lemon/fractional_matching.h
changeset 951 41d7ac528c3a
parent 950 86613aa28a0c
child 955 7f6e2bd76654
     1.1 --- a/lemon/fractional_matching.h	Thu Mar 04 10:17:02 2010 +0100
     1.2 +++ b/lemon/fractional_matching.h	Thu Mar 04 15:20:59 2010 +0100
     1.3 @@ -658,10 +658,11 @@
     1.4    /// After it the matching (the primal solution) and the dual solution
     1.5    /// can be obtained using the query functions.
     1.6    ///
     1.7 -  /// If the value type is integer, then the primal and the dual
     1.8 -  /// solutions are multiplied by
     1.9 -  /// \ref MaxWeightedFractionalMatching::primalScale "2" and
    1.10 -  /// \ref MaxWeightedFractionalMatching::dualScale "4" respectively.
    1.11 +  /// The primal solution is multiplied by
    1.12 +  /// \ref MaxWeightedFractionalMatching::primalScale "2".
    1.13 +  /// If the value type is integer, then the dual
    1.14 +  /// solution is scaled by
    1.15 +  /// \ref MaxWeightedFractionalMatching::dualScale "4".
    1.16    ///
    1.17    /// \tparam GR The undirected graph type the algorithm runs on.
    1.18    /// \tparam WM The type edge weight map. The default type is
    1.19 @@ -688,10 +689,8 @@
    1.20  
    1.21      /// \brief Scaling factor for primal solution
    1.22      ///
    1.23 -    /// Scaling factor for primal solution. It is equal to 2 or 1
    1.24 -    /// according to the value type.
    1.25 -    static const int primalScale =
    1.26 -      std::numeric_limits<Value>::is_integer ? 2 : 1;
    1.27 +    /// Scaling factor for primal solution.
    1.28 +    static const int primalScale = 2;
    1.29  
    1.30      /// \brief Scaling factor for dual solution
    1.31      ///
    1.32 @@ -1329,10 +1328,9 @@
    1.33      /// "primal scale".
    1.34      ///
    1.35      /// \pre Either run() or start() must be called before using this function.
    1.36 -    Value matching(const Edge& edge) const {
    1.37 -      return Value(edge == (*_matching)[_graph.u(edge)] ? 1 : 0)
    1.38 -        * primalScale / 2 + Value(edge == (*_matching)[_graph.v(edge)] ? 1 : 0)
    1.39 -        * primalScale / 2;
    1.40 +    int matching(const Edge& edge) const {
    1.41 +      return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0)
    1.42 +        + (edge == (*_matching)[_graph.v(edge)] ? 1 : 0);
    1.43      }
    1.44  
    1.45      /// \brief Return the fractional matching arc (or edge) incident
    1.46 @@ -1423,11 +1421,12 @@
    1.47    /// The algorithm can be executed with the run() function.
    1.48    /// After it the matching (the primal solution) and the dual solution
    1.49    /// can be obtained using the query functions.
    1.50 -
    1.51 -  /// If the value type is integer, then the primal and the dual
    1.52 -  /// solutions are multiplied by
    1.53 -  /// \ref MaxWeightedPerfectFractionalMatching::primalScale "2" and
    1.54 -  /// \ref MaxWeightedPerfectFractionalMatching::dualScale "4" respectively.
    1.55 +  ///
    1.56 +  /// The primal solution is multiplied by
    1.57 +  /// \ref MaxWeightedPerfectFractionalMatching::primalScale "2".
    1.58 +  /// If the value type is integer, then the dual
    1.59 +  /// solution is scaled by
    1.60 +  /// \ref MaxWeightedPerfectFractionalMatching::dualScale "4".
    1.61    ///
    1.62    /// \tparam GR The undirected graph type the algorithm runs on.
    1.63    /// \tparam WM The type edge weight map. The default type is
    1.64 @@ -1454,10 +1453,8 @@
    1.65  
    1.66      /// \brief Scaling factor for primal solution
    1.67      ///
    1.68 -    /// Scaling factor for primal solution. It is equal to 2 or 1
    1.69 -    /// according to the value type.
    1.70 -    static const int primalScale =
    1.71 -      std::numeric_limits<Value>::is_integer ? 2 : 1;
    1.72 +    /// Scaling factor for primal solution.
    1.73 +    static const int primalScale = 2;
    1.74  
    1.75      /// \brief Scaling factor for dual solution
    1.76      ///
    1.77 @@ -2064,10 +2061,9 @@
    1.78      /// "primal scale".
    1.79      ///
    1.80      /// \pre Either run() or start() must be called before using this function.
    1.81 -    Value matching(const Edge& edge) const {
    1.82 -      return Value(edge == (*_matching)[_graph.u(edge)] ? 1 : 0)
    1.83 -        * primalScale / 2 + Value(edge == (*_matching)[_graph.v(edge)] ? 1 : 0)
    1.84 -        * primalScale / 2;
    1.85 +    int matching(const Edge& edge) const {
    1.86 +      return (edge == (*_matching)[_graph.u(edge)] ? 1 : 0)
    1.87 +        + (edge == (*_matching)[_graph.v(edge)] ? 1 : 0);
    1.88      }
    1.89  
    1.90      /// \brief Return the fractional matching arc (or edge) incident