lemon/lp_base.h
changeset 481 7afc121e0689
child 482 ed54c0d13df0
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lemon/lp_base.h	Tue Dec 02 21:40:33 2008 +0100
     1.3 @@ -0,0 +1,1705 @@
     1.4 +/* -*- mode: C++; indent-tabs-mode: nil; -*-
     1.5 + *
     1.6 + * This file is a part of LEMON, a generic C++ optimization library.
     1.7 + *
     1.8 + * Copyright (C) 2003-2008
     1.9 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
    1.10 + * (Egervary Research Group on Combinatorial Optimization, EGRES).
    1.11 + *
    1.12 + * Permission to use, modify and distribute this software is granted
    1.13 + * provided that this copyright notice appears in all copies. For
    1.14 + * precise terms see the accompanying LICENSE file.
    1.15 + *
    1.16 + * This software is provided "AS IS" with no warranty of any kind,
    1.17 + * express or implied, and with no claim as to its suitability for any
    1.18 + * purpose.
    1.19 + *
    1.20 + */
    1.21 +
    1.22 +#ifndef LEMON_LP_BASE_H
    1.23 +#define LEMON_LP_BASE_H
    1.24 +
    1.25 +#include<iostream>
    1.26 +#include<vector>
    1.27 +#include<map>
    1.28 +#include<limits>
    1.29 +#include<lemon/math.h>
    1.30 +
    1.31 +#include<lemon/core.h>
    1.32 +#include<lemon/bits/lp_id.h>
    1.33 +
    1.34 +///\file
    1.35 +///\brief The interface of the LP solver interface.
    1.36 +///\ingroup lp_group
    1.37 +namespace lemon {
    1.38 +
    1.39 +  /// Function to decide whether a floating point value is finite or not.
    1.40 +
    1.41 +  /// Retruns true if the argument is not infinity, minus infinity or NaN.
    1.42 +  /// It does the same as the isfinite() function defined by C99.
    1.43 +  template <typename T>
    1.44 +  bool isFinite(T value)
    1.45 +  {
    1.46 +    typedef std::numeric_limits<T> Lim;
    1.47 +    if ((Lim::has_infinity && (value == Lim::infinity() || value ==
    1.48 +                               -Lim::infinity())) ||
    1.49 +        ((Lim::has_quiet_NaN || Lim::has_signaling_NaN) && value != value))
    1.50 +    {
    1.51 +      return false;
    1.52 +    }
    1.53 +    return true;
    1.54 +  }
    1.55 +
    1.56 +  ///Common base class for LP solvers
    1.57 +
    1.58 +  ///\todo Much more docs
    1.59 +  ///\ingroup lp_group
    1.60 +  class LpSolverBase {
    1.61 +
    1.62 +  protected:
    1.63 +
    1.64 +    _lp_bits::LpId rows;
    1.65 +    _lp_bits::LpId cols;
    1.66 +
    1.67 +  public:
    1.68 +
    1.69 +    ///Possible outcomes of an LP solving procedure
    1.70 +    enum SolveExitStatus {
    1.71 +      ///This means that the problem has been successfully solved: either
    1.72 +      ///an optimal solution has been found or infeasibility/unboundedness
    1.73 +      ///has been proved.
    1.74 +      SOLVED = 0,
    1.75 +      ///Any other case (including the case when some user specified
    1.76 +      ///limit has been exceeded)
    1.77 +      UNSOLVED = 1
    1.78 +    };
    1.79 +
    1.80 +      ///\e
    1.81 +    enum SolutionStatus {
    1.82 +      ///Feasible solution hasn't been found (but may exist).
    1.83 +
    1.84 +      ///\todo NOTFOUND might be a better name.
    1.85 +      ///
    1.86 +      UNDEFINED = 0,
    1.87 +      ///The problem has no feasible solution
    1.88 +      INFEASIBLE = 1,
    1.89 +      ///Feasible solution found
    1.90 +      FEASIBLE = 2,
    1.91 +      ///Optimal solution exists and found
    1.92 +      OPTIMAL = 3,
    1.93 +      ///The cost function is unbounded
    1.94 +
    1.95 +      ///\todo Give a feasible solution and an infinite ray (and the
    1.96 +      ///corresponding bases)
    1.97 +      INFINITE = 4
    1.98 +    };
    1.99 +
   1.100 +    ///\e The type of the investigated LP problem
   1.101 +    enum ProblemTypes {
   1.102 +      ///Primal-dual feasible
   1.103 +      PRIMAL_DUAL_FEASIBLE = 0,
   1.104 +      ///Primal feasible dual infeasible
   1.105 +      PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
   1.106 +      ///Primal infeasible dual feasible
   1.107 +      PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
   1.108 +      ///Primal-dual infeasible
   1.109 +      PRIMAL_DUAL_INFEASIBLE = 3,
   1.110 +      ///Could not determine so far
   1.111 +      UNKNOWN = 4
   1.112 +    };
   1.113 +
   1.114 +    ///The floating point type used by the solver
   1.115 +    typedef double Value;
   1.116 +    ///The infinity constant
   1.117 +    static const Value INF;
   1.118 +    ///The not a number constant
   1.119 +    static const Value NaN;
   1.120 +
   1.121 +    static inline bool isNaN(const Value& v) { return v!=v; }
   1.122 +
   1.123 +    friend class Col;
   1.124 +    friend class ColIt;
   1.125 +    friend class Row;
   1.126 +
   1.127 +    ///Refer to a column of the LP.
   1.128 +
   1.129 +    ///This type is used to refer to a column of the LP.
   1.130 +    ///
   1.131 +    ///Its value remains valid and correct even after the addition or erase of
   1.132 +    ///other columns.
   1.133 +    ///
   1.134 +    ///\todo Document what can one do with a Col (INVALID, comparing,
   1.135 +    ///it is similar to Node/Edge)
   1.136 +    class Col {
   1.137 +    protected:
   1.138 +      int id;
   1.139 +      friend class LpSolverBase;
   1.140 +      friend class MipSolverBase;
   1.141 +      explicit Col(int _id) : id(_id) {}
   1.142 +    public:
   1.143 +      typedef Value ExprValue;
   1.144 +      typedef True LpSolverCol;
   1.145 +      Col() {}
   1.146 +      Col(const Invalid&) : id(-1) {}
   1.147 +      bool operator< (Col c) const  {return id< c.id;}
   1.148 +      bool operator> (Col c) const  {return id> c.id;}
   1.149 +      bool operator==(Col c) const  {return id==c.id;}
   1.150 +      bool operator!=(Col c) const  {return id!=c.id;}
   1.151 +    };
   1.152 +
   1.153 +    class ColIt : public Col {
   1.154 +      const LpSolverBase *_lp;
   1.155 +    public:
   1.156 +      ColIt() {}
   1.157 +      ColIt(const LpSolverBase &lp) : _lp(&lp)
   1.158 +      {
   1.159 +        _lp->cols.firstFix(id);
   1.160 +      }
   1.161 +      ColIt(const Invalid&) : Col(INVALID) {}
   1.162 +      ColIt &operator++()
   1.163 +      {
   1.164 +        _lp->cols.nextFix(id);
   1.165 +        return *this;
   1.166 +      }
   1.167 +    };
   1.168 +
   1.169 +    static int id(const Col& col) { return col.id; }
   1.170 +
   1.171 +
   1.172 +    ///Refer to a row of the LP.
   1.173 +
   1.174 +    ///This type is used to refer to a row of the LP.
   1.175 +    ///
   1.176 +    ///Its value remains valid and correct even after the addition or erase of
   1.177 +    ///other rows.
   1.178 +    ///
   1.179 +    ///\todo Document what can one do with a Row (INVALID, comparing,
   1.180 +    ///it is similar to Node/Edge)
   1.181 +    class Row {
   1.182 +    protected:
   1.183 +      int id;
   1.184 +      friend class LpSolverBase;
   1.185 +      explicit Row(int _id) : id(_id) {}
   1.186 +    public:
   1.187 +      typedef Value ExprValue;
   1.188 +      typedef True LpSolverRow;
   1.189 +      Row() {}
   1.190 +      Row(const Invalid&) : id(-1) {}
   1.191 +
   1.192 +      bool operator< (Row c) const  {return id< c.id;}
   1.193 +      bool operator> (Row c) const  {return id> c.id;}
   1.194 +      bool operator==(Row c) const  {return id==c.id;}
   1.195 +      bool operator!=(Row c) const  {return id!=c.id;}
   1.196 +    };
   1.197 +
   1.198 +    class RowIt : public Row {
   1.199 +      const LpSolverBase *_lp;
   1.200 +    public:
   1.201 +      RowIt() {}
   1.202 +      RowIt(const LpSolverBase &lp) : _lp(&lp)
   1.203 +      {
   1.204 +        _lp->rows.firstFix(id);
   1.205 +      }
   1.206 +      RowIt(const Invalid&) : Row(INVALID) {}
   1.207 +      RowIt &operator++()
   1.208 +      {
   1.209 +        _lp->rows.nextFix(id);
   1.210 +        return *this;
   1.211 +      }
   1.212 +    };
   1.213 +
   1.214 +    static int id(const Row& row) { return row.id; }
   1.215 +
   1.216 +  protected:
   1.217 +
   1.218 +    int _lpId(const Col& c) const {
   1.219 +      return cols.floatingId(id(c));
   1.220 +    }
   1.221 +
   1.222 +    int _lpId(const Row& r) const {
   1.223 +      return rows.floatingId(id(r));
   1.224 +    }
   1.225 +
   1.226 +    Col _item(int i, Col) const {
   1.227 +      return Col(cols.fixId(i));
   1.228 +    }
   1.229 +
   1.230 +    Row _item(int i, Row) const {
   1.231 +      return Row(rows.fixId(i));
   1.232 +    }
   1.233 +
   1.234 +
   1.235 +  public:
   1.236 +
   1.237 +    ///Linear expression of variables and a constant component
   1.238 +
   1.239 +    ///This data structure stores a linear expression of the variables
   1.240 +    ///(\ref Col "Col"s) and also has a constant component.
   1.241 +    ///
   1.242 +    ///There are several ways to access and modify the contents of this
   1.243 +    ///container.
   1.244 +    ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   1.245 +    ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   1.246 +    ///read and modify the coefficients like
   1.247 +    ///these.
   1.248 +    ///\code
   1.249 +    ///e[v]=5;
   1.250 +    ///e[v]+=12;
   1.251 +    ///e.erase(v);
   1.252 +    ///\endcode
   1.253 +    ///or you can also iterate through its elements.
   1.254 +    ///\code
   1.255 +    ///double s=0;
   1.256 +    ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   1.257 +    ///  s+=i->second;
   1.258 +    ///\endcode
   1.259 +    ///(This code computes the sum of all coefficients).
   1.260 +    ///- Numbers (<tt>double</tt>'s)
   1.261 +    ///and variables (\ref Col "Col"s) directly convert to an
   1.262 +    ///\ref Expr and the usual linear operations are defined, so
   1.263 +    ///\code
   1.264 +    ///v+w
   1.265 +    ///2*v-3.12*(v-w/2)+2
   1.266 +    ///v*2.1+(3*v+(v*12+w+6)*3)/2
   1.267 +    ///\endcode
   1.268 +    ///are valid \ref Expr "Expr"essions.
   1.269 +    ///The usual assignment operations are also defined.
   1.270 +    ///\code
   1.271 +    ///e=v+w;
   1.272 +    ///e+=2*v-3.12*(v-w/2)+2;
   1.273 +    ///e*=3.4;
   1.274 +    ///e/=5;
   1.275 +    ///\endcode
   1.276 +    ///- The constant member can be set and read by \ref constComp()
   1.277 +    ///\code
   1.278 +    ///e.constComp()=12;
   1.279 +    ///double c=e.constComp();
   1.280 +    ///\endcode
   1.281 +    ///
   1.282 +    ///\note \ref clear() not only sets all coefficients to 0 but also
   1.283 +    ///clears the constant components.
   1.284 +    ///
   1.285 +    ///\sa Constr
   1.286 +    ///
   1.287 +    class Expr : public std::map<Col,Value>
   1.288 +    {
   1.289 +    public:
   1.290 +      typedef LpSolverBase::Col Key;
   1.291 +      typedef LpSolverBase::Value Value;
   1.292 +
   1.293 +    protected:
   1.294 +      typedef std::map<Col,Value> Base;
   1.295 +
   1.296 +      Value const_comp;
   1.297 +    public:
   1.298 +      typedef True IsLinExpression;
   1.299 +      ///\e
   1.300 +      Expr() : Base(), const_comp(0) { }
   1.301 +      ///\e
   1.302 +      Expr(const Key &v) : const_comp(0) {
   1.303 +        Base::insert(std::make_pair(v, 1));
   1.304 +      }
   1.305 +      ///\e
   1.306 +      Expr(const Value &v) : const_comp(v) {}
   1.307 +      ///\e
   1.308 +      void set(const Key &v,const Value &c) {
   1.309 +        Base::insert(std::make_pair(v, c));
   1.310 +      }
   1.311 +      ///\e
   1.312 +      Value &constComp() { return const_comp; }
   1.313 +      ///\e
   1.314 +      const Value &constComp() const { return const_comp; }
   1.315 +
   1.316 +      ///Removes the components with zero coefficient.
   1.317 +      void simplify() {
   1.318 +        for (Base::iterator i=Base::begin(); i!=Base::end();) {
   1.319 +          Base::iterator j=i;
   1.320 +          ++j;
   1.321 +          if ((*i).second==0) Base::erase(i);
   1.322 +          i=j;
   1.323 +        }
   1.324 +      }
   1.325 +
   1.326 +      void simplify() const {
   1.327 +        const_cast<Expr*>(this)->simplify();
   1.328 +      }
   1.329 +
   1.330 +      ///Removes the coefficients closer to zero than \c tolerance.
   1.331 +      void simplify(double &tolerance) {
   1.332 +        for (Base::iterator i=Base::begin(); i!=Base::end();) {
   1.333 +          Base::iterator j=i;
   1.334 +          ++j;
   1.335 +          if (std::fabs((*i).second)<tolerance) Base::erase(i);
   1.336 +          i=j;
   1.337 +        }
   1.338 +      }
   1.339 +
   1.340 +      ///Sets all coefficients and the constant component to 0.
   1.341 +      void clear() {
   1.342 +        Base::clear();
   1.343 +        const_comp=0;
   1.344 +      }
   1.345 +
   1.346 +      ///\e
   1.347 +      Expr &operator+=(const Expr &e) {
   1.348 +        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.349 +          (*this)[j->first]+=j->second;
   1.350 +        const_comp+=e.const_comp;
   1.351 +        return *this;
   1.352 +      }
   1.353 +      ///\e
   1.354 +      Expr &operator-=(const Expr &e) {
   1.355 +        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.356 +          (*this)[j->first]-=j->second;
   1.357 +        const_comp-=e.const_comp;
   1.358 +        return *this;
   1.359 +      }
   1.360 +      ///\e
   1.361 +      Expr &operator*=(const Value &c) {
   1.362 +        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.363 +          j->second*=c;
   1.364 +        const_comp*=c;
   1.365 +        return *this;
   1.366 +      }
   1.367 +      ///\e
   1.368 +      Expr &operator/=(const Value &c) {
   1.369 +        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.370 +          j->second/=c;
   1.371 +        const_comp/=c;
   1.372 +        return *this;
   1.373 +      }
   1.374 +
   1.375 +    };
   1.376 +
   1.377 +    ///Linear constraint
   1.378 +
   1.379 +    ///This data stucture represents a linear constraint in the LP.
   1.380 +    ///Basically it is a linear expression with a lower or an upper bound
   1.381 +    ///(or both). These parts of the constraint can be obtained by the member
   1.382 +    ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   1.383 +    ///respectively.
   1.384 +    ///There are two ways to construct a constraint.
   1.385 +    ///- You can set the linear expression and the bounds directly
   1.386 +    ///  by the functions above.
   1.387 +    ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   1.388 +    ///  are defined between expressions, or even between constraints whenever
   1.389 +    ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   1.390 +    ///  \c s and \c t are numbers, then the followings are valid expressions
   1.391 +    ///  and thus they can be used directly e.g. in \ref addRow() whenever
   1.392 +    ///  it makes sense.
   1.393 +    ///\code
   1.394 +    ///  e<=s
   1.395 +    ///  e<=f
   1.396 +    ///  e==f
   1.397 +    ///  s<=e<=t
   1.398 +    ///  e>=t
   1.399 +    ///\endcode
   1.400 +    ///\warning The validity of a constraint is checked only at run time, so
   1.401 +    ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw 
   1.402 +    ///an assertion.
   1.403 +    class Constr
   1.404 +    {
   1.405 +    public:
   1.406 +      typedef LpSolverBase::Expr Expr;
   1.407 +      typedef Expr::Key Key;
   1.408 +      typedef Expr::Value Value;
   1.409 +
   1.410 +    protected:
   1.411 +      Expr _expr;
   1.412 +      Value _lb,_ub;
   1.413 +    public:
   1.414 +      ///\e
   1.415 +      Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   1.416 +      ///\e
   1.417 +      Constr(Value lb,const Expr &e,Value ub) :
   1.418 +        _expr(e), _lb(lb), _ub(ub) {}
   1.419 +      ///\e
   1.420 +      Constr(const Expr &e,Value ub) :
   1.421 +        _expr(e), _lb(NaN), _ub(ub) {}
   1.422 +      ///\e
   1.423 +      Constr(Value lb,const Expr &e) :
   1.424 +        _expr(e), _lb(lb), _ub(NaN) {}
   1.425 +      ///\e
   1.426 +      Constr(const Expr &e) :
   1.427 +        _expr(e), _lb(NaN), _ub(NaN) {}
   1.428 +      ///\e
   1.429 +      void clear()
   1.430 +      {
   1.431 +        _expr.clear();
   1.432 +        _lb=_ub=NaN;
   1.433 +      }
   1.434 +
   1.435 +      ///Reference to the linear expression
   1.436 +      Expr &expr() { return _expr; }
   1.437 +      ///Cont reference to the linear expression
   1.438 +      const Expr &expr() const { return _expr; }
   1.439 +      ///Reference to the lower bound.
   1.440 +
   1.441 +      ///\return
   1.442 +      ///- \ref INF "INF": the constraint is lower unbounded.
   1.443 +      ///- \ref NaN "NaN": lower bound has not been set.
   1.444 +      ///- finite number: the lower bound
   1.445 +      Value &lowerBound() { return _lb; }
   1.446 +      ///The const version of \ref lowerBound()
   1.447 +      const Value &lowerBound() const { return _lb; }
   1.448 +      ///Reference to the upper bound.
   1.449 +
   1.450 +      ///\return
   1.451 +      ///- \ref INF "INF": the constraint is upper unbounded.
   1.452 +      ///- \ref NaN "NaN": upper bound has not been set.
   1.453 +      ///- finite number: the upper bound
   1.454 +      Value &upperBound() { return _ub; }
   1.455 +      ///The const version of \ref upperBound()
   1.456 +      const Value &upperBound() const { return _ub; }
   1.457 +      ///Is the constraint lower bounded?
   1.458 +      bool lowerBounded() const {
   1.459 +        return isFinite(_lb);
   1.460 +      }
   1.461 +      ///Is the constraint upper bounded?
   1.462 +      bool upperBounded() const {
   1.463 +        return isFinite(_ub);
   1.464 +      }
   1.465 +
   1.466 +    };
   1.467 +
   1.468 +    ///Linear expression of rows
   1.469 +
   1.470 +    ///This data structure represents a column of the matrix,
   1.471 +    ///thas is it strores a linear expression of the dual variables
   1.472 +    ///(\ref Row "Row"s).
   1.473 +    ///
   1.474 +    ///There are several ways to access and modify the contents of this
   1.475 +    ///container.
   1.476 +    ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
   1.477 +    ///if \c e is an DualExpr and \c v
   1.478 +    ///and \c w are of type \ref Row, then you can
   1.479 +    ///read and modify the coefficients like
   1.480 +    ///these.
   1.481 +    ///\code
   1.482 +    ///e[v]=5;
   1.483 +    ///e[v]+=12;
   1.484 +    ///e.erase(v);
   1.485 +    ///\endcode
   1.486 +    ///or you can also iterate through its elements.
   1.487 +    ///\code
   1.488 +    ///double s=0;
   1.489 +    ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
   1.490 +    ///  s+=i->second;
   1.491 +    ///\endcode
   1.492 +    ///(This code computes the sum of all coefficients).
   1.493 +    ///- Numbers (<tt>double</tt>'s)
   1.494 +    ///and variables (\ref Row "Row"s) directly convert to an
   1.495 +    ///\ref DualExpr and the usual linear operations are defined, so
   1.496 +    ///\code
   1.497 +    ///v+w
   1.498 +    ///2*v-3.12*(v-w/2)
   1.499 +    ///v*2.1+(3*v+(v*12+w)*3)/2
   1.500 +    ///\endcode
   1.501 +    ///are valid \ref DualExpr "DualExpr"essions.
   1.502 +    ///The usual assignment operations are also defined.
   1.503 +    ///\code
   1.504 +    ///e=v+w;
   1.505 +    ///e+=2*v-3.12*(v-w/2);
   1.506 +    ///e*=3.4;
   1.507 +    ///e/=5;
   1.508 +    ///\endcode
   1.509 +    ///
   1.510 +    ///\sa Expr
   1.511 +    ///
   1.512 +    class DualExpr : public std::map<Row,Value>
   1.513 +    {
   1.514 +    public:
   1.515 +      typedef LpSolverBase::Row Key;
   1.516 +      typedef LpSolverBase::Value Value;
   1.517 +
   1.518 +    protected:
   1.519 +      typedef std::map<Row,Value> Base;
   1.520 +
   1.521 +    public:
   1.522 +      typedef True IsLinExpression;
   1.523 +      ///\e
   1.524 +      DualExpr() : Base() { }
   1.525 +      ///\e
   1.526 +      DualExpr(const Key &v) {
   1.527 +        Base::insert(std::make_pair(v, 1));
   1.528 +      }
   1.529 +      ///\e
   1.530 +      void set(const Key &v,const Value &c) {
   1.531 +        Base::insert(std::make_pair(v, c));
   1.532 +      }
   1.533 +
   1.534 +      ///Removes the components with zero coefficient.
   1.535 +      void simplify() {
   1.536 +        for (Base::iterator i=Base::begin(); i!=Base::end();) {
   1.537 +          Base::iterator j=i;
   1.538 +          ++j;
   1.539 +          if ((*i).second==0) Base::erase(i);
   1.540 +          i=j;
   1.541 +        }
   1.542 +      }
   1.543 +
   1.544 +      void simplify() const {
   1.545 +        const_cast<DualExpr*>(this)->simplify();
   1.546 +      }
   1.547 +
   1.548 +      ///Removes the coefficients closer to zero than \c tolerance.
   1.549 +      void simplify(double &tolerance) {
   1.550 +        for (Base::iterator i=Base::begin(); i!=Base::end();) {
   1.551 +          Base::iterator j=i;
   1.552 +          ++j;
   1.553 +          if (std::fabs((*i).second)<tolerance) Base::erase(i);
   1.554 +          i=j;
   1.555 +        }
   1.556 +      }
   1.557 +
   1.558 +      ///Sets all coefficients to 0.
   1.559 +      void clear() {
   1.560 +        Base::clear();
   1.561 +      }
   1.562 +
   1.563 +      ///\e
   1.564 +      DualExpr &operator+=(const DualExpr &e) {
   1.565 +        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.566 +          (*this)[j->first]+=j->second;
   1.567 +        return *this;
   1.568 +      }
   1.569 +      ///\e
   1.570 +      DualExpr &operator-=(const DualExpr &e) {
   1.571 +        for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   1.572 +          (*this)[j->first]-=j->second;
   1.573 +        return *this;
   1.574 +      }
   1.575 +      ///\e
   1.576 +      DualExpr &operator*=(const Value &c) {
   1.577 +        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.578 +          j->second*=c;
   1.579 +        return *this;
   1.580 +      }
   1.581 +      ///\e
   1.582 +      DualExpr &operator/=(const Value &c) {
   1.583 +        for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   1.584 +          j->second/=c;
   1.585 +        return *this;
   1.586 +      }
   1.587 +    };
   1.588 +
   1.589 +
   1.590 +  private:
   1.591 +
   1.592 +    template <typename _Expr>
   1.593 +    class MappedOutputIterator {
   1.594 +    public:
   1.595 +
   1.596 +      typedef std::insert_iterator<_Expr> Base;
   1.597 +
   1.598 +      typedef std::output_iterator_tag iterator_category;
   1.599 +      typedef void difference_type;
   1.600 +      typedef void value_type;
   1.601 +      typedef void reference;
   1.602 +      typedef void pointer;
   1.603 +
   1.604 +      MappedOutputIterator(const Base& _base, const LpSolverBase& _lp)
   1.605 +        : base(_base), lp(_lp) {}
   1.606 +
   1.607 +      MappedOutputIterator& operator*() {
   1.608 +        return *this;
   1.609 +      }
   1.610 +
   1.611 +      MappedOutputIterator& operator=(const std::pair<int, Value>& value) {
   1.612 +        *base = std::make_pair(lp._item(value.first, typename _Expr::Key()),
   1.613 +                               value.second);
   1.614 +        return *this;
   1.615 +      }
   1.616 +
   1.617 +      MappedOutputIterator& operator++() {
   1.618 +        ++base;
   1.619 +        return *this;
   1.620 +      }
   1.621 +
   1.622 +      MappedOutputIterator operator++(int) {
   1.623 +        MappedOutputIterator tmp(*this);
   1.624 +        ++base;
   1.625 +        return tmp;
   1.626 +      }
   1.627 +
   1.628 +      bool operator==(const MappedOutputIterator& it) const {
   1.629 +        return base == it.base;
   1.630 +      }
   1.631 +
   1.632 +      bool operator!=(const MappedOutputIterator& it) const {
   1.633 +        return base != it.base;
   1.634 +      }
   1.635 +
   1.636 +    private:
   1.637 +      Base base;
   1.638 +      const LpSolverBase& lp;
   1.639 +    };
   1.640 +
   1.641 +    template <typename Expr>
   1.642 +    class MappedInputIterator {
   1.643 +    public:
   1.644 +
   1.645 +      typedef typename Expr::const_iterator Base;
   1.646 +
   1.647 +      typedef typename Base::iterator_category iterator_category;
   1.648 +      typedef typename Base::difference_type difference_type;
   1.649 +      typedef const std::pair<int, Value> value_type;
   1.650 +      typedef value_type reference;
   1.651 +      class pointer {
   1.652 +      public:
   1.653 +        pointer(value_type& _value) : value(_value) {}
   1.654 +        value_type* operator->() { return &value; }
   1.655 +      private:
   1.656 +        value_type value;
   1.657 +      };
   1.658 +
   1.659 +      MappedInputIterator(const Base& _base, const LpSolverBase& _lp)
   1.660 +        : base(_base), lp(_lp) {}
   1.661 +
   1.662 +      reference operator*() {
   1.663 +        return std::make_pair(lp._lpId(base->first), base->second);
   1.664 +      }
   1.665 +
   1.666 +      pointer operator->() {
   1.667 +        return pointer(operator*());
   1.668 +      }
   1.669 +
   1.670 +      MappedInputIterator& operator++() {
   1.671 +        ++base;
   1.672 +        return *this;
   1.673 +      }
   1.674 +
   1.675 +      MappedInputIterator operator++(int) {
   1.676 +        MappedInputIterator tmp(*this);
   1.677 +        ++base;
   1.678 +        return tmp;
   1.679 +      }
   1.680 +
   1.681 +      bool operator==(const MappedInputIterator& it) const {
   1.682 +        return base == it.base;
   1.683 +      }
   1.684 +
   1.685 +      bool operator!=(const MappedInputIterator& it) const {
   1.686 +        return base != it.base;
   1.687 +      }
   1.688 +
   1.689 +    private:
   1.690 +      Base base;
   1.691 +      const LpSolverBase& lp;
   1.692 +    };
   1.693 +
   1.694 +  protected:
   1.695 +
   1.696 +    /// STL compatible iterator for lp col
   1.697 +    typedef MappedInputIterator<Expr> ConstRowIterator;
   1.698 +    /// STL compatible iterator for lp row
   1.699 +    typedef MappedInputIterator<DualExpr> ConstColIterator;
   1.700 +
   1.701 +    /// STL compatible iterator for lp col
   1.702 +    typedef MappedOutputIterator<Expr> RowIterator;
   1.703 +    /// STL compatible iterator for lp row
   1.704 +    typedef MappedOutputIterator<DualExpr> ColIterator;
   1.705 +
   1.706 +    //Abstract virtual functions
   1.707 +    virtual LpSolverBase* _newLp() = 0;
   1.708 +    virtual LpSolverBase* _copyLp(){
   1.709 +      LpSolverBase* newlp = _newLp();
   1.710 +
   1.711 +      std::map<Col, Col> ref;
   1.712 +      for (LpSolverBase::ColIt it(*this); it != INVALID; ++it) {
   1.713 +        Col ccol = newlp->addCol();
   1.714 +        ref[it] = ccol;
   1.715 +        newlp->colName(ccol, colName(it));
   1.716 +        newlp->colLowerBound(ccol, colLowerBound(it));
   1.717 +        newlp->colUpperBound(ccol, colUpperBound(it));
   1.718 +      }
   1.719 +
   1.720 +      for (LpSolverBase::RowIt it(*this); it != INVALID; ++it) {
   1.721 +        Expr e = row(it), ce;
   1.722 +        for (Expr::iterator jt = e.begin(); jt != e.end(); ++jt) {
   1.723 +          ce[ref[jt->first]] = jt->second;
   1.724 +        }
   1.725 +        ce += e.constComp();
   1.726 +        Row r = newlp->addRow(ce);
   1.727 +
   1.728 +        double lower, upper;
   1.729 +        getRowBounds(it, lower, upper);
   1.730 +        newlp->rowBounds(r, lower, upper);
   1.731 +      }
   1.732 +
   1.733 +      return newlp;
   1.734 +    };
   1.735 +
   1.736 +    virtual int _addCol() = 0;
   1.737 +    virtual int _addRow() = 0;
   1.738 +
   1.739 +    virtual void _eraseCol(int col) = 0;
   1.740 +    virtual void _eraseRow(int row) = 0;
   1.741 +
   1.742 +    virtual void _getColName(int col, std::string & name) const = 0;
   1.743 +    virtual void _setColName(int col, const std::string & name) = 0;
   1.744 +    virtual int _colByName(const std::string& name) const = 0;
   1.745 +
   1.746 +    virtual void _setRowCoeffs(int i, ConstRowIterator b,
   1.747 +                               ConstRowIterator e) = 0;
   1.748 +    virtual void _getRowCoeffs(int i, RowIterator b) const = 0;
   1.749 +    virtual void _setColCoeffs(int i, ConstColIterator b,
   1.750 +                               ConstColIterator e) = 0;
   1.751 +    virtual void _getColCoeffs(int i, ColIterator b) const = 0;
   1.752 +    virtual void _setCoeff(int row, int col, Value value) = 0;
   1.753 +    virtual Value _getCoeff(int row, int col) const = 0;
   1.754 +    virtual void _setColLowerBound(int i, Value value) = 0;
   1.755 +    virtual Value _getColLowerBound(int i) const = 0;
   1.756 +    virtual void _setColUpperBound(int i, Value value) = 0;
   1.757 +    virtual Value _getColUpperBound(int i) const = 0;
   1.758 +    virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   1.759 +    virtual void _getRowBounds(int i, Value &lower, Value &upper) const = 0;
   1.760 +
   1.761 +    virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   1.762 +    virtual Value _getObjCoeff(int i) const = 0;
   1.763 +    virtual void _clearObj()=0;
   1.764 +
   1.765 +    virtual SolveExitStatus _solve() = 0;
   1.766 +    virtual Value _getPrimal(int i) const = 0;
   1.767 +    virtual Value _getDual(int i) const = 0;
   1.768 +    virtual Value _getPrimalValue() const = 0;
   1.769 +    virtual bool _isBasicCol(int i) const = 0;
   1.770 +    virtual SolutionStatus _getPrimalStatus() const = 0;
   1.771 +    virtual SolutionStatus _getDualStatus() const = 0;
   1.772 +    virtual ProblemTypes _getProblemType() const = 0;
   1.773 +
   1.774 +    virtual void _setMax() = 0;
   1.775 +    virtual void _setMin() = 0;
   1.776 +
   1.777 +
   1.778 +    virtual bool _isMax() const = 0;
   1.779 +
   1.780 +    //Own protected stuff
   1.781 +
   1.782 +    //Constant component of the objective function
   1.783 +    Value obj_const_comp;
   1.784 +
   1.785 +  public:
   1.786 +
   1.787 +    ///\e
   1.788 +    LpSolverBase() : obj_const_comp(0) {}
   1.789 +
   1.790 +    ///\e
   1.791 +    virtual ~LpSolverBase() {}
   1.792 +
   1.793 +    ///Creates a new LP problem
   1.794 +    LpSolverBase* newLp() {return _newLp();}
   1.795 +    ///Makes a copy of the LP problem
   1.796 +    LpSolverBase* copyLp() {return _copyLp();}
   1.797 +
   1.798 +    ///\name Build up and modify the LP
   1.799 +
   1.800 +    ///@{
   1.801 +
   1.802 +    ///Add a new empty column (i.e a new variable) to the LP
   1.803 +    Col addCol() { Col c; _addCol(); c.id = cols.addId(); return c;}
   1.804 +
   1.805 +    ///\brief Adds several new columns
   1.806 +    ///(i.e a variables) at once
   1.807 +    ///
   1.808 +    ///This magic function takes a container as its argument
   1.809 +    ///and fills its elements
   1.810 +    ///with new columns (i.e. variables)
   1.811 +    ///\param t can be
   1.812 +    ///- a standard STL compatible iterable container with
   1.813 +    ///\ref Col as its \c values_type
   1.814 +    ///like
   1.815 +    ///\code
   1.816 +    ///std::vector<LpSolverBase::Col>
   1.817 +    ///std::list<LpSolverBase::Col>
   1.818 +    ///\endcode
   1.819 +    ///- a standard STL compatible iterable container with
   1.820 +    ///\ref Col as its \c mapped_type
   1.821 +    ///like
   1.822 +    ///\code
   1.823 +    ///std::map<AnyType,LpSolverBase::Col>
   1.824 +    ///\endcode
   1.825 +    ///- an iterable lemon \ref concepts::WriteMap "write map" like
   1.826 +    ///\code
   1.827 +    ///ListGraph::NodeMap<LpSolverBase::Col>
   1.828 +    ///ListGraph::EdgeMap<LpSolverBase::Col>
   1.829 +    ///\endcode
   1.830 +    ///\return The number of the created column.
   1.831 +#ifdef DOXYGEN
   1.832 +    template<class T>
   1.833 +    int addColSet(T &t) { return 0;}
   1.834 +#else
   1.835 +    template<class T>
   1.836 +    typename enable_if<typename T::value_type::LpSolverCol,int>::type
   1.837 +    addColSet(T &t,dummy<0> = 0) {
   1.838 +      int s=0;
   1.839 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   1.840 +      return s;
   1.841 +    }
   1.842 +    template<class T>
   1.843 +    typename enable_if<typename T::value_type::second_type::LpSolverCol,
   1.844 +                       int>::type
   1.845 +    addColSet(T &t,dummy<1> = 1) {
   1.846 +      int s=0;
   1.847 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
   1.848 +        i->second=addCol();
   1.849 +        s++;
   1.850 +      }
   1.851 +      return s;
   1.852 +    }
   1.853 +    template<class T>
   1.854 +    typename enable_if<typename T::MapIt::Value::LpSolverCol,
   1.855 +                       int>::type
   1.856 +    addColSet(T &t,dummy<2> = 2) {
   1.857 +      int s=0;
   1.858 +      for(typename T::MapIt i(t); i!=INVALID; ++i)
   1.859 +        {
   1.860 +          i.set(addCol());
   1.861 +          s++;
   1.862 +        }
   1.863 +      return s;
   1.864 +    }
   1.865 +#endif
   1.866 +
   1.867 +    ///Set a column (i.e a dual constraint) of the LP
   1.868 +
   1.869 +    ///\param c is the column to be modified
   1.870 +    ///\param e is a dual linear expression (see \ref DualExpr)
   1.871 +    ///a better one.
   1.872 +    void col(Col c,const DualExpr &e) {
   1.873 +      e.simplify();
   1.874 +      _setColCoeffs(_lpId(c), ConstColIterator(e.begin(), *this),
   1.875 +                    ConstColIterator(e.end(), *this));
   1.876 +    }
   1.877 +
   1.878 +    ///Get a column (i.e a dual constraint) of the LP
   1.879 +
   1.880 +    ///\param r is the column to get
   1.881 +    ///\return the dual expression associated to the column
   1.882 +    DualExpr col(Col c) const {
   1.883 +      DualExpr e;
   1.884 +      _getColCoeffs(_lpId(c), ColIterator(std::inserter(e, e.end()), *this));
   1.885 +      return e;
   1.886 +    }
   1.887 +
   1.888 +    ///Add a new column to the LP
   1.889 +
   1.890 +    ///\param e is a dual linear expression (see \ref DualExpr)
   1.891 +    ///\param obj is the corresponding component of the objective
   1.892 +    ///function. It is 0 by default.
   1.893 +    ///\return The created column.
   1.894 +    Col addCol(const DualExpr &e, Value o = 0) {
   1.895 +      Col c=addCol();
   1.896 +      col(c,e);
   1.897 +      objCoeff(c,o);
   1.898 +      return c;
   1.899 +    }
   1.900 +
   1.901 +    ///Add a new empty row (i.e a new constraint) to the LP
   1.902 +
   1.903 +    ///This function adds a new empty row (i.e a new constraint) to the LP.
   1.904 +    ///\return The created row
   1.905 +    Row addRow() { Row r; _addRow(); r.id = rows.addId(); return r;}
   1.906 +
   1.907 +    ///\brief Add several new rows
   1.908 +    ///(i.e a constraints) at once
   1.909 +    ///
   1.910 +    ///This magic function takes a container as its argument
   1.911 +    ///and fills its elements
   1.912 +    ///with new row (i.e. variables)
   1.913 +    ///\param t can be
   1.914 +    ///- a standard STL compatible iterable container with
   1.915 +    ///\ref Row as its \c values_type
   1.916 +    ///like
   1.917 +    ///\code
   1.918 +    ///std::vector<LpSolverBase::Row>
   1.919 +    ///std::list<LpSolverBase::Row>
   1.920 +    ///\endcode
   1.921 +    ///- a standard STL compatible iterable container with
   1.922 +    ///\ref Row as its \c mapped_type
   1.923 +    ///like
   1.924 +    ///\code
   1.925 +    ///std::map<AnyType,LpSolverBase::Row>
   1.926 +    ///\endcode
   1.927 +    ///- an iterable lemon \ref concepts::WriteMap "write map" like
   1.928 +    ///\code
   1.929 +    ///ListGraph::NodeMap<LpSolverBase::Row>
   1.930 +    ///ListGraph::EdgeMap<LpSolverBase::Row>
   1.931 +    ///\endcode
   1.932 +    ///\return The number of rows created.
   1.933 +#ifdef DOXYGEN
   1.934 +    template<class T>
   1.935 +    int addRowSet(T &t) { return 0;}
   1.936 +#else
   1.937 +    template<class T>
   1.938 +    typename enable_if<typename T::value_type::LpSolverRow,int>::type
   1.939 +    addRowSet(T &t,dummy<0> = 0) {
   1.940 +      int s=0;
   1.941 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
   1.942 +      return s;
   1.943 +    }
   1.944 +    template<class T>
   1.945 +    typename enable_if<typename T::value_type::second_type::LpSolverRow,
   1.946 +                       int>::type
   1.947 +    addRowSet(T &t,dummy<1> = 1) {
   1.948 +      int s=0;
   1.949 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
   1.950 +        i->second=addRow();
   1.951 +        s++;
   1.952 +      }
   1.953 +      return s;
   1.954 +    }
   1.955 +    template<class T>
   1.956 +    typename enable_if<typename T::MapIt::Value::LpSolverRow,
   1.957 +                       int>::type
   1.958 +    addRowSet(T &t,dummy<2> = 2) {
   1.959 +      int s=0;
   1.960 +      for(typename T::MapIt i(t); i!=INVALID; ++i)
   1.961 +        {
   1.962 +          i.set(addRow());
   1.963 +          s++;
   1.964 +        }
   1.965 +      return s;
   1.966 +    }
   1.967 +#endif
   1.968 +
   1.969 +    ///Set a row (i.e a constraint) of the LP
   1.970 +
   1.971 +    ///\param r is the row to be modified
   1.972 +    ///\param l is lower bound (-\ref INF means no bound)
   1.973 +    ///\param e is a linear expression (see \ref Expr)
   1.974 +    ///\param u is the upper bound (\ref INF means no bound)
   1.975 +    ///\bug This is a temporary function. The interface will change to
   1.976 +    ///a better one.
   1.977 +    ///\todo Option to control whether a constraint with a single variable is
   1.978 +    ///added or not.
   1.979 +    void row(Row r, Value l, const Expr &e, Value u) {
   1.980 +      e.simplify();
   1.981 +      _setRowCoeffs(_lpId(r), ConstRowIterator(e.begin(), *this),
   1.982 +                    ConstRowIterator(e.end(), *this));
   1.983 +      _setRowBounds(_lpId(r),l-e.constComp(),u-e.constComp());
   1.984 +    }
   1.985 +
   1.986 +    ///Set a row (i.e a constraint) of the LP
   1.987 +
   1.988 +    ///\param r is the row to be modified
   1.989 +    ///\param c is a linear expression (see \ref Constr)
   1.990 +    void row(Row r, const Constr &c) {
   1.991 +      row(r, c.lowerBounded()?c.lowerBound():-INF,
   1.992 +          c.expr(), c.upperBounded()?c.upperBound():INF);
   1.993 +    }
   1.994 +
   1.995 +
   1.996 +    ///Get a row (i.e a constraint) of the LP
   1.997 +
   1.998 +    ///\param r is the row to get
   1.999 +    ///\return the expression associated to the row
  1.1000 +    Expr row(Row r) const {
  1.1001 +      Expr e;
  1.1002 +      _getRowCoeffs(_lpId(r), RowIterator(std::inserter(e, e.end()), *this));
  1.1003 +      return e;
  1.1004 +    }
  1.1005 +
  1.1006 +    ///Add a new row (i.e a new constraint) to the LP
  1.1007 +
  1.1008 +    ///\param l is the lower bound (-\ref INF means no bound)
  1.1009 +    ///\param e is a linear expression (see \ref Expr)
  1.1010 +    ///\param u is the upper bound (\ref INF means no bound)
  1.1011 +    ///\return The created row.
  1.1012 +    ///\bug This is a temporary function. The interface will change to
  1.1013 +    ///a better one.
  1.1014 +    Row addRow(Value l,const Expr &e, Value u) {
  1.1015 +      Row r=addRow();
  1.1016 +      row(r,l,e,u);
  1.1017 +      return r;
  1.1018 +    }
  1.1019 +
  1.1020 +    ///Add a new row (i.e a new constraint) to the LP
  1.1021 +
  1.1022 +    ///\param c is a linear expression (see \ref Constr)
  1.1023 +    ///\return The created row.
  1.1024 +    Row addRow(const Constr &c) {
  1.1025 +      Row r=addRow();
  1.1026 +      row(r,c);
  1.1027 +      return r;
  1.1028 +    }
  1.1029 +    ///Erase a coloumn (i.e a variable) from the LP
  1.1030 +
  1.1031 +    ///\param c is the coloumn to be deleted
  1.1032 +    ///\todo Please check this
  1.1033 +    void eraseCol(Col c) {
  1.1034 +      _eraseCol(_lpId(c));
  1.1035 +      cols.eraseId(c.id);
  1.1036 +    }
  1.1037 +    ///Erase a  row (i.e a constraint) from the LP
  1.1038 +
  1.1039 +    ///\param r is the row to be deleted
  1.1040 +    ///\todo Please check this
  1.1041 +    void eraseRow(Row r) {
  1.1042 +      _eraseRow(_lpId(r));
  1.1043 +      rows.eraseId(r.id);
  1.1044 +    }
  1.1045 +
  1.1046 +    /// Get the name of a column
  1.1047 +
  1.1048 +    ///\param c is the coresponding coloumn
  1.1049 +    ///\return The name of the colunm
  1.1050 +    std::string colName(Col c) const {
  1.1051 +      std::string name;
  1.1052 +      _getColName(_lpId(c), name);
  1.1053 +      return name;
  1.1054 +    }
  1.1055 +
  1.1056 +    /// Set the name of a column
  1.1057 +
  1.1058 +    ///\param c is the coresponding coloumn
  1.1059 +    ///\param name The name to be given
  1.1060 +    void colName(Col c, const std::string& name) {
  1.1061 +      _setColName(_lpId(c), name);
  1.1062 +    }
  1.1063 +
  1.1064 +    /// Get the column by its name
  1.1065 +
  1.1066 +    ///\param name The name of the column
  1.1067 +    ///\return the proper column or \c INVALID
  1.1068 +    Col colByName(const std::string& name) const {
  1.1069 +      int k = _colByName(name);
  1.1070 +      return k != -1 ? Col(cols.fixId(k)) : Col(INVALID);
  1.1071 +    }
  1.1072 +
  1.1073 +    /// Set an element of the coefficient matrix of the LP
  1.1074 +
  1.1075 +    ///\param r is the row of the element to be modified
  1.1076 +    ///\param c is the coloumn of the element to be modified
  1.1077 +    ///\param val is the new value of the coefficient
  1.1078 +
  1.1079 +    void coeff(Row r, Col c, Value val) {
  1.1080 +      _setCoeff(_lpId(r),_lpId(c), val);
  1.1081 +    }
  1.1082 +
  1.1083 +    /// Get an element of the coefficient matrix of the LP
  1.1084 +
  1.1085 +    ///\param r is the row of the element in question
  1.1086 +    ///\param c is the coloumn of the element in question
  1.1087 +    ///\return the corresponding coefficient
  1.1088 +
  1.1089 +    Value coeff(Row r, Col c) const {
  1.1090 +      return _getCoeff(_lpId(r),_lpId(c));
  1.1091 +    }
  1.1092 +
  1.1093 +    /// Set the lower bound of a column (i.e a variable)
  1.1094 +
  1.1095 +    /// The lower bound of a variable (column) has to be given by an
  1.1096 +    /// extended number of type Value, i.e. a finite number of type
  1.1097 +    /// Value or -\ref INF.
  1.1098 +    void colLowerBound(Col c, Value value) {
  1.1099 +      _setColLowerBound(_lpId(c),value);
  1.1100 +    }
  1.1101 +
  1.1102 +    /// Get the lower bound of a column (i.e a variable)
  1.1103 +
  1.1104 +    /// This function returns the lower bound for column (variable) \t c
  1.1105 +    /// (this might be -\ref INF as well).
  1.1106 +    ///\return The lower bound for coloumn \t c
  1.1107 +    Value colLowerBound(Col c) const {
  1.1108 +      return _getColLowerBound(_lpId(c));
  1.1109 +    }
  1.1110 +
  1.1111 +    ///\brief Set the lower bound of  several columns
  1.1112 +    ///(i.e a variables) at once
  1.1113 +    ///
  1.1114 +    ///This magic function takes a container as its argument
  1.1115 +    ///and applies the function on all of its elements.
  1.1116 +    /// The lower bound of a variable (column) has to be given by an
  1.1117 +    /// extended number of type Value, i.e. a finite number of type
  1.1118 +    /// Value or -\ref INF.
  1.1119 +#ifdef DOXYGEN
  1.1120 +    template<class T>
  1.1121 +    void colLowerBound(T &t, Value value) { return 0;}
  1.1122 +#else
  1.1123 +    template<class T>
  1.1124 +    typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1.1125 +    colLowerBound(T &t, Value value,dummy<0> = 0) {
  1.1126 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1.1127 +        colLowerBound(*i, value);
  1.1128 +      }
  1.1129 +    }
  1.1130 +    template<class T>
  1.1131 +    typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1.1132 +                       void>::type
  1.1133 +    colLowerBound(T &t, Value value,dummy<1> = 1) {
  1.1134 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1.1135 +        colLowerBound(i->second, value);
  1.1136 +      }
  1.1137 +    }
  1.1138 +    template<class T>
  1.1139 +    typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1.1140 +                       void>::type
  1.1141 +    colLowerBound(T &t, Value value,dummy<2> = 2) {
  1.1142 +      for(typename T::MapIt i(t); i!=INVALID; ++i){
  1.1143 +        colLowerBound(*i, value);
  1.1144 +      }
  1.1145 +    }
  1.1146 +#endif
  1.1147 +
  1.1148 +    /// Set the upper bound of a column (i.e a variable)
  1.1149 +
  1.1150 +    /// The upper bound of a variable (column) has to be given by an
  1.1151 +    /// extended number of type Value, i.e. a finite number of type
  1.1152 +    /// Value or \ref INF.
  1.1153 +    void colUpperBound(Col c, Value value) {
  1.1154 +      _setColUpperBound(_lpId(c),value);
  1.1155 +    };
  1.1156 +
  1.1157 +    /// Get the upper bound of a column (i.e a variable)
  1.1158 +
  1.1159 +    /// This function returns the upper bound for column (variable) \t c
  1.1160 +    /// (this might be \ref INF as well).
  1.1161 +    ///\return The upper bound for coloumn \t c
  1.1162 +    Value colUpperBound(Col c) const {
  1.1163 +      return _getColUpperBound(_lpId(c));
  1.1164 +    }
  1.1165 +
  1.1166 +    ///\brief Set the upper bound of  several columns
  1.1167 +    ///(i.e a variables) at once
  1.1168 +    ///
  1.1169 +    ///This magic function takes a container as its argument
  1.1170 +    ///and applies the function on all of its elements.
  1.1171 +    /// The upper bound of a variable (column) has to be given by an
  1.1172 +    /// extended number of type Value, i.e. a finite number of type
  1.1173 +    /// Value or \ref INF.
  1.1174 +#ifdef DOXYGEN
  1.1175 +    template<class T>
  1.1176 +    void colUpperBound(T &t, Value value) { return 0;}
  1.1177 +#else
  1.1178 +    template<class T>
  1.1179 +    typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1.1180 +    colUpperBound(T &t, Value value,dummy<0> = 0) {
  1.1181 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1.1182 +        colUpperBound(*i, value);
  1.1183 +      }
  1.1184 +    }
  1.1185 +    template<class T>
  1.1186 +    typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1.1187 +                       void>::type
  1.1188 +    colUpperBound(T &t, Value value,dummy<1> = 1) {
  1.1189 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1.1190 +        colUpperBound(i->second, value);
  1.1191 +      }
  1.1192 +    }
  1.1193 +    template<class T>
  1.1194 +    typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1.1195 +                       void>::type
  1.1196 +    colUpperBound(T &t, Value value,dummy<2> = 2) {
  1.1197 +      for(typename T::MapIt i(t); i!=INVALID; ++i){
  1.1198 +        colUpperBound(*i, value);
  1.1199 +      }
  1.1200 +    }
  1.1201 +#endif
  1.1202 +
  1.1203 +    /// Set the lower and the upper bounds of a column (i.e a variable)
  1.1204 +
  1.1205 +    /// The lower and the upper bounds of
  1.1206 +    /// a variable (column) have to be given by an
  1.1207 +    /// extended number of type Value, i.e. a finite number of type
  1.1208 +    /// Value, -\ref INF or \ref INF.
  1.1209 +    void colBounds(Col c, Value lower, Value upper) {
  1.1210 +      _setColLowerBound(_lpId(c),lower);
  1.1211 +      _setColUpperBound(_lpId(c),upper);
  1.1212 +    }
  1.1213 +
  1.1214 +    ///\brief Set the lower and the upper bound of several columns
  1.1215 +    ///(i.e a variables) at once
  1.1216 +    ///
  1.1217 +    ///This magic function takes a container as its argument
  1.1218 +    ///and applies the function on all of its elements.
  1.1219 +    /// The lower and the upper bounds of
  1.1220 +    /// a variable (column) have to be given by an
  1.1221 +    /// extended number of type Value, i.e. a finite number of type
  1.1222 +    /// Value, -\ref INF or \ref INF.
  1.1223 +#ifdef DOXYGEN
  1.1224 +    template<class T>
  1.1225 +    void colBounds(T &t, Value lower, Value upper) { return 0;}
  1.1226 +#else
  1.1227 +    template<class T>
  1.1228 +    typename enable_if<typename T::value_type::LpSolverCol,void>::type
  1.1229 +    colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
  1.1230 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1.1231 +        colBounds(*i, lower, upper);
  1.1232 +      }
  1.1233 +    }
  1.1234 +    template<class T>
  1.1235 +    typename enable_if<typename T::value_type::second_type::LpSolverCol,
  1.1236 +                       void>::type
  1.1237 +    colBounds(T &t, Value lower, Value upper,dummy<1> = 1) {
  1.1238 +      for(typename T::iterator i=t.begin();i!=t.end();++i) {
  1.1239 +        colBounds(i->second, lower, upper);
  1.1240 +      }
  1.1241 +    }
  1.1242 +    template<class T>
  1.1243 +    typename enable_if<typename T::MapIt::Value::LpSolverCol,
  1.1244 +                       void>::type
  1.1245 +    colBounds(T &t, Value lower, Value upper,dummy<2> = 2) {
  1.1246 +      for(typename T::MapIt i(t); i!=INVALID; ++i){
  1.1247 +        colBounds(*i, lower, upper);
  1.1248 +      }
  1.1249 +    }
  1.1250 +#endif
  1.1251 +
  1.1252 +
  1.1253 +    /// Set the lower and the upper bounds of a row (i.e a constraint)
  1.1254 +
  1.1255 +    /// The lower and the upper bound of a constraint (row) have to be
  1.1256 +    /// given by an extended number of type Value, i.e. a finite
  1.1257 +    /// number of type Value, -\ref INF or \ref INF. There is no
  1.1258 +    /// separate function for the lower and the upper bound because
  1.1259 +    /// that would have been hard to implement for CPLEX.
  1.1260 +    void rowBounds(Row c, Value lower, Value upper) {
  1.1261 +      _setRowBounds(_lpId(c),lower, upper);
  1.1262 +    }
  1.1263 +
  1.1264 +    /// Get the lower and the upper bounds of a row (i.e a constraint)
  1.1265 +
  1.1266 +    /// The lower and the upper bound of
  1.1267 +    /// a constraint (row) are
  1.1268 +    /// extended numbers of type Value, i.e.  finite numbers of type
  1.1269 +    /// Value, -\ref INF or \ref INF.
  1.1270 +    /// \todo There is no separate function for the
  1.1271 +    /// lower and the upper bound because we had problems with the
  1.1272 +    /// implementation of the setting functions for CPLEX:
  1.1273 +    /// check out whether this can be done for these functions.
  1.1274 +    void getRowBounds(Row c, Value &lower, Value &upper) const {
  1.1275 +      _getRowBounds(_lpId(c),lower, upper);
  1.1276 +    }
  1.1277 +
  1.1278 +    ///Set an element of the objective function
  1.1279 +    void objCoeff(Col c, Value v) {_setObjCoeff(_lpId(c),v); };
  1.1280 +
  1.1281 +    ///Get an element of the objective function
  1.1282 +    Value objCoeff(Col c) const { return _getObjCoeff(_lpId(c)); };
  1.1283 +
  1.1284 +    ///Set the objective function
  1.1285 +
  1.1286 +    ///\param e is a linear expression of type \ref Expr.
  1.1287 +    void obj(Expr e) {
  1.1288 +      _clearObj();
  1.1289 +      for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
  1.1290 +        objCoeff((*i).first,(*i).second);
  1.1291 +      obj_const_comp=e.constComp();
  1.1292 +    }
  1.1293 +
  1.1294 +    ///Get the objective function
  1.1295 +
  1.1296 +    ///\return the objective function as a linear expression of type \ref Expr.
  1.1297 +    Expr obj() const {
  1.1298 +      Expr e;
  1.1299 +      for (ColIt it(*this); it != INVALID; ++it) {
  1.1300 +        double c = objCoeff(it);
  1.1301 +        if (c != 0.0) {
  1.1302 +          e.insert(std::make_pair(it, c));
  1.1303 +        }
  1.1304 +      }
  1.1305 +      return e;
  1.1306 +    }
  1.1307 +
  1.1308 +
  1.1309 +    ///Maximize
  1.1310 +    void max() { _setMax(); }
  1.1311 +    ///Minimize
  1.1312 +    void min() { _setMin(); }
  1.1313 +
  1.1314 +    ///Query function: is this a maximization problem?
  1.1315 +    bool isMax() const {return _isMax(); }
  1.1316 +
  1.1317 +    ///Query function: is this a minimization problem?
  1.1318 +    bool isMin() const {return !isMax(); }
  1.1319 +
  1.1320 +    ///@}
  1.1321 +
  1.1322 +
  1.1323 +    ///\name Solve the LP
  1.1324 +
  1.1325 +    ///@{
  1.1326 +
  1.1327 +    ///\e Solve the LP problem at hand
  1.1328 +    ///
  1.1329 +    ///\return The result of the optimization procedure. Possible
  1.1330 +    ///values and their meanings can be found in the documentation of
  1.1331 +    ///\ref SolveExitStatus.
  1.1332 +    ///
  1.1333 +    ///\todo Which method is used to solve the problem
  1.1334 +    SolveExitStatus solve() { return _solve(); }
  1.1335 +
  1.1336 +    ///@}
  1.1337 +
  1.1338 +    ///\name Obtain the solution
  1.1339 +
  1.1340 +    ///@{
  1.1341 +
  1.1342 +    /// The status of the primal problem (the original LP problem)
  1.1343 +    SolutionStatus primalStatus() const {
  1.1344 +      return _getPrimalStatus();
  1.1345 +    }
  1.1346 +
  1.1347 +    /// The status of the dual (of the original LP) problem
  1.1348 +    SolutionStatus dualStatus() const {
  1.1349 +      return _getDualStatus();
  1.1350 +    }
  1.1351 +
  1.1352 +    ///The type of the original LP problem
  1.1353 +    ProblemTypes problemType() const {
  1.1354 +      return _getProblemType();
  1.1355 +    }
  1.1356 +
  1.1357 +    ///\e
  1.1358 +    Value primal(Col c) const { return _getPrimal(_lpId(c)); }
  1.1359 +    ///\e
  1.1360 +    Value primal(const Expr& e) const {
  1.1361 +      double res = e.constComp();
  1.1362 +      for (std::map<Col, double>::const_iterator it = e.begin();
  1.1363 +           it != e.end(); ++it) {
  1.1364 +        res += _getPrimal(_lpId(it->first)) * it->second;
  1.1365 +      }
  1.1366 +      return res;
  1.1367 +    }
  1.1368 +
  1.1369 +    ///\e
  1.1370 +    Value dual(Row r) const { return _getDual(_lpId(r)); }
  1.1371 +    ///\e
  1.1372 +    Value dual(const DualExpr& e) const {
  1.1373 +      double res = 0.0;
  1.1374 +      for (std::map<Row, double>::const_iterator it = e.begin();
  1.1375 +           it != e.end(); ++it) {
  1.1376 +        res += _getPrimal(_lpId(it->first)) * it->second;
  1.1377 +      }
  1.1378 +      return res;
  1.1379 +    }
  1.1380 +
  1.1381 +    ///\e
  1.1382 +    bool isBasicCol(Col c) const { return _isBasicCol(_lpId(c)); }
  1.1383 +
  1.1384 +    ///\e
  1.1385 +
  1.1386 +    ///\return
  1.1387 +    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
  1.1388 +    /// of the primal problem, depending on whether we minimize or maximize.
  1.1389 +    ///- \ref NaN if no primal solution is found.
  1.1390 +    ///- The (finite) objective value if an optimal solution is found.
  1.1391 +    Value primalValue() const { return _getPrimalValue()+obj_const_comp;}
  1.1392 +    ///@}
  1.1393 +
  1.1394 +  };
  1.1395 +
  1.1396 +
  1.1397 +  /// \ingroup lp_group
  1.1398 +  ///
  1.1399 +  /// \brief Common base class for MIP solvers
  1.1400 +  /// \todo Much more docs
  1.1401 +  class MipSolverBase : virtual public LpSolverBase{
  1.1402 +  public:
  1.1403 +
  1.1404 +    ///Possible variable (coloumn) types (e.g. real, integer, binary etc.)
  1.1405 +    enum ColTypes {
  1.1406 +      ///Continuous variable
  1.1407 +      REAL = 0,
  1.1408 +      ///Integer variable
  1.1409 +
  1.1410 +      ///Unfortunately, cplex 7.5 somewhere writes something like
  1.1411 +      ///#define INTEGER 'I'
  1.1412 +      INT = 1
  1.1413 +      ///\todo No support for other types yet.
  1.1414 +    };
  1.1415 +
  1.1416 +    ///Sets the type of the given coloumn to the given type
  1.1417 +    ///
  1.1418 +    ///Sets the type of the given coloumn to the given type.
  1.1419 +    void colType(Col c, ColTypes col_type) {
  1.1420 +      _colType(_lpId(c),col_type);
  1.1421 +    }
  1.1422 +
  1.1423 +    ///Gives back the type of the column.
  1.1424 +    ///
  1.1425 +    ///Gives back the type of the column.
  1.1426 +    ColTypes colType(Col c) const {
  1.1427 +      return _colType(_lpId(c));
  1.1428 +    }
  1.1429 +
  1.1430 +    ///Sets the type of the given Col to integer or remove that property.
  1.1431 +    ///
  1.1432 +    ///Sets the type of the given Col to integer or remove that property.
  1.1433 +    void integer(Col c, bool enable) {
  1.1434 +      if (enable)
  1.1435 +        colType(c,INT);
  1.1436 +      else
  1.1437 +        colType(c,REAL);
  1.1438 +    }
  1.1439 +
  1.1440 +    ///Gives back whether the type of the column is integer or not.
  1.1441 +    ///
  1.1442 +    ///Gives back the type of the column.
  1.1443 +    ///\return true if the column has integer type and false if not.
  1.1444 +    bool integer(Col c) const {
  1.1445 +      return (colType(c)==INT);
  1.1446 +    }
  1.1447 +
  1.1448 +    /// The status of the MIP problem
  1.1449 +    SolutionStatus mipStatus() const {
  1.1450 +      return _getMipStatus();
  1.1451 +    }
  1.1452 +
  1.1453 +  protected:
  1.1454 +
  1.1455 +    virtual ColTypes _colType(int col) const = 0;
  1.1456 +    virtual void _colType(int col, ColTypes col_type) = 0;
  1.1457 +    virtual SolutionStatus _getMipStatus() const = 0;
  1.1458 +
  1.1459 +  };
  1.1460 +
  1.1461 +  ///\relates LpSolverBase::Expr
  1.1462 +  ///
  1.1463 +  inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
  1.1464 +                                      const LpSolverBase::Expr &b)
  1.1465 +  {
  1.1466 +    LpSolverBase::Expr tmp(a);
  1.1467 +    tmp+=b;
  1.1468 +    return tmp;
  1.1469 +  }
  1.1470 +  ///\e
  1.1471 +
  1.1472 +  ///\relates LpSolverBase::Expr
  1.1473 +  ///
  1.1474 +  inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
  1.1475 +                                      const LpSolverBase::Expr &b)
  1.1476 +  {
  1.1477 +    LpSolverBase::Expr tmp(a);
  1.1478 +    tmp-=b;
  1.1479 +    return tmp;
  1.1480 +  }
  1.1481 +  ///\e
  1.1482 +
  1.1483 +  ///\relates LpSolverBase::Expr
  1.1484 +  ///
  1.1485 +  inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
  1.1486 +                                      const LpSolverBase::Value &b)
  1.1487 +  {
  1.1488 +    LpSolverBase::Expr tmp(a);
  1.1489 +    tmp*=b;
  1.1490 +    return tmp;
  1.1491 +  }
  1.1492 +
  1.1493 +  ///\e
  1.1494 +
  1.1495 +  ///\relates LpSolverBase::Expr
  1.1496 +  ///
  1.1497 +  inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
  1.1498 +                                      const LpSolverBase::Expr &b)
  1.1499 +  {
  1.1500 +    LpSolverBase::Expr tmp(b);
  1.1501 +    tmp*=a;
  1.1502 +    return tmp;
  1.1503 +  }
  1.1504 +  ///\e
  1.1505 +
  1.1506 +  ///\relates LpSolverBase::Expr
  1.1507 +  ///
  1.1508 +  inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
  1.1509 +                                      const LpSolverBase::Value &b)
  1.1510 +  {
  1.1511 +    LpSolverBase::Expr tmp(a);
  1.1512 +    tmp/=b;
  1.1513 +    return tmp;
  1.1514 +  }
  1.1515 +
  1.1516 +  ///\e
  1.1517 +
  1.1518 +  ///\relates LpSolverBase::Constr
  1.1519 +  ///
  1.1520 +  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1.1521 +                                         const LpSolverBase::Expr &f)
  1.1522 +  {
  1.1523 +    return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
  1.1524 +  }
  1.1525 +
  1.1526 +  ///\e
  1.1527 +
  1.1528 +  ///\relates LpSolverBase::Constr
  1.1529 +  ///
  1.1530 +  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
  1.1531 +                                         const LpSolverBase::Expr &f)
  1.1532 +  {
  1.1533 +    return LpSolverBase::Constr(e,f);
  1.1534 +  }
  1.1535 +
  1.1536 +  ///\e
  1.1537 +
  1.1538 +  ///\relates LpSolverBase::Constr
  1.1539 +  ///
  1.1540 +  inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1.1541 +                                         const LpSolverBase::Value &f)
  1.1542 +  {
  1.1543 +    return LpSolverBase::Constr(-LpSolverBase::INF,e,f);
  1.1544 +  }
  1.1545 +
  1.1546 +  ///\e
  1.1547 +
  1.1548 +  ///\relates LpSolverBase::Constr
  1.1549 +  ///
  1.1550 +  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1.1551 +                                         const LpSolverBase::Expr &f)
  1.1552 +  {
  1.1553 +    return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
  1.1554 +  }
  1.1555 +
  1.1556 +
  1.1557 +  ///\e
  1.1558 +
  1.1559 +  ///\relates LpSolverBase::Constr
  1.1560 +  ///
  1.1561 +  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
  1.1562 +                                         const LpSolverBase::Expr &f)
  1.1563 +  {
  1.1564 +    return LpSolverBase::Constr(f,e);
  1.1565 +  }
  1.1566 +
  1.1567 +
  1.1568 +  ///\e
  1.1569 +
  1.1570 +  ///\relates LpSolverBase::Constr
  1.1571 +  ///
  1.1572 +  inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1.1573 +                                         const LpSolverBase::Value &f)
  1.1574 +  {
  1.1575 +    return LpSolverBase::Constr(f,e,LpSolverBase::INF);
  1.1576 +  }
  1.1577 +
  1.1578 +  ///\e
  1.1579 +
  1.1580 +  ///\relates LpSolverBase::Constr
  1.1581 +  ///
  1.1582 +  inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
  1.1583 +                                         const LpSolverBase::Value &f)
  1.1584 +  {
  1.1585 +    return LpSolverBase::Constr(f,e,f);
  1.1586 +  }
  1.1587 +
  1.1588 +  ///\e
  1.1589 +
  1.1590 +  ///\relates LpSolverBase::Constr
  1.1591 +  ///
  1.1592 +  inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
  1.1593 +                                         const LpSolverBase::Expr &f)
  1.1594 +  {
  1.1595 +    return LpSolverBase::Constr(0,e-f,0);
  1.1596 +  }
  1.1597 +
  1.1598 +  ///\e
  1.1599 +
  1.1600 +  ///\relates LpSolverBase::Constr
  1.1601 +  ///
  1.1602 +  inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
  1.1603 +                                         const LpSolverBase::Constr&c)
  1.1604 +  {
  1.1605 +    LpSolverBase::Constr tmp(c);
  1.1606 +    LEMON_ASSERT(LpSolverBase::isNaN(tmp.lowerBound()), "Wrong LP constraint");
  1.1607 +    tmp.lowerBound()=n;
  1.1608 +    return tmp;
  1.1609 +  }
  1.1610 +  ///\e
  1.1611 +
  1.1612 +  ///\relates LpSolverBase::Constr
  1.1613 +  ///
  1.1614 +  inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
  1.1615 +                                         const LpSolverBase::Value &n)
  1.1616 +  {
  1.1617 +    LpSolverBase::Constr tmp(c);
  1.1618 +    LEMON_ASSERT(LpSolverBase::isNaN(tmp.upperBound()), "Wrong LP constraint");
  1.1619 +    tmp.upperBound()=n;
  1.1620 +    return tmp;
  1.1621 +  }
  1.1622 +
  1.1623 +  ///\e
  1.1624 +
  1.1625 +  ///\relates LpSolverBase::Constr
  1.1626 +  ///
  1.1627 +  inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
  1.1628 +                                         const LpSolverBase::Constr&c)
  1.1629 +  {
  1.1630 +    LpSolverBase::Constr tmp(c);
  1.1631 +    LEMON_ASSERT(LpSolverBase::isNaN(tmp.upperBound()), "Wrong LP constraint");
  1.1632 +    tmp.upperBound()=n;
  1.1633 +    return tmp;
  1.1634 +  }
  1.1635 +  ///\e
  1.1636 +
  1.1637 +  ///\relates LpSolverBase::Constr
  1.1638 +  ///
  1.1639 +  inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
  1.1640 +                                         const LpSolverBase::Value &n)
  1.1641 +  {
  1.1642 +    LpSolverBase::Constr tmp(c);
  1.1643 +    LEMON_ASSERT(LpSolverBase::isNaN(tmp.lowerBound()), "Wrong LP constraint");
  1.1644 +    tmp.lowerBound()=n;
  1.1645 +    return tmp;
  1.1646 +  }
  1.1647 +
  1.1648 +  ///\e
  1.1649 +
  1.1650 +  ///\relates LpSolverBase::DualExpr
  1.1651 +  ///
  1.1652 +  inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
  1.1653 +                                          const LpSolverBase::DualExpr &b)
  1.1654 +  {
  1.1655 +    LpSolverBase::DualExpr tmp(a);
  1.1656 +    tmp+=b;
  1.1657 +    return tmp;
  1.1658 +  }
  1.1659 +  ///\e
  1.1660 +
  1.1661 +  ///\relates LpSolverBase::DualExpr
  1.1662 +  ///
  1.1663 +  inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
  1.1664 +                                          const LpSolverBase::DualExpr &b)
  1.1665 +  {
  1.1666 +    LpSolverBase::DualExpr tmp(a);
  1.1667 +    tmp-=b;
  1.1668 +    return tmp;
  1.1669 +  }
  1.1670 +  ///\e
  1.1671 +
  1.1672 +  ///\relates LpSolverBase::DualExpr
  1.1673 +  ///
  1.1674 +  inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
  1.1675 +                                          const LpSolverBase::Value &b)
  1.1676 +  {
  1.1677 +    LpSolverBase::DualExpr tmp(a);
  1.1678 +    tmp*=b;
  1.1679 +    return tmp;
  1.1680 +  }
  1.1681 +
  1.1682 +  ///\e
  1.1683 +
  1.1684 +  ///\relates LpSolverBase::DualExpr
  1.1685 +  ///
  1.1686 +  inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
  1.1687 +                                          const LpSolverBase::DualExpr &b)
  1.1688 +  {
  1.1689 +    LpSolverBase::DualExpr tmp(b);
  1.1690 +    tmp*=a;
  1.1691 +    return tmp;
  1.1692 +  }
  1.1693 +  ///\e
  1.1694 +
  1.1695 +  ///\relates LpSolverBase::DualExpr
  1.1696 +  ///
  1.1697 +  inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
  1.1698 +                                          const LpSolverBase::Value &b)
  1.1699 +  {
  1.1700 +    LpSolverBase::DualExpr tmp(a);
  1.1701 +    tmp/=b;
  1.1702 +    return tmp;
  1.1703 +  }
  1.1704 +
  1.1705 +
  1.1706 +} //namespace lemon
  1.1707 +
  1.1708 +#endif //LEMON_LP_BASE_H