test/max_flow_test.cc
changeset 1228 45befc97b1bc
parent 1173 d216e1c8b3fa
child 1261 97f1760dcd13
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/test/max_flow_test.cc	Thu Feb 28 23:44:35 2013 +0100
     1.3 @@ -0,0 +1,395 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2010
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#include <iostream>
    1.23 +
    1.24 +#include "test_tools.h"
    1.25 +#include <lemon/smart_graph.h>
    1.26 +#include <lemon/preflow.h>
    1.27 +#include <lemon/edmonds_karp.h>
    1.28 +#include <lemon/concepts/digraph.h>
    1.29 +#include <lemon/concepts/maps.h>
    1.30 +#include <lemon/lgf_reader.h>
    1.31 +#include <lemon/elevator.h>
    1.32 +
    1.33 +using namespace lemon;
    1.34 +
    1.35 +char test_lgf[] =
    1.36 +  "@nodes\n"
    1.37 +  "label\n"
    1.38 +  "0\n"
    1.39 +  "1\n"
    1.40 +  "2\n"
    1.41 +  "3\n"
    1.42 +  "4\n"
    1.43 +  "5\n"
    1.44 +  "6\n"
    1.45 +  "7\n"
    1.46 +  "8\n"
    1.47 +  "9\n"
    1.48 +  "@arcs\n"
    1.49 +  "    label capacity\n"
    1.50 +  "0 1 0     20\n"
    1.51 +  "0 2 1     0\n"
    1.52 +  "1 1 2     3\n"
    1.53 +  "1 2 3     8\n"
    1.54 +  "1 3 4     8\n"
    1.55 +  "2 5 5     5\n"
    1.56 +  "3 2 6     5\n"
    1.57 +  "3 5 7     5\n"
    1.58 +  "3 6 8     5\n"
    1.59 +  "4 3 9     3\n"
    1.60 +  "5 7 10    3\n"
    1.61 +  "5 6 11    10\n"
    1.62 +  "5 8 12    10\n"
    1.63 +  "6 8 13    8\n"
    1.64 +  "8 9 14    20\n"
    1.65 +  "8 1 15    5\n"
    1.66 +  "9 5 16    5\n"
    1.67 +  "@attributes\n"
    1.68 +  "source 1\n"
    1.69 +  "target 8\n";
    1.70 +
    1.71 +
    1.72 +// Checks the general interface of a max flow algorithm
    1.73 +template <typename GR, typename CAP>
    1.74 +struct MaxFlowClassConcept
    1.75 +{
    1.76 +
    1.77 +  template <typename MF>
    1.78 +  struct Constraints {
    1.79 +
    1.80 +    typedef typename GR::Node Node;
    1.81 +    typedef typename GR::Arc Arc;
    1.82 +    typedef typename CAP::Value Value;
    1.83 +    typedef concepts::ReadWriteMap<Arc, Value> FlowMap;
    1.84 +    typedef concepts::WriteMap<Node, bool> CutMap;
    1.85 +
    1.86 +    GR g;
    1.87 +    Node n;
    1.88 +    Arc e;
    1.89 +    CAP cap;
    1.90 +    FlowMap flow;
    1.91 +    CutMap cut;
    1.92 +    Value v;
    1.93 +    bool b;
    1.94 +
    1.95 +    void constraints() {
    1.96 +      checkConcept<concepts::Digraph, GR>();
    1.97 +
    1.98 +      const Constraints& me = *this;
    1.99 +
   1.100 +      typedef typename MF
   1.101 +          ::template SetFlowMap<FlowMap>
   1.102 +          ::Create MaxFlowType;
   1.103 +      typedef typename MF::Create MaxFlowType2;
   1.104 +      MaxFlowType max_flow(me.g, me.cap, me.n, me.n);
   1.105 +      const MaxFlowType& const_max_flow = max_flow;
   1.106 +
   1.107 +      max_flow
   1.108 +          .capacityMap(cap)
   1.109 +          .flowMap(flow)
   1.110 +          .source(n)
   1.111 +          .target(n);
   1.112 +
   1.113 +      typename MaxFlowType::Tolerance tol = const_max_flow.tolerance();
   1.114 +      max_flow.tolerance(tol);
   1.115 +
   1.116 +      max_flow.init();
   1.117 +      max_flow.init(cap);
   1.118 +      max_flow.run();
   1.119 +
   1.120 +      v = const_max_flow.flowValue();
   1.121 +      v = const_max_flow.flow(e);
   1.122 +      const FlowMap& fm = const_max_flow.flowMap();
   1.123 +
   1.124 +      b = const_max_flow.minCut(n);
   1.125 +      const_max_flow.minCutMap(cut);
   1.126 +
   1.127 +      ignore_unused_variable_warning(fm);
   1.128 +    }
   1.129 +
   1.130 +  };
   1.131 +
   1.132 +};
   1.133 +
   1.134 +// Checks the specific parts of Preflow's interface
   1.135 +void checkPreflowCompile()
   1.136 +{
   1.137 +  typedef int Value;
   1.138 +  typedef concepts::Digraph Digraph;
   1.139 +  typedef concepts::ReadMap<Digraph::Arc, Value> CapMap;
   1.140 +  typedef Elevator<Digraph, Digraph::Node> Elev;
   1.141 +  typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev;
   1.142 +
   1.143 +  Digraph g;
   1.144 +  Digraph::Node n;
   1.145 +  CapMap cap;
   1.146 +
   1.147 +  typedef Preflow<Digraph, CapMap>
   1.148 +      ::SetElevator<Elev>
   1.149 +      ::SetStandardElevator<LinkedElev>
   1.150 +      ::Create PreflowType;
   1.151 +  PreflowType preflow_test(g, cap, n, n);
   1.152 +  const PreflowType& const_preflow_test = preflow_test;
   1.153 +
   1.154 +  const PreflowType::Elevator& elev = const_preflow_test.elevator();
   1.155 +  preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev));
   1.156 +
   1.157 +  bool b = preflow_test.init(cap);
   1.158 +  preflow_test.startFirstPhase();
   1.159 +  preflow_test.startSecondPhase();
   1.160 +  preflow_test.runMinCut();
   1.161 +
   1.162 +  ignore_unused_variable_warning(b);
   1.163 +}
   1.164 +
   1.165 +// Checks the specific parts of EdmondsKarp's interface
   1.166 +void checkEdmondsKarpCompile()
   1.167 +{
   1.168 +  typedef int Value;
   1.169 +  typedef concepts::Digraph Digraph;
   1.170 +  typedef concepts::ReadMap<Digraph::Arc, Value> CapMap;
   1.171 +  typedef Elevator<Digraph, Digraph::Node> Elev;
   1.172 +  typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev;
   1.173 +
   1.174 +  Digraph g;
   1.175 +  Digraph::Node n;
   1.176 +  CapMap cap;
   1.177 +
   1.178 +  EdmondsKarp<Digraph, CapMap> ek_test(g, cap, n, n);
   1.179 +
   1.180 +  ek_test.init(cap);
   1.181 +  bool b = ek_test.checkedInit(cap);
   1.182 +  b = ek_test.augment();
   1.183 +  ek_test.start();
   1.184 +
   1.185 +  ignore_unused_variable_warning(b);
   1.186 +}
   1.187 +
   1.188 +
   1.189 +template <typename T>
   1.190 +T cutValue (const SmartDigraph& g,
   1.191 +              const SmartDigraph::NodeMap<bool>& cut,
   1.192 +              const SmartDigraph::ArcMap<T>& cap) {
   1.193 +
   1.194 +  T c=0;
   1.195 +  for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) {
   1.196 +    if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e];
   1.197 +  }
   1.198 +  return c;
   1.199 +}
   1.200 +
   1.201 +template <typename T>
   1.202 +bool checkFlow(const SmartDigraph& g,
   1.203 +               const SmartDigraph::ArcMap<T>& flow,
   1.204 +               const SmartDigraph::ArcMap<T>& cap,
   1.205 +               SmartDigraph::Node s, SmartDigraph::Node t) {
   1.206 +
   1.207 +  for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
   1.208 +    if (flow[e] < 0 || flow[e] > cap[e]) return false;
   1.209 +  }
   1.210 +
   1.211 +  for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) {
   1.212 +    if (n == s || n == t) continue;
   1.213 +    T sum = 0;
   1.214 +    for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) {
   1.215 +      sum += flow[e];
   1.216 +    }
   1.217 +    for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) {
   1.218 +      sum -= flow[e];
   1.219 +    }
   1.220 +    if (sum != 0) return false;
   1.221 +  }
   1.222 +  return true;
   1.223 +}
   1.224 +
   1.225 +void initFlowTest()
   1.226 +{
   1.227 +  DIGRAPH_TYPEDEFS(SmartDigraph);
   1.228 +  
   1.229 +  SmartDigraph g;
   1.230 +  SmartDigraph::ArcMap<int> cap(g),iflow(g);
   1.231 +  Node s=g.addNode(); Node t=g.addNode();
   1.232 +  Node n1=g.addNode(); Node n2=g.addNode();
   1.233 +  Arc a;
   1.234 +  a=g.addArc(s,n1); cap[a]=20; iflow[a]=20;
   1.235 +  a=g.addArc(n1,n2); cap[a]=10; iflow[a]=0;
   1.236 +  a=g.addArc(n2,t); cap[a]=20; iflow[a]=0;
   1.237 +
   1.238 +  Preflow<SmartDigraph> pre(g,cap,s,t);
   1.239 +  pre.init(iflow);
   1.240 +  pre.startFirstPhase();
   1.241 +  check(pre.flowValue() == 10, "The incorrect max flow value.");
   1.242 +  check(pre.minCut(s), "Wrong min cut (Node s).");
   1.243 +  check(pre.minCut(n1), "Wrong min cut (Node n1).");
   1.244 +  check(!pre.minCut(n2), "Wrong min cut (Node n2).");
   1.245 +  check(!pre.minCut(t), "Wrong min cut (Node t).");
   1.246 +}
   1.247 +
   1.248 +template <typename MF, typename SF>
   1.249 +void checkMaxFlowAlg() {
   1.250 +  typedef SmartDigraph Digraph;
   1.251 +  DIGRAPH_TYPEDEFS(Digraph);
   1.252 +
   1.253 +  typedef typename MF::Value Value;
   1.254 +  typedef Digraph::ArcMap<Value> CapMap;
   1.255 +  typedef CapMap FlowMap;
   1.256 +  typedef BoolNodeMap CutMap;
   1.257 +
   1.258 +  Digraph g;
   1.259 +  Node s, t;
   1.260 +  CapMap cap(g);
   1.261 +  std::istringstream input(test_lgf);
   1.262 +  DigraphReader<Digraph>(g,input)
   1.263 +      .arcMap("capacity", cap)
   1.264 +      .node("source",s)
   1.265 +      .node("target",t)
   1.266 +      .run();
   1.267 +
   1.268 +  MF max_flow(g, cap, s, t);
   1.269 +  max_flow.run();
   1.270 +
   1.271 +  check(checkFlow(g, max_flow.flowMap(), cap, s, t),
   1.272 +        "The flow is not feasible.");
   1.273 +
   1.274 +  CutMap min_cut(g);
   1.275 +  max_flow.minCutMap(min_cut);
   1.276 +  Value min_cut_value = cutValue(g, min_cut, cap);
   1.277 +
   1.278 +  check(max_flow.flowValue() == min_cut_value,
   1.279 +        "The max flow value is not equal to the min cut value.");
   1.280 +
   1.281 +  FlowMap flow(g);
   1.282 +  for (ArcIt e(g); e != INVALID; ++e) flow[e] = max_flow.flowMap()[e];
   1.283 +
   1.284 +  Value flow_value = max_flow.flowValue();
   1.285 +
   1.286 +  for (ArcIt e(g); e != INVALID; ++e) cap[e] = 2 * cap[e];
   1.287 +  max_flow.init(flow);
   1.288 +
   1.289 +  SF::startFirstPhase(max_flow);       // start first phase of the algorithm
   1.290 +
   1.291 +  CutMap min_cut1(g);
   1.292 +  max_flow.minCutMap(min_cut1);
   1.293 +  min_cut_value = cutValue(g, min_cut1, cap);
   1.294 +
   1.295 +  check(max_flow.flowValue() == min_cut_value &&
   1.296 +        min_cut_value == 2 * flow_value,
   1.297 +        "The max flow value or the min cut value is wrong.");
   1.298 +
   1.299 +  SF::startSecondPhase(max_flow);       // start second phase of the algorithm
   1.300 +
   1.301 +  check(checkFlow(g, max_flow.flowMap(), cap, s, t),
   1.302 +        "The flow is not feasible.");
   1.303 +
   1.304 +  CutMap min_cut2(g);
   1.305 +  max_flow.minCutMap(min_cut2);
   1.306 +  min_cut_value = cutValue(g, min_cut2, cap);
   1.307 +
   1.308 +  check(max_flow.flowValue() == min_cut_value &&
   1.309 +        min_cut_value == 2 * flow_value,
   1.310 +        "The max flow value or the min cut value was not doubled");
   1.311 +
   1.312 +
   1.313 +  max_flow.flowMap(flow);
   1.314 +
   1.315 +  NodeIt tmp1(g, s);
   1.316 +  ++tmp1;
   1.317 +  if (tmp1 != INVALID) s = tmp1;
   1.318 +
   1.319 +  NodeIt tmp2(g, t);
   1.320 +  ++tmp2;
   1.321 +  if (tmp2 != INVALID) t = tmp2;
   1.322 +
   1.323 +  max_flow.source(s);
   1.324 +  max_flow.target(t);
   1.325 +
   1.326 +  max_flow.run();
   1.327 +
   1.328 +  CutMap min_cut3(g);
   1.329 +  max_flow.minCutMap(min_cut3);
   1.330 +  min_cut_value=cutValue(g, min_cut3, cap);
   1.331 +
   1.332 +  check(max_flow.flowValue() == min_cut_value,
   1.333 +        "The max flow value or the min cut value is wrong.");
   1.334 +}
   1.335 +
   1.336 +// Struct for calling start functions of a general max flow algorithm
   1.337 +template <typename MF>
   1.338 +struct GeneralStartFunctions {
   1.339 +
   1.340 +  static void startFirstPhase(MF& mf) {
   1.341 +    mf.start();
   1.342 +  }
   1.343 +
   1.344 +  static void startSecondPhase(MF& mf) {
   1.345 +    ignore_unused_variable_warning(mf);
   1.346 +  }
   1.347 +
   1.348 +};
   1.349 +
   1.350 +// Struct for calling start functions of Preflow
   1.351 +template <typename MF>
   1.352 +struct PreflowStartFunctions {
   1.353 +
   1.354 +  static void startFirstPhase(MF& mf) {
   1.355 +    mf.startFirstPhase();
   1.356 +  }
   1.357 +
   1.358 +  static void startSecondPhase(MF& mf) {
   1.359 +    mf.startSecondPhase();
   1.360 +  }
   1.361 +
   1.362 +};
   1.363 +
   1.364 +int main() {
   1.365 +
   1.366 +  typedef concepts::Digraph GR;
   1.367 +  typedef concepts::ReadMap<GR::Arc, int> CM1;
   1.368 +  typedef concepts::ReadMap<GR::Arc, double> CM2;
   1.369 +
   1.370 +  // Check the interface of Preflow
   1.371 +  checkConcept< MaxFlowClassConcept<GR, CM1>,
   1.372 +                Preflow<GR, CM1> >();
   1.373 +  checkConcept< MaxFlowClassConcept<GR, CM2>,
   1.374 +                Preflow<GR, CM2> >();
   1.375 +
   1.376 +  // Check the interface of EdmondsKarp
   1.377 +  checkConcept< MaxFlowClassConcept<GR, CM1>,
   1.378 +                EdmondsKarp<GR, CM1> >();
   1.379 +  checkConcept< MaxFlowClassConcept<GR, CM2>,
   1.380 +                EdmondsKarp<GR, CM2> >();
   1.381 +
   1.382 +  // Check Preflow
   1.383 +  typedef Preflow<SmartDigraph, SmartDigraph::ArcMap<int> > PType1;
   1.384 +  typedef Preflow<SmartDigraph, SmartDigraph::ArcMap<float> > PType2;
   1.385 +  checkMaxFlowAlg<PType1, PreflowStartFunctions<PType1> >();
   1.386 +  checkMaxFlowAlg<PType2, PreflowStartFunctions<PType2> >();
   1.387 +  initFlowTest();
   1.388 +  
   1.389 +  // Check EdmondsKarp
   1.390 +  typedef EdmondsKarp<SmartDigraph, SmartDigraph::ArcMap<int> > EKType1;
   1.391 +  typedef EdmondsKarp<SmartDigraph, SmartDigraph::ArcMap<float> > EKType2;
   1.392 +  checkMaxFlowAlg<EKType1, GeneralStartFunctions<EKType1> >();
   1.393 +  checkMaxFlowAlg<EKType2, GeneralStartFunctions<EKType2> >();
   1.394 +
   1.395 +  initFlowTest();
   1.396 +  
   1.397 +  return 0;
   1.398 +}