lemon/fib_heap.h
branch1.1
changeset 912 37f440367057
parent 765 703ebf476a1d
child 913 2f9d9bcc1867
     1.1 --- a/lemon/fib_heap.h	Thu Aug 20 20:34:30 2009 +0200
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,468 +0,0 @@
     1.4 -/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 - *
     1.6 - * This file is a part of LEMON, a generic C++ optimization library.
     1.7 - *
     1.8 - * Copyright (C) 2003-2009
     1.9 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 - * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 - *
    1.12 - * Permission to use, modify and distribute this software is granted
    1.13 - * provided that this copyright notice appears in all copies. For
    1.14 - * precise terms see the accompanying LICENSE file.
    1.15 - *
    1.16 - * This software is provided "AS IS" with no warranty of any kind,
    1.17 - * express or implied, and with no claim as to its suitability for any
    1.18 - * purpose.
    1.19 - *
    1.20 - */
    1.21 -
    1.22 -#ifndef LEMON_FIB_HEAP_H
    1.23 -#define LEMON_FIB_HEAP_H
    1.24 -
    1.25 -///\file
    1.26 -///\ingroup auxdat
    1.27 -///\brief Fibonacci Heap implementation.
    1.28 -
    1.29 -#include <vector>
    1.30 -#include <functional>
    1.31 -#include <lemon/math.h>
    1.32 -
    1.33 -namespace lemon {
    1.34 -
    1.35 -  /// \ingroup auxdat
    1.36 -  ///
    1.37 -  ///\brief Fibonacci Heap.
    1.38 -  ///
    1.39 -  ///This class implements the \e Fibonacci \e heap data structure. A \e heap
    1.40 -  ///is a data structure for storing items with specified values called \e
    1.41 -  ///priorities in such a way that finding the item with minimum priority is
    1.42 -  ///efficient. \c CMP specifies the ordering of the priorities. In a heap
    1.43 -  ///one can change the priority of an item, add or erase an item, etc.
    1.44 -  ///
    1.45 -  ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
    1.46 -  ///heap. In case of many calls to these operations, it is better to use a
    1.47 -  ///\ref BinHeap "binary heap".
    1.48 -  ///
    1.49 -  ///\param PRIO Type of the priority of the items.
    1.50 -  ///\param IM A read and writable Item int map, used internally
    1.51 -  ///to handle the cross references.
    1.52 -  ///\param CMP A class for the ordering of the priorities. The
    1.53 -  ///default is \c std::less<PRIO>.
    1.54 -  ///
    1.55 -  ///\sa BinHeap
    1.56 -  ///\sa Dijkstra
    1.57 -#ifdef DOXYGEN
    1.58 -  template <typename PRIO, typename IM, typename CMP>
    1.59 -#else
    1.60 -  template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
    1.61 -#endif
    1.62 -  class FibHeap {
    1.63 -  public:
    1.64 -    ///\e
    1.65 -    typedef IM ItemIntMap;
    1.66 -    ///\e
    1.67 -    typedef PRIO Prio;
    1.68 -    ///\e
    1.69 -    typedef typename ItemIntMap::Key Item;
    1.70 -    ///\e
    1.71 -    typedef std::pair<Item,Prio> Pair;
    1.72 -    ///\e
    1.73 -    typedef CMP Compare;
    1.74 -
    1.75 -  private:
    1.76 -    class Store;
    1.77 -
    1.78 -    std::vector<Store> _data;
    1.79 -    int _minimum;
    1.80 -    ItemIntMap &_iim;
    1.81 -    Compare _comp;
    1.82 -    int _num;
    1.83 -
    1.84 -  public:
    1.85 -
    1.86 -    /// \brief Type to represent the items states.
    1.87 -    ///
    1.88 -    /// Each Item element have a state associated to it. It may be "in heap",
    1.89 -    /// "pre heap" or "post heap". The latter two are indifferent from the
    1.90 -    /// heap's point of view, but may be useful to the user.
    1.91 -    ///
    1.92 -    /// The item-int map must be initialized in such way that it assigns
    1.93 -    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
    1.94 -    enum State {
    1.95 -      IN_HEAP = 0,    ///< = 0.
    1.96 -      PRE_HEAP = -1,  ///< = -1.
    1.97 -      POST_HEAP = -2  ///< = -2.
    1.98 -    };
    1.99 -
   1.100 -    /// \brief The constructor
   1.101 -    ///
   1.102 -    /// \c map should be given to the constructor, since it is
   1.103 -    ///   used internally to handle the cross references.
   1.104 -    explicit FibHeap(ItemIntMap &map)
   1.105 -      : _minimum(0), _iim(map), _num() {}
   1.106 -
   1.107 -    /// \brief The constructor
   1.108 -    ///
   1.109 -    /// \c map should be given to the constructor, since it is used
   1.110 -    /// internally to handle the cross references. \c comp is an
   1.111 -    /// object for ordering of the priorities.
   1.112 -    FibHeap(ItemIntMap &map, const Compare &comp)
   1.113 -      : _minimum(0), _iim(map), _comp(comp), _num() {}
   1.114 -
   1.115 -    /// \brief The number of items stored in the heap.
   1.116 -    ///
   1.117 -    /// Returns the number of items stored in the heap.
   1.118 -    int size() const { return _num; }
   1.119 -
   1.120 -    /// \brief Checks if the heap stores no items.
   1.121 -    ///
   1.122 -    ///   Returns \c true if and only if the heap stores no items.
   1.123 -    bool empty() const { return _num==0; }
   1.124 -
   1.125 -    /// \brief Make empty this heap.
   1.126 -    ///
   1.127 -    /// Make empty this heap. It does not change the cross reference
   1.128 -    /// map.  If you want to reuse a heap what is not surely empty you
   1.129 -    /// should first clear the heap and after that you should set the
   1.130 -    /// cross reference map for each item to \c PRE_HEAP.
   1.131 -    void clear() {
   1.132 -      _data.clear(); _minimum = 0; _num = 0;
   1.133 -    }
   1.134 -
   1.135 -    /// \brief \c item gets to the heap with priority \c value independently
   1.136 -    /// if \c item was already there.
   1.137 -    ///
   1.138 -    /// This method calls \ref push(\c item, \c value) if \c item is not
   1.139 -    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   1.140 -    /// \ref increase(\c item, \c value) otherwise.
   1.141 -    void set (const Item& item, const Prio& value) {
   1.142 -      int i=_iim[item];
   1.143 -      if ( i >= 0 && _data[i].in ) {
   1.144 -        if ( _comp(value, _data[i].prio) ) decrease(item, value);
   1.145 -        if ( _comp(_data[i].prio, value) ) increase(item, value);
   1.146 -      } else push(item, value);
   1.147 -    }
   1.148 -
   1.149 -    /// \brief Adds \c item to the heap with priority \c value.
   1.150 -    ///
   1.151 -    /// Adds \c item to the heap with priority \c value.
   1.152 -    /// \pre \c item must not be stored in the heap.
   1.153 -    void push (const Item& item, const Prio& value) {
   1.154 -      int i=_iim[item];
   1.155 -      if ( i < 0 ) {
   1.156 -        int s=_data.size();
   1.157 -        _iim.set( item, s );
   1.158 -        Store st;
   1.159 -        st.name=item;
   1.160 -        _data.push_back(st);
   1.161 -        i=s;
   1.162 -      } else {
   1.163 -        _data[i].parent=_data[i].child=-1;
   1.164 -        _data[i].degree=0;
   1.165 -        _data[i].in=true;
   1.166 -        _data[i].marked=false;
   1.167 -      }
   1.168 -
   1.169 -      if ( _num ) {
   1.170 -        _data[_data[_minimum].right_neighbor].left_neighbor=i;
   1.171 -        _data[i].right_neighbor=_data[_minimum].right_neighbor;
   1.172 -        _data[_minimum].right_neighbor=i;
   1.173 -        _data[i].left_neighbor=_minimum;
   1.174 -        if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
   1.175 -      } else {
   1.176 -        _data[i].right_neighbor=_data[i].left_neighbor=i;
   1.177 -        _minimum=i;
   1.178 -      }
   1.179 -      _data[i].prio=value;
   1.180 -      ++_num;
   1.181 -    }
   1.182 -
   1.183 -    /// \brief Returns the item with minimum priority relative to \c Compare.
   1.184 -    ///
   1.185 -    /// This method returns the item with minimum priority relative to \c
   1.186 -    /// Compare.
   1.187 -    /// \pre The heap must be nonempty.
   1.188 -    Item top() const { return _data[_minimum].name; }
   1.189 -
   1.190 -    /// \brief Returns the minimum priority relative to \c Compare.
   1.191 -    ///
   1.192 -    /// It returns the minimum priority relative to \c Compare.
   1.193 -    /// \pre The heap must be nonempty.
   1.194 -    const Prio& prio() const { return _data[_minimum].prio; }
   1.195 -
   1.196 -    /// \brief Returns the priority of \c item.
   1.197 -    ///
   1.198 -    /// It returns the priority of \c item.
   1.199 -    /// \pre \c item must be in the heap.
   1.200 -    const Prio& operator[](const Item& item) const {
   1.201 -      return _data[_iim[item]].prio;
   1.202 -    }
   1.203 -
   1.204 -    /// \brief Deletes the item with minimum priority relative to \c Compare.
   1.205 -    ///
   1.206 -    /// This method deletes the item with minimum priority relative to \c
   1.207 -    /// Compare from the heap.
   1.208 -    /// \pre The heap must be non-empty.
   1.209 -    void pop() {
   1.210 -      /*The first case is that there are only one root.*/
   1.211 -      if ( _data[_minimum].left_neighbor==_minimum ) {
   1.212 -        _data[_minimum].in=false;
   1.213 -        if ( _data[_minimum].degree!=0 ) {
   1.214 -          makeroot(_data[_minimum].child);
   1.215 -          _minimum=_data[_minimum].child;
   1.216 -          balance();
   1.217 -        }
   1.218 -      } else {
   1.219 -        int right=_data[_minimum].right_neighbor;
   1.220 -        unlace(_minimum);
   1.221 -        _data[_minimum].in=false;
   1.222 -        if ( _data[_minimum].degree > 0 ) {
   1.223 -          int left=_data[_minimum].left_neighbor;
   1.224 -          int child=_data[_minimum].child;
   1.225 -          int last_child=_data[child].left_neighbor;
   1.226 -
   1.227 -          makeroot(child);
   1.228 -
   1.229 -          _data[left].right_neighbor=child;
   1.230 -          _data[child].left_neighbor=left;
   1.231 -          _data[right].left_neighbor=last_child;
   1.232 -          _data[last_child].right_neighbor=right;
   1.233 -        }
   1.234 -        _minimum=right;
   1.235 -        balance();
   1.236 -      } // the case where there are more roots
   1.237 -      --_num;
   1.238 -    }
   1.239 -
   1.240 -    /// \brief Deletes \c item from the heap.
   1.241 -    ///
   1.242 -    /// This method deletes \c item from the heap, if \c item was already
   1.243 -    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
   1.244 -    void erase (const Item& item) {
   1.245 -      int i=_iim[item];
   1.246 -
   1.247 -      if ( i >= 0 && _data[i].in ) {
   1.248 -        if ( _data[i].parent!=-1 ) {
   1.249 -          int p=_data[i].parent;
   1.250 -          cut(i,p);
   1.251 -          cascade(p);
   1.252 -        }
   1.253 -        _minimum=i;     //As if its prio would be -infinity
   1.254 -        pop();
   1.255 -      }
   1.256 -    }
   1.257 -
   1.258 -    /// \brief Decreases the priority of \c item to \c value.
   1.259 -    ///
   1.260 -    /// This method decreases the priority of \c item to \c value.
   1.261 -    /// \pre \c item must be stored in the heap with priority at least \c
   1.262 -    ///   value relative to \c Compare.
   1.263 -    void decrease (Item item, const Prio& value) {
   1.264 -      int i=_iim[item];
   1.265 -      _data[i].prio=value;
   1.266 -      int p=_data[i].parent;
   1.267 -
   1.268 -      if ( p!=-1 && _comp(value, _data[p].prio) ) {
   1.269 -        cut(i,p);
   1.270 -        cascade(p);
   1.271 -      }
   1.272 -      if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
   1.273 -    }
   1.274 -
   1.275 -    /// \brief Increases the priority of \c item to \c value.
   1.276 -    ///
   1.277 -    /// This method sets the priority of \c item to \c value. Though
   1.278 -    /// there is no precondition on the priority of \c item, this
   1.279 -    /// method should be used only if it is indeed necessary to increase
   1.280 -    /// (relative to \c Compare) the priority of \c item, because this
   1.281 -    /// method is inefficient.
   1.282 -    void increase (Item item, const Prio& value) {
   1.283 -      erase(item);
   1.284 -      push(item, value);
   1.285 -    }
   1.286 -
   1.287 -
   1.288 -    /// \brief Returns if \c item is in, has already been in, or has never
   1.289 -    /// been in the heap.
   1.290 -    ///
   1.291 -    /// This method returns PRE_HEAP if \c item has never been in the
   1.292 -    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   1.293 -    /// otherwise. In the latter case it is possible that \c item will
   1.294 -    /// get back to the heap again.
   1.295 -    State state(const Item &item) const {
   1.296 -      int i=_iim[item];
   1.297 -      if( i>=0 ) {
   1.298 -        if ( _data[i].in ) i=0;
   1.299 -        else i=-2;
   1.300 -      }
   1.301 -      return State(i);
   1.302 -    }
   1.303 -
   1.304 -    /// \brief Sets the state of the \c item in the heap.
   1.305 -    ///
   1.306 -    /// Sets the state of the \c item in the heap. It can be used to
   1.307 -    /// manually clear the heap when it is important to achive the
   1.308 -    /// better time _complexity.
   1.309 -    /// \param i The item.
   1.310 -    /// \param st The state. It should not be \c IN_HEAP.
   1.311 -    void state(const Item& i, State st) {
   1.312 -      switch (st) {
   1.313 -      case POST_HEAP:
   1.314 -      case PRE_HEAP:
   1.315 -        if (state(i) == IN_HEAP) {
   1.316 -          erase(i);
   1.317 -        }
   1.318 -        _iim[i] = st;
   1.319 -        break;
   1.320 -      case IN_HEAP:
   1.321 -        break;
   1.322 -      }
   1.323 -    }
   1.324 -
   1.325 -  private:
   1.326 -
   1.327 -    void balance() {
   1.328 -
   1.329 -      int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1;
   1.330 -
   1.331 -      std::vector<int> A(maxdeg,-1);
   1.332 -
   1.333 -      /*
   1.334 -       *Recall that now minimum does not point to the minimum prio element.
   1.335 -       *We set minimum to this during balance().
   1.336 -       */
   1.337 -      int anchor=_data[_minimum].left_neighbor;
   1.338 -      int next=_minimum;
   1.339 -      bool end=false;
   1.340 -
   1.341 -      do {
   1.342 -        int active=next;
   1.343 -        if ( anchor==active ) end=true;
   1.344 -        int d=_data[active].degree;
   1.345 -        next=_data[active].right_neighbor;
   1.346 -
   1.347 -        while (A[d]!=-1) {
   1.348 -          if( _comp(_data[active].prio, _data[A[d]].prio) ) {
   1.349 -            fuse(active,A[d]);
   1.350 -          } else {
   1.351 -            fuse(A[d],active);
   1.352 -            active=A[d];
   1.353 -          }
   1.354 -          A[d]=-1;
   1.355 -          ++d;
   1.356 -        }
   1.357 -        A[d]=active;
   1.358 -      } while ( !end );
   1.359 -
   1.360 -
   1.361 -      while ( _data[_minimum].parent >=0 )
   1.362 -        _minimum=_data[_minimum].parent;
   1.363 -      int s=_minimum;
   1.364 -      int m=_minimum;
   1.365 -      do {
   1.366 -        if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
   1.367 -        s=_data[s].right_neighbor;
   1.368 -      } while ( s != m );
   1.369 -    }
   1.370 -
   1.371 -    void makeroot(int c) {
   1.372 -      int s=c;
   1.373 -      do {
   1.374 -        _data[s].parent=-1;
   1.375 -        s=_data[s].right_neighbor;
   1.376 -      } while ( s != c );
   1.377 -    }
   1.378 -
   1.379 -    void cut(int a, int b) {
   1.380 -      /*
   1.381 -       *Replacing a from the children of b.
   1.382 -       */
   1.383 -      --_data[b].degree;
   1.384 -
   1.385 -      if ( _data[b].degree !=0 ) {
   1.386 -        int child=_data[b].child;
   1.387 -        if ( child==a )
   1.388 -          _data[b].child=_data[child].right_neighbor;
   1.389 -        unlace(a);
   1.390 -      }
   1.391 -
   1.392 -
   1.393 -      /*Lacing a to the roots.*/
   1.394 -      int right=_data[_minimum].right_neighbor;
   1.395 -      _data[_minimum].right_neighbor=a;
   1.396 -      _data[a].left_neighbor=_minimum;
   1.397 -      _data[a].right_neighbor=right;
   1.398 -      _data[right].left_neighbor=a;
   1.399 -
   1.400 -      _data[a].parent=-1;
   1.401 -      _data[a].marked=false;
   1.402 -    }
   1.403 -
   1.404 -    void cascade(int a) {
   1.405 -      if ( _data[a].parent!=-1 ) {
   1.406 -        int p=_data[a].parent;
   1.407 -
   1.408 -        if ( _data[a].marked==false ) _data[a].marked=true;
   1.409 -        else {
   1.410 -          cut(a,p);
   1.411 -          cascade(p);
   1.412 -        }
   1.413 -      }
   1.414 -    }
   1.415 -
   1.416 -    void fuse(int a, int b) {
   1.417 -      unlace(b);
   1.418 -
   1.419 -      /*Lacing b under a.*/
   1.420 -      _data[b].parent=a;
   1.421 -
   1.422 -      if (_data[a].degree==0) {
   1.423 -        _data[b].left_neighbor=b;
   1.424 -        _data[b].right_neighbor=b;
   1.425 -        _data[a].child=b;
   1.426 -      } else {
   1.427 -        int child=_data[a].child;
   1.428 -        int last_child=_data[child].left_neighbor;
   1.429 -        _data[child].left_neighbor=b;
   1.430 -        _data[b].right_neighbor=child;
   1.431 -        _data[last_child].right_neighbor=b;
   1.432 -        _data[b].left_neighbor=last_child;
   1.433 -      }
   1.434 -
   1.435 -      ++_data[a].degree;
   1.436 -
   1.437 -      _data[b].marked=false;
   1.438 -    }
   1.439 -
   1.440 -    /*
   1.441 -     *It is invoked only if a has siblings.
   1.442 -     */
   1.443 -    void unlace(int a) {
   1.444 -      int leftn=_data[a].left_neighbor;
   1.445 -      int rightn=_data[a].right_neighbor;
   1.446 -      _data[leftn].right_neighbor=rightn;
   1.447 -      _data[rightn].left_neighbor=leftn;
   1.448 -    }
   1.449 -
   1.450 -
   1.451 -    class Store {
   1.452 -      friend class FibHeap;
   1.453 -
   1.454 -      Item name;
   1.455 -      int parent;
   1.456 -      int left_neighbor;
   1.457 -      int right_neighbor;
   1.458 -      int child;
   1.459 -      int degree;
   1.460 -      bool marked;
   1.461 -      bool in;
   1.462 -      Prio prio;
   1.463 -
   1.464 -      Store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
   1.465 -    };
   1.466 -  };
   1.467 -
   1.468 -} //namespace lemon
   1.469 -
   1.470 -#endif //LEMON_FIB_HEAP_H
   1.471 -