lemon/radix_heap.h
branch1.1
changeset 913 2f9d9bcc1867
parent 908 c6f725eff737
parent 912 37f440367057
child 928 7bf1117178af
     1.1 --- a/lemon/radix_heap.h	Sun Feb 21 18:55:01 2010 +0100
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,433 +0,0 @@
     1.4 -/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 - *
     1.6 - * This file is a part of LEMON, a generic C++ optimization library.
     1.7 - *
     1.8 - * Copyright (C) 2003-2009
     1.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 - *
    1.12 - * Permission to use, modify and distribute this software is granted
    1.13 - * provided that this copyright notice appears in all copies. For
    1.14 - * precise terms see the accompanying LICENSE file.
    1.15 - *
    1.16 - * This software is provided "AS IS" with no warranty of any kind,
    1.17 - * express or implied, and with no claim as to its suitability for any
    1.18 - * purpose.
    1.19 - *
    1.20 - */
    1.21 -
    1.22 -#ifndef LEMON_RADIX_HEAP_H
    1.23 -#define LEMON_RADIX_HEAP_H
    1.24 -
    1.25 -///\ingroup auxdat
    1.26 -///\file
    1.27 -///\brief Radix Heap implementation.
    1.28 -
    1.29 -#include <vector>
    1.30 -#include <lemon/error.h>
    1.31 -
    1.32 -namespace lemon {
    1.33 -
    1.34 -
    1.35 -  /// \ingroup auxdata
    1.36 -  ///
    1.37 -  /// \brief A Radix Heap implementation.
    1.38 -  ///
    1.39 -  /// This class implements the \e radix \e heap data structure. A \e heap
    1.40 -  /// is a data structure for storing items with specified values called \e
    1.41 -  /// priorities in such a way that finding the item with minimum priority is
    1.42 -  /// efficient. This heap type can store only items with \e int priority.
    1.43 -  /// In a heap one can change the priority of an item, add or erase an
    1.44 -  /// item, but the priority cannot be decreased under the last removed
    1.45 -  /// item's priority.
    1.46 -  ///
    1.47 -  /// \param IM A read and writable Item int map, used internally
    1.48 -  /// to handle the cross references.
    1.49 -  ///
    1.50 -  /// \see BinHeap
    1.51 -  /// \see Dijkstra
    1.52 -  template <typename IM>
    1.53 -  class RadixHeap {
    1.54 -
    1.55 -  public:
    1.56 -    typedef typename IM::Key Item;
    1.57 -    typedef int Prio;
    1.58 -    typedef IM ItemIntMap;
    1.59 -
    1.60 -    /// \brief Exception thrown by RadixHeap.
    1.61 -    ///
    1.62 -    /// This Exception is thrown when a smaller priority
    1.63 -    /// is inserted into the \e RadixHeap then the last time erased.
    1.64 -    /// \see RadixHeap
    1.65 -
    1.66 -    class UnderFlowPriorityError : public Exception {
    1.67 -    public:
    1.68 -      virtual const char* what() const throw() {
    1.69 -        return "lemon::RadixHeap::UnderFlowPriorityError";
    1.70 -      }
    1.71 -    };
    1.72 -
    1.73 -    /// \brief Type to represent the items states.
    1.74 -    ///
    1.75 -    /// Each Item element have a state associated to it. It may be "in heap",
    1.76 -    /// "pre heap" or "post heap". The latter two are indifferent from the
    1.77 -    /// heap's point of view, but may be useful to the user.
    1.78 -    ///
    1.79 -    /// The ItemIntMap \e should be initialized in such way that it maps
    1.80 -    /// PRE_HEAP (-1) to any element to be put in the heap...
    1.81 -    enum State {
    1.82 -      IN_HEAP = 0,
    1.83 -      PRE_HEAP = -1,
    1.84 -      POST_HEAP = -2
    1.85 -    };
    1.86 -
    1.87 -  private:
    1.88 -
    1.89 -    struct RadixItem {
    1.90 -      int prev, next, box;
    1.91 -      Item item;
    1.92 -      int prio;
    1.93 -      RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
    1.94 -    };
    1.95 -
    1.96 -    struct RadixBox {
    1.97 -      int first;
    1.98 -      int min, size;
    1.99 -      RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
   1.100 -    };
   1.101 -
   1.102 -    std::vector<RadixItem> data;
   1.103 -    std::vector<RadixBox> boxes;
   1.104 -
   1.105 -    ItemIntMap &_iim;
   1.106 -
   1.107 -
   1.108 -  public:
   1.109 -    /// \brief The constructor.
   1.110 -    ///
   1.111 -    /// The constructor.
   1.112 -    ///
   1.113 -    /// \param map It should be given to the constructor, since it is used
   1.114 -    /// internally to handle the cross references. The value of the map
   1.115 -    /// should be PRE_HEAP (-1) for each element.
   1.116 -    ///
   1.117 -    /// \param minimal The initial minimal value of the heap.
   1.118 -    /// \param capacity It determines the initial capacity of the heap.
   1.119 -    RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0)
   1.120 -      : _iim(map) {
   1.121 -      boxes.push_back(RadixBox(minimal, 1));
   1.122 -      boxes.push_back(RadixBox(minimal + 1, 1));
   1.123 -      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   1.124 -        extend();
   1.125 -      }
   1.126 -    }
   1.127 -
   1.128 -    /// The number of items stored in the heap.
   1.129 -    ///
   1.130 -    /// \brief Returns the number of items stored in the heap.
   1.131 -    int size() const { return data.size(); }
   1.132 -    /// \brief Checks if the heap stores no items.
   1.133 -    ///
   1.134 -    /// Returns \c true if and only if the heap stores no items.
   1.135 -    bool empty() const { return data.empty(); }
   1.136 -
   1.137 -    /// \brief Make empty this heap.
   1.138 -    ///
   1.139 -    /// Make empty this heap. It does not change the cross reference
   1.140 -    /// map.  If you want to reuse a heap what is not surely empty you
   1.141 -    /// should first clear the heap and after that you should set the
   1.142 -    /// cross reference map for each item to \c PRE_HEAP.
   1.143 -    void clear(int minimal = 0, int capacity = 0) {
   1.144 -      data.clear(); boxes.clear();
   1.145 -      boxes.push_back(RadixBox(minimal, 1));
   1.146 -      boxes.push_back(RadixBox(minimal + 1, 1));
   1.147 -      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   1.148 -        extend();
   1.149 -      }
   1.150 -    }
   1.151 -
   1.152 -  private:
   1.153 -
   1.154 -    bool upper(int box, Prio pr) {
   1.155 -      return pr < boxes[box].min;
   1.156 -    }
   1.157 -
   1.158 -    bool lower(int box, Prio pr) {
   1.159 -      return pr >= boxes[box].min + boxes[box].size;
   1.160 -    }
   1.161 -
   1.162 -    /// \brief Remove item from the box list.
   1.163 -    void remove(int index) {
   1.164 -      if (data[index].prev >= 0) {
   1.165 -        data[data[index].prev].next = data[index].next;
   1.166 -      } else {
   1.167 -        boxes[data[index].box].first = data[index].next;
   1.168 -      }
   1.169 -      if (data[index].next >= 0) {
   1.170 -        data[data[index].next].prev = data[index].prev;
   1.171 -      }
   1.172 -    }
   1.173 -
   1.174 -    /// \brief Insert item into the box list.
   1.175 -    void insert(int box, int index) {
   1.176 -      if (boxes[box].first == -1) {
   1.177 -        boxes[box].first = index;
   1.178 -        data[index].next = data[index].prev = -1;
   1.179 -      } else {
   1.180 -        data[index].next = boxes[box].first;
   1.181 -        data[boxes[box].first].prev = index;
   1.182 -        data[index].prev = -1;
   1.183 -        boxes[box].first = index;
   1.184 -      }
   1.185 -      data[index].box = box;
   1.186 -    }
   1.187 -
   1.188 -    /// \brief Add a new box to the box list.
   1.189 -    void extend() {
   1.190 -      int min = boxes.back().min + boxes.back().size;
   1.191 -      int bs = 2 * boxes.back().size;
   1.192 -      boxes.push_back(RadixBox(min, bs));
   1.193 -    }
   1.194 -
   1.195 -    /// \brief Move an item up into the proper box.
   1.196 -    void bubble_up(int index) {
   1.197 -      if (!lower(data[index].box, data[index].prio)) return;
   1.198 -      remove(index);
   1.199 -      int box = findUp(data[index].box, data[index].prio);
   1.200 -      insert(box, index);
   1.201 -    }
   1.202 -
   1.203 -    /// \brief Find up the proper box for the item with the given prio.
   1.204 -    int findUp(int start, int pr) {
   1.205 -      while (lower(start, pr)) {
   1.206 -        if (++start == int(boxes.size())) {
   1.207 -          extend();
   1.208 -        }
   1.209 -      }
   1.210 -      return start;
   1.211 -    }
   1.212 -
   1.213 -    /// \brief Move an item down into the proper box.
   1.214 -    void bubble_down(int index) {
   1.215 -      if (!upper(data[index].box, data[index].prio)) return;
   1.216 -      remove(index);
   1.217 -      int box = findDown(data[index].box, data[index].prio);
   1.218 -      insert(box, index);
   1.219 -    }
   1.220 -
   1.221 -    /// \brief Find up the proper box for the item with the given prio.
   1.222 -    int findDown(int start, int pr) {
   1.223 -      while (upper(start, pr)) {
   1.224 -        if (--start < 0) throw UnderFlowPriorityError();
   1.225 -      }
   1.226 -      return start;
   1.227 -    }
   1.228 -
   1.229 -    /// \brief Find the first not empty box.
   1.230 -    int findFirst() {
   1.231 -      int first = 0;
   1.232 -      while (boxes[first].first == -1) ++first;
   1.233 -      return first;
   1.234 -    }
   1.235 -
   1.236 -    /// \brief Gives back the minimal prio of the box.
   1.237 -    int minValue(int box) {
   1.238 -      int min = data[boxes[box].first].prio;
   1.239 -      for (int k = boxes[box].first; k != -1; k = data[k].next) {
   1.240 -        if (data[k].prio < min) min = data[k].prio;
   1.241 -      }
   1.242 -      return min;
   1.243 -    }
   1.244 -
   1.245 -    /// \brief Rearrange the items of the heap and makes the
   1.246 -    /// first box not empty.
   1.247 -    void moveDown() {
   1.248 -      int box = findFirst();
   1.249 -      if (box == 0) return;
   1.250 -      int min = minValue(box);
   1.251 -      for (int i = 0; i <= box; ++i) {
   1.252 -        boxes[i].min = min;
   1.253 -        min += boxes[i].size;
   1.254 -      }
   1.255 -      int curr = boxes[box].first, next;
   1.256 -      while (curr != -1) {
   1.257 -        next = data[curr].next;
   1.258 -        bubble_down(curr);
   1.259 -        curr = next;
   1.260 -      }
   1.261 -    }
   1.262 -
   1.263 -    void relocate_last(int index) {
   1.264 -      if (index != int(data.size()) - 1) {
   1.265 -        data[index] = data.back();
   1.266 -        if (data[index].prev != -1) {
   1.267 -          data[data[index].prev].next = index;
   1.268 -        } else {
   1.269 -          boxes[data[index].box].first = index;
   1.270 -        }
   1.271 -        if (data[index].next != -1) {
   1.272 -          data[data[index].next].prev = index;
   1.273 -        }
   1.274 -        _iim[data[index].item] = index;
   1.275 -      }
   1.276 -      data.pop_back();
   1.277 -    }
   1.278 -
   1.279 -  public:
   1.280 -
   1.281 -    /// \brief Insert an item into the heap with the given priority.
   1.282 -    ///
   1.283 -    /// Adds \c i to the heap with priority \c p.
   1.284 -    /// \param i The item to insert.
   1.285 -    /// \param p The priority of the item.
   1.286 -    void push(const Item &i, const Prio &p) {
   1.287 -      int n = data.size();
   1.288 -      _iim.set(i, n);
   1.289 -      data.push_back(RadixItem(i, p));
   1.290 -      while (lower(boxes.size() - 1, p)) {
   1.291 -        extend();
   1.292 -      }
   1.293 -      int box = findDown(boxes.size() - 1, p);
   1.294 -      insert(box, n);
   1.295 -    }
   1.296 -
   1.297 -    /// \brief Returns the item with minimum priority.
   1.298 -    ///
   1.299 -    /// This method returns the item with minimum priority.
   1.300 -    /// \pre The heap must be nonempty.
   1.301 -    Item top() const {
   1.302 -      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
   1.303 -      return data[boxes[0].first].item;
   1.304 -    }
   1.305 -
   1.306 -    /// \brief Returns the minimum priority.
   1.307 -    ///
   1.308 -    /// It returns the minimum priority.
   1.309 -    /// \pre The heap must be nonempty.
   1.310 -    Prio prio() const {
   1.311 -      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
   1.312 -      return data[boxes[0].first].prio;
   1.313 -     }
   1.314 -
   1.315 -    /// \brief Deletes the item with minimum priority.
   1.316 -    ///
   1.317 -    /// This method deletes the item with minimum priority.
   1.318 -    /// \pre The heap must be non-empty.
   1.319 -    void pop() {
   1.320 -      moveDown();
   1.321 -      int index = boxes[0].first;
   1.322 -      _iim[data[index].item] = POST_HEAP;
   1.323 -      remove(index);
   1.324 -      relocate_last(index);
   1.325 -    }
   1.326 -
   1.327 -    /// \brief Deletes \c i from the heap.
   1.328 -    ///
   1.329 -    /// This method deletes item \c i from the heap, if \c i was
   1.330 -    /// already stored in the heap.
   1.331 -    /// \param i The item to erase.
   1.332 -    void erase(const Item &i) {
   1.333 -      int index = _iim[i];
   1.334 -      _iim[i] = POST_HEAP;
   1.335 -      remove(index);
   1.336 -      relocate_last(index);
   1.337 -   }
   1.338 -
   1.339 -    /// \brief Returns the priority of \c i.
   1.340 -    ///
   1.341 -    /// This function returns the priority of item \c i.
   1.342 -    /// \pre \c i must be in the heap.
   1.343 -    /// \param i The item.
   1.344 -    Prio operator[](const Item &i) const {
   1.345 -      int idx = _iim[i];
   1.346 -      return data[idx].prio;
   1.347 -    }
   1.348 -
   1.349 -    /// \brief \c i gets to the heap with priority \c p independently
   1.350 -    /// if \c i was already there.
   1.351 -    ///
   1.352 -    /// This method calls \ref push(\c i, \c p) if \c i is not stored
   1.353 -    /// in the heap and sets the priority of \c i to \c p otherwise.
   1.354 -    /// It may throw an \e UnderFlowPriorityException.
   1.355 -    /// \param i The item.
   1.356 -    /// \param p The priority.
   1.357 -    void set(const Item &i, const Prio &p) {
   1.358 -      int idx = _iim[i];
   1.359 -      if( idx < 0 ) {
   1.360 -        push(i, p);
   1.361 -      }
   1.362 -      else if( p >= data[idx].prio ) {
   1.363 -        data[idx].prio = p;
   1.364 -        bubble_up(idx);
   1.365 -      } else {
   1.366 -        data[idx].prio = p;
   1.367 -        bubble_down(idx);
   1.368 -      }
   1.369 -    }
   1.370 -
   1.371 -
   1.372 -    /// \brief Decreases the priority of \c i to \c p.
   1.373 -    ///
   1.374 -    /// This method decreases the priority of item \c i to \c p.
   1.375 -    /// \pre \c i must be stored in the heap with priority at least \c p, and
   1.376 -    /// \c should be greater or equal to the last removed item's priority.
   1.377 -    /// \param i The item.
   1.378 -    /// \param p The priority.
   1.379 -    void decrease(const Item &i, const Prio &p) {
   1.380 -      int idx = _iim[i];
   1.381 -      data[idx].prio = p;
   1.382 -      bubble_down(idx);
   1.383 -    }
   1.384 -
   1.385 -    /// \brief Increases the priority of \c i to \c p.
   1.386 -    ///
   1.387 -    /// This method sets the priority of item \c i to \c p.
   1.388 -    /// \pre \c i must be stored in the heap with priority at most \c p
   1.389 -    /// \param i The item.
   1.390 -    /// \param p The priority.
   1.391 -    void increase(const Item &i, const Prio &p) {
   1.392 -      int idx = _iim[i];
   1.393 -      data[idx].prio = p;
   1.394 -      bubble_up(idx);
   1.395 -    }
   1.396 -
   1.397 -    /// \brief Returns if \c item is in, has already been in, or has
   1.398 -    /// never been in the heap.
   1.399 -    ///
   1.400 -    /// This method returns PRE_HEAP if \c item has never been in the
   1.401 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   1.402 -    /// otherwise. In the latter case it is possible that \c item will
   1.403 -    /// get back to the heap again.
   1.404 -    /// \param i The item.
   1.405 -    State state(const Item &i) const {
   1.406 -      int s = _iim[i];
   1.407 -      if( s >= 0 ) s = 0;
   1.408 -      return State(s);
   1.409 -    }
   1.410 -
   1.411 -    /// \brief Sets the state of the \c item in the heap.
   1.412 -    ///
   1.413 -    /// Sets the state of the \c item in the heap. It can be used to
   1.414 -    /// manually clear the heap when it is important to achive the
   1.415 -    /// better time complexity.
   1.416 -    /// \param i The item.
   1.417 -    /// \param st The state. It should not be \c IN_HEAP.
   1.418 -    void state(const Item& i, State st) {
   1.419 -      switch (st) {
   1.420 -      case POST_HEAP:
   1.421 -      case PRE_HEAP:
   1.422 -        if (state(i) == IN_HEAP) {
   1.423 -          erase(i);
   1.424 -        }
   1.425 -        _iim[i] = st;
   1.426 -        break;
   1.427 -      case IN_HEAP:
   1.428 -        break;
   1.429 -      }
   1.430 -    }
   1.431 -
   1.432 -  }; // class RadixHeap
   1.433 -
   1.434 -} // namespace lemon
   1.435 -
   1.436 -#endif // LEMON_RADIX_HEAP_H