -        return UNSOLVED;
   1.502 -      default:
   1.503 -        return SOLVED;
   1.504 -      }
   1.505 -    } else {
   1.506 -      return UNSOLVED;
   1.507 -    }
   1.508 -#endif
   1.509 -  }
   1.510 -
   1.511 -  LpCplex::SolveExitStatus LpCplex::_solve() {
   1.512 -    _clear_temporals();
   1.513 -    return convertStatus(CPXlpopt(cplexEnv(), _prob));
   1.514 -  }
   1.515 -
   1.516 -  LpCplex::SolveExitStatus LpCplex::solvePrimal() {
   1.517 -    _clear_temporals();
   1.518 -    return convertStatus(CPXprimopt(cplexEnv(), _prob));
   1.519 -  }
   1.520 -
   1.521 -  LpCplex::SolveExitStatus LpCplex::solveDual() {
   1.522 -    _clear_temporals();
   1.523 -    return convertStatus(CPXdualopt(cplexEnv(), _prob));
   1.524 -  }
   1.525 -
   1.526 -  LpCplex::SolveExitStatus LpCplex::solveBarrier() {
   1.527 -    _clear_temporals();
   1.528 -    return convertStatus(CPXbaropt(cplexEnv(), _prob));
   1.529 -  }
   1.530 -
   1.531 -  LpCplex::Value LpCplex::_getPrimal(int i) const {
   1.532 -    Value x;
   1.533 -    CPXgetx(cplexEnv(), _prob, &x, i, i);
   1.534 -    return x;
   1.535 -  }
   1.536 -
   1.537 -  LpCplex::Value LpCplex::_getDual(int i) const {
   1.538 -    Value y;
   1.539 -    CPXgetpi(cplexEnv(), _prob, &y, i, i);
   1.540 -    return y;
   1.541 -  }
   1.542 -
   1.543 -  LpCplex::Value LpCplex::_getPrimalValue() const {
   1.544 -    Value objval;
   1.545 -    CPXgetobjval(cplexEnv(), _prob, &objval);
   1.546 -    return objval;
   1.547 -  }
   1.548 -
   1.549 -  LpCplex::VarStatus LpCplex::_getColStatus(int i) const {
   1.550 -    if (_col_status.empty()) {
   1.551 -      _col_status.resize(CPXgetnumcols(cplexEnv(), _prob));
   1.552 -      CPXgetbase(cplexEnv(), _prob, &_col_status.front(), 0);
   1.553 -    }
   1.554 -    switch (_col_status[i]) {
   1.555 -    case CPX_BASIC:
   1.556 -      return BASIC;
   1.557 -    case CPX_FREE_SUPER:
   1.558 -      return FREE;
   1.559 -    case CPX_AT_LOWER:
   1.560 -      return LOWER;
   1.561 -    case CPX_AT_UPPER:
   1.562 -      return UPPER;
   1.563 -    default:
   1.564 -      LEMON_ASSERT(false, "Wrong column status");
   1.565 -      return LpCplex::VarStatus();
   1.566 -    }
   1.567 -  }
   1.568 -
   1.569 -  LpCplex::VarStatus LpCplex::_getRowStatus(int i) const {
   1.570 -    if (_row_status.empty()) {
   1.571 -      _row_status.resize(CPXgetnumrows(cplexEnv(), _prob));
   1.572 -      CPXgetbase(cplexEnv(), _prob, 0, &_row_status.front());
   1.573 -    }
   1.574 -    switch (_row_status[i]) {
   1.575 -    case CPX_BASIC:
   1.576 -      return BASIC;
   1.577 -    case CPX_AT_LOWER:
   1.578 -      {
   1.579 -        char s;
   1.580 -        CPXgetsense(cplexEnv(), _prob, &s, i, i);
   1.581 -        return s != 'L' ? LOWER : UPPER;
   1.582 -      }
   1.583 -    case CPX_AT_UPPER:
   1.584 -      return UPPER;
   1.585 -    default:
   1.586 -      LEMON_ASSERT(false, "Wrong row status");
   1.587 -      return LpCplex::VarStatus();
   1.588 -    }
   1.589 -  }
   1.590 -
   1.591 -  LpCplex::Value LpCplex::_getPrimalRay(int i) const {
   1.592 -    if (_primal_ray.empty()) {
   1.593 -      _primal_ray.resize(CPXgetnumcols(cplexEnv(), _prob));
   1.594 -      CPXgetray(cplexEnv(), _prob, &_primal_ray.front());
   1.595 -    }
   1.596 -    return _primal_ray[i];
   1.597 -  }
   1.598 -
   1.599 -  LpCplex::Value LpCplex::_getDualRay(int i) const {
   1.600 -    if (_dual_ray.empty()) {
   1.601 -
   1.602 -    }
   1.603 -    return _dual_ray[i];
   1.604 -  }
   1.605 -
   1.606 -  //7.5-os cplex statusai (Vigyazat: a 9.0-asei masok!)
   1.607 -  // This table lists the statuses, returned by the CPXgetstat()
   1.608 -  // routine, for solutions to LP problems or mixed integer problems. If
   1.609 -  // no solution exists, the return value is zero.
   1.610 -
   1.611 -  // For Simplex, Barrier
   1.612 -  // 1          CPX_OPTIMAL
   1.613 -  //          Optimal solution found
   1.614 -  // 2          CPX_INFEASIBLE
   1.615 -  //          Problem infeasible
   1.616 -  // 3    CPX_UNBOUNDED
   1.617 -  //          Problem unbounded
   1.618 -  // 4          CPX_OBJ_LIM
   1.619 -  //          Objective limit exceeded in Phase II
   1.620 -  // 5          CPX_IT_LIM_FEAS
   1.621 -  //          Iteration limit exceeded in Phase II
   1.622 -  // 6          CPX_IT_LIM_INFEAS
   1.623 -  //          Iteration limit exceeded in Phase I
   1.624 -  // 7          CPX_TIME_LIM_FEAS
   1.625 -  //          Time limit exceeded in Phase II
   1.626 -  // 8          CPX_TIME_LIM_INFEAS
   1.627 -  //          Time limit exceeded in Phase I
   1.628 -  // 9          CPX_NUM_BEST_FEAS
   1.629 -  //          Problem non-optimal, singularities in Phase II
   1.630 -  // 10         CPX_NUM_BEST_INFEAS
   1.631 -  //          Problem non-optimal, singularities in Phase I
   1.632 -  // 11         CPX_OPTIMAL_INFEAS
   1.633 -  //          Optimal solution found, unscaled infeasibilities
   1.634 -  // 12         CPX_ABORT_FEAS
   1.635 -  //          Aborted in Phase II
   1.636 -  // 13         CPX_ABORT_INFEAS
   1.637 -  //          Aborted in Phase I
   1.638 -  // 14          CPX_ABORT_DUAL_INFEAS
   1.639 -  //          Aborted in barrier, dual infeasible
   1.640 -  // 15          CPX_ABORT_PRIM_INFEAS
   1.641 -  //          Aborted in barrier, primal infeasible
   1.642 -  // 16          CPX_ABORT_PRIM_DUAL_INFEAS
   1.643 -  //          Aborted in barrier, primal and dual infeasible
   1.644 -  // 17          CPX_ABORT_PRIM_DUAL_FEAS
   1.645 -  //          Aborted in barrier, primal and dual feasible
   1.646 -  // 18          CPX_ABORT_CROSSOVER
   1.647 -  //          Aborted in crossover
   1.648 -  // 19          CPX_INForUNBD
   1.649 -  //          Infeasible or unbounded
   1.650 -  // 20   CPX_PIVOT
   1.651 -  //       User pivot used
   1.652 -  //
   1.653 -  //     Ezeket hova tegyem:
   1.654 -  // ??case CPX_ABORT_DUAL_INFEAS
   1.655 -  // ??case CPX_ABORT_CROSSOVER
   1.656 -  // ??case CPX_INForUNBD
   1.657 -  // ??case CPX_PIVOT
   1.658 -
   1.659 -  //Some more interesting stuff:
   1.660 -
   1.661 -  // CPX_PARAM_PROBMETHOD  1062  int  LPMETHOD
   1.662 -  // 0 Automatic
   1.663 -  // 1 Primal Simplex
   1.664 -  // 2 Dual Simplex
   1.665 -  // 3 Network Simplex
   1.666 -  // 4 Standard Barrier
   1.667 -  // Default: 0
   1.668 -  // Description: Method for linear optimization.
   1.669 -  // Determines which algorithm is used when CPXlpopt() (or "optimize"
   1.670 -  // in the Interactive Optimizer) is called. Currently the behavior of
   1.671 -  // the "Automatic" setting is that CPLEX simply invokes the dual
   1.672 -  // simplex method, but this capability may be expanded in the future
   1.673 -  // so that CPLEX chooses the method based on problem characteristics
   1.674 -#if CPX_VERSION < 900
   1.675 -  void statusSwitch(CPXENVptr cplexEnv(),int& stat){
   1.676 -    int lpmethod;
   1.677 -    CPXgetintparam (cplexEnv(),CPX_PARAM_PROBMETHOD,&lpmethod);
   1.678 -    if (lpmethod==2){
   1.679 -      if (stat==CPX_UNBOUNDED){
   1.680 -        stat=CPX_INFEASIBLE;
   1.681 -      }
   1.682 -      else{
   1.683 -        if (stat==CPX_INFEASIBLE)
   1.684 -          stat=CPX_UNBOUNDED;
   1.685 -      }
   1.686 -    }
   1.687 -  }
   1.688 -#else
   1.689 -  void statusSwitch(CPXENVptr,int&){}
   1.690 -#endif
   1.691 -
   1.692 -  LpCplex::ProblemType LpCplex::_getPrimalType() const {
   1.693 -    // Unboundedness not treated well: the following is from cplex 9.0 doc
   1.694 -    // About Unboundedness
   1.695 -
   1.696 -    // The treatment of models that are unbounded involves a few
   1.697 -    // subtleties. Specifically, a declaration of unboundedness means that
   1.698 -    // ILOG CPLEX has determined that the model has an unbounded
   1.699 -    // ray. Given any feasible solution x with objective z, a multiple of
   1.700 -    // the unbounded ray can be added to x to give a feasible solution
   1.701 -    // with objective z-1 (or z+1 for maximization models). Thus, if a
   1.702 -    // feasible solution exists, then the optimal objective is
   1.703 -    // unbounded. Note that ILOG CPLEX has not necessarily concluded that
   1.704 -    // a feasible solution exists. Users can call the routine CPXsolninfo
   1.705 -    // to determine whether ILOG CPLEX has also concluded that the model
   1.706 -    // has a feasible solution.
   1.707 -
   1.708 -    int stat = CPXgetstat(cplexEnv(), _prob);
   1.709 -#if CPX_VERSION >= 800
   1.710 -    switch (stat)
   1.711 -      {
   1.712 -      case CPX_STAT_OPTIMAL:
   1.713 -        return OPTIMAL;
   1.714 -      case CPX_STAT_UNBOUNDED:
   1.715 -        return UNBOUNDED;
   1.716 -      case CPX_STAT_INFEASIBLE:
   1.717 -        return INFEASIBLE;
   1.718 -      default:
   1.719 -        return UNDEFINED;
   1.720 -      }
   1.721 -#else
   1.722 -    statusSwitch(cplexEnv(),stat);
   1.723 -    //CPXgetstat(cplexEnv(), _prob);
   1.724 -    //printf("A primal status: %d, CPX_OPTIMAL=%d \n",stat,CPX_OPTIMAL);
   1.725 -    switch (stat) {
   1.726 -    case 0:
   1.727 -      return UNDEFINED; //Undefined
   1.728 -    case CPX_OPTIMAL://Optimal
   1.729 -      return OPTIMAL;
   1.730 -    case CPX_UNBOUNDED://Unbounded
   1.731 -      return INFEASIBLE;//In case of dual simplex
   1.732 -      //return UNBOUNDED;
   1.733 -    case CPX_INFEASIBLE://Infeasible
   1.734 -      //    case CPX_IT_LIM_INFEAS:
   1.735 -      //     case CPX_TIME_LIM_INFEAS:
   1.736 -      //     case CPX_NUM_BEST_INFEAS:
   1.737 -      //     case CPX_OPTIMAL_INFEAS:
   1.738 -      //     case CPX_ABORT_INFEAS:
   1.739 -      //     case CPX_ABORT_PRIM_INFEAS:
   1.740 -      //     case CPX_ABORT_PRIM_DUAL_INFEAS:
   1.741 -      return UNBOUNDED;//In case of dual simplex
   1.742 -      //return INFEASIBLE;
   1.743 -      //     case CPX_OBJ_LIM:
   1.744 -      //     case CPX_IT_LIM_FEAS:
   1.745 -      //     case CPX_TIME_LIM_FEAS:
   1.746 -      //     case CPX_NUM_BEST_FEAS:
   1.747 -      //     case CPX_ABORT_FEAS:
   1.748 -      //     case CPX_ABORT_PRIM_DUAL_FEAS:
   1.749 -      //       return FEASIBLE;
   1.750 -    default:
   1.751 -      return UNDEFINED; //Everything else comes here
   1.752 -      //FIXME error
   1.753 -    }
   1.754 -#endif
   1.755 -  }
   1.756 -
   1.757 -  //9.0-as cplex verzio statusai
   1.758 -  // CPX_STAT_ABORT_DUAL_OBJ_LIM
   1.759 -  // CPX_STAT_ABORT_IT_LIM
   1.760 -  // CPX_STAT_ABORT_OBJ_LIM
   1.761 -  // CPX_STAT_ABORT_PRIM_OBJ_LIM
   1.762 -  // CPX_STAT_ABORT_TIME_LIM
   1.763 -  // CPX_STAT_ABORT_USER
   1.764 -  // CPX_STAT_FEASIBLE_RELAXED
   1.765 -  // CPX_STAT_INFEASIBLE
   1.766 -  // CPX_STAT_INForUNBD
   1.767 -  // CPX_STAT_NUM_BEST
   1.768 -  // CPX_STAT_OPTIMAL
   1.769 -  // CPX_STAT_OPTIMAL_FACE_UNBOUNDED
   1.770 -  // CPX_STAT_OPTIMAL_INFEAS
   1.771 -  // CPX_STAT_OPTIMAL_RELAXED
   1.772 -  // CPX_STAT_UNBOUNDED
   1.773 -
   1.774 -  LpCplex::ProblemType LpCplex::_getDualType() const {
   1.775 -    int stat = CPXgetstat(cplexEnv(), _prob);
   1.776 -#if CPX_VERSION >= 800
   1.777 -    switch (stat) {
   1.778 -    case CPX_STAT_OPTIMAL:
   1.779 -      return OPTIMAL;
   1.780 -    case CPX_STAT_UNBOUNDED:
   1.781 -      return INFEASIBLE;
   1.782 -    default:
   1.783 -      return UNDEFINED;
   1.784 -    }
   1.785 -#else
   1.786 -    statusSwitch(cplexEnv(),stat);
   1.787 -    switch (stat) {
   1.788 -    case 0:
   1.789 -      return UNDEFINED; //Undefined
   1.790 -    case CPX_OPTIMAL://Optimal
   1.791 -      return OPTIMAL;
   1.792 -    case CPX_UNBOUNDED:
   1.793 -      return INFEASIBLE;
   1.794 -    default:
   1.795 -      return UNDEFINED; //Everything else comes here
   1.796 -      //FIXME error
   1.797 -    }
   1.798 -#endif
   1.799 -  }
   1.800 -
   1.801 -  // MipCplex members
   1.802 -
   1.803 -  MipCplex::MipCplex()
   1.804 -    : LpBase(), CplexBase(), MipSolver() {
   1.805 -
   1.806 -#if CPX_VERSION < 800
   1.807 -    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MIP);
   1.808 -#else
   1.809 -    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MILP);
   1.810 -#endif
   1.811 -  }
   1.812 -
   1.813 -  MipCplex::MipCplex(const CplexEnv& env)
   1.814 -    : LpBase(), CplexBase(env), MipSolver() {
   1.815 -
   1.816 -#if CPX_VERSION < 800
   1.817 -    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MIP);
   1.818 -#else
   1.819 -    CPXchgprobtype(cplexEnv(),  _prob, CPXPROB_MILP);
   1.820 -#endif
   1.821 -
   1.822 -  }
   1.823 -
   1.824 -  MipCplex::MipCplex(const MipCplex& other)
   1.825 -    : LpBase(), CplexBase(other), MipSolver() {}
   1.826 -
   1.827 -  MipCplex::~MipCplex() {}
   1.828 -
   1.829 -  MipCplex* MipCplex::_newSolver() const { return new MipCplex; }
   1.830 -  MipCplex* MipCplex::_cloneSolver() const {return new MipCplex(*this); }
   1.831 -
   1.832 -  const char* MipCplex::_solverName() const { return "MipCplex"; }
   1.833 -
   1.834 -  void MipCplex::_setColType(int i, MipCplex::ColTypes col_type) {
   1.835 -
   1.836 -    // Note If a variable is to be changed to binary, a call to CPXchgbds
   1.837 -    // should also be made to change the bounds to 0 and 1.
   1.838 -
   1.839 -    switch (col_type){
   1.840 -    case INTEGER: {
   1.841 -      const char t = 'I';
   1.842 -      CPXchgctype (cplexEnv(), _prob, 1, &i, &t);
   1.843 -    } break;
   1.844 -    case REAL: {
   1.845 -      const char t = 'C';
   1.846 -      CPXchgctype (cplexEnv(), _prob, 1, &i, &t);
   1.847 -    } break;
   1.848 -    default:
   1.849 -      break;
   1.850 -    }
   1.851 -  }
   1.852 -
   1.853 -  MipCplex::ColTypes MipCplex::_getColType(int i) const {
   1.854 -    char t;
   1.855 -    CPXgetctype (cplexEnv(), _prob, &t, i, i);
   1.856 -    switch (t) {
   1.857 -    case 'I':
   1.858 -      return INTEGER;
   1.859 -    case 'C':
   1.860 -      return REAL;
   1.861 -    default:
   1.862 -      LEMON_ASSERT(false, "Invalid column type");
   1.863 -      return ColTypes();
   1.864 -    }
   1.865 -
   1.866 -  }
   1.867 -
   1.868 -  MipCplex::SolveExitStatus MipCplex::_solve() {
   1.869 -    int status;
   1.870 -    status = CPXmipopt (cplexEnv(), _prob);
   1.871 -    if (status==0)
   1.872 -      return SOLVED;
   1.873 -    else
   1.874 -      return UNSOLVED;
   1.875 -
   1.876 -  }
   1.877 -
   1.878 -
   1.879 -  MipCplex::ProblemType MipCplex::_getType() const {
   1.880 -
   1.881 -    int stat = CPXgetstat(cplexEnv(), _prob);
   1.882 -
   1.883 -    //Fortunately, MIP statuses did not change for cplex 8.0
   1.884 -    switch (stat) {
   1.885 -    case CPXMIP_OPTIMAL:
   1.886 -      // Optimal integer solution has been found.
   1.887 -    case CPXMIP_OPTIMAL_TOL:
   1.888 -      // Optimal soluton with the tolerance defined by epgap or epagap has
   1.889 -      // been found.
   1.890 -      return OPTIMAL;
   1.891 -      //This also exists in later issues
   1.892 -      //    case CPXMIP_UNBOUNDED:
   1.893 -      //return UNBOUNDED;
   1.894 -      case CPXMIP_INFEASIBLE:
   1.895 -        return INFEASIBLE;
   1.896 -    default:
   1.897 -      return UNDEFINED;
   1.898 -    }
   1.899 -    //Unboundedness not treated well: the following is from cplex 9.0 doc
   1.900 -    // About Unboundedness
   1.901 -
   1.902 -    // The treatment of models that are unbounded involves a few
   1.903 -    // subtleties. Specifically, a declaration of unboundedness means that
   1.904 -    // ILOG CPLEX has determined that the model has an unbounded
   1.905 -    // ray. Given any feasible solution x with objective z, a multiple of
   1.906 -    // the unbounded ray can be added to x to give a feasible solution
   1.907 -    // with objective z-1 (or z+1 for maximization models). Thus, if a
   1.908 -    // feasible solution exists, then the optimal objective is
   1.909 -    // unbounded. Note that ILOG CPLEX has not necessarily concluded that
   1.910 -    // a feasible solution exists. Users can call the routine CPXsolninfo
   1.911 -    // to determine whether ILOG CPLEX has also concluded that the model
   1.912 -    // has a feasible solution.
   1.913 -  }
   1.914 -
   1.915 -  MipCplex::Value MipCplex::_getSol(int i) const {
   1.916 -    Value x;
   1.917 -    CPXgetmipx(cplexEnv(), _prob, &x, i, i);
   1.918 -    return x;
   1.919 -  }
   1.920 -
   1.921 -  MipCplex::Value MipCplex::_getSolValue() const {
   1.922 -    Value objval;
   1.923 -    CPXgetmipobjval(cplexEnv(), _prob, &objval);
   1.924 -    return objval;
   1.925 -  }
   1.926 -
   1.927 -} //namespace lemon
   1.928 -